Example 116. Determine $\lim _{x \rightarrow 0} \frac{8^{x}-1}{2^{x}-1}$.
Solution. $\lim _{x \rightarrow 0} \frac{8^{x}-1}{2^{x}-1} \underset{\substack{\overline{0}, 1}}{\stackrel{L H}{y}} \lim _{x \rightarrow 0} \frac{\ln (8) 8^{x}}{\ln (2) 2^{x}}=\frac{\ln (8)}{\ln (2)}=\log _{2}(8)=3$.
Example 117. Determine $\lim _{x \rightarrow \infty}(\ln (x))^{1 / x}$.
Solution. $\lim _{x \rightarrow \infty} \ln \left((\ln (x))^{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{\ln (\ln (x))}{x} \underset{\text { (능, }}{\text { LH }} \lim _{x \rightarrow \infty} \frac{\frac{1}{\ln (x)} \cdot \frac{1}{x}}{1}=0$.
Hence, $\lim _{x \rightarrow \infty}(\ln (x))^{1 / x}=e^{0}=1$.
[... April Fools' Day ...]

Estimating areas

For much more detail (using a very slightly different example), as well as nice illustrations, you are strongly encouraged to read through the beginning of Section 5.1 in our book.

Example 118. Sketch the area A between the x-axis and $f(x)=4-x^{2}$ for x in $[0,2]$. Then estimate the area by dividing $[0,2]$ into four subintervals, and using each subinterval as the base of a rectangle whose height is
(a) the maximum of f on the subinterval ("upper sum"),
(b) the minimum of f on the subinterval ("lower sum"),
(c) the values of f at the center of the subinterval ("midpoint rule").

Solution. The four subintervals are $\left[0, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right],\left[1, \frac{3}{2}\right],\left[\frac{3}{2}, 2\right]$.
(a) $A<\frac{1}{2}\left[f(0)+f\left(\frac{1}{2}\right)+f(1)+f\left(\frac{3}{2}\right)\right]=\frac{1}{2}\left[4+\frac{15}{4}+3+\frac{7}{4}\right]=\frac{16+15+12+7}{8}=\frac{25}{4}=6.25$
(b) $A>\frac{1}{2}\left[f\left(\frac{1}{2}\right)+f(1)+f\left(\frac{3}{2}\right)+f(2)\right]=\frac{1}{2}\left[\frac{15}{4}+3+\frac{7}{4}+0\right]=\frac{17}{4}=4.25$
(c) $A \approx \frac{1}{2}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)+f\left(\frac{5}{4}\right)+f\left(\frac{7}{4}\right)\right]=\frac{43}{8}=5.375$

Comment. The exact area is $A=\frac{16}{3} \approx 5.333$.

