Sketch of Lecture 19

Quiz #6 (Tuesday)

- implicit differentiation (tangent and normal line to a curve)
- compute derivatives involving log's and inverse trig functions

Review. Implicit differentiation and derivatives of inverse functions

Related rates

Example 78. Suppose that the radius r and area $A = \pi r^2$ of a circle are differentiable functions of t. Determine an equation that relates $\frac{dr}{dt}$ to $\frac{dA}{dt}$.

Solution. Applying $\frac{d}{dt}$ to both sides of $A = \pi r^2$, we find $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$.

Comment. Make a sketch of two circles, one with larger radius than the other. For which of the two is the area increasing more when the radius r is increased by dr (so that the new radius is r + dr)? See how this is reflected by the formula relating $\frac{dA}{dt}$ and $\frac{dr}{dt}$.

Example 79. Consider a cone with base a circle of radius r and with height h. Recall that the volume of this cone is $V = \frac{1}{3}\pi r^2 h$. (Suppose r and h are differentiable functions of t.)

- (a) How is $\frac{dV}{dt}$ related to $\frac{dh}{dt}$ if r is constant?
- (b) How is $\frac{dV}{dt}$ related to $\frac{dr}{dt}$ if h is constant?
- (c) How is $\frac{dV}{dt}$ related to $\frac{dh}{dt}$ and $\frac{dr}{dt}$ if neither h nor r are constant?

Solution. In each case, we apply $\frac{d}{dt}$ to both sides of $V = \frac{1}{3}\pi r^2 h$.

- (a) If r is constant, then we get $\frac{dV}{dt} = \frac{1}{3}\pi r^2 \frac{dh}{dt}$.
- (b) If h is constant, then we get $\frac{dV}{dt} = \frac{2}{3}\pi rh \frac{dr}{dt}$.
- (c) In general, we get $\frac{dV}{dt} = \frac{1}{3}\pi r^2 \frac{dh}{dt} + \frac{2}{3}\pi rh \frac{dr}{dt}$. (This is nothing but the product rule.) Note. If, for instance, h is constant, then $\frac{dh}{dt} = 0$ and we obtain the earlier formula.

Example 80. A baseball diamond is a square with side 90 ft. A batter hits the ball and runs towards first base with a speed of 24 ft/sec.

At what rate is his distance from second base decreasing when he is halfway to first base?

Solution. Let us introduce coordinates: home plate H = (0,0), 1st base $B_1 = (90,0)$, 2nd base $B_2 = (90,90)$. Let x be the distance of the batter from H. In other words, his position is (x,0).

Let r be the distance from the batter to B_2 . Then $r^2 = (90 - x)^2 + 90^2$.

Observe that we want $\frac{\mathrm{d}r}{\mathrm{d}t}$ and that we know $\frac{\mathrm{d}x}{\mathrm{d}t} = 24$.

We apply $\frac{d}{dt}$ to both sides of $r^2 = (90 - x)^2 + 90^2$ to get $2r \frac{dr}{dt} = -2(90 - x)\frac{dx}{dt}$. So, $\frac{dr}{dt} = -\frac{90 - x}{r}\frac{dx}{dt}$. When the batter is halfway to B_1 , we have x = 45 and $r = \sqrt{(90 - x)^2 + 90^2} = 45\sqrt{5}$. Hence, $\frac{dr}{dt} = -\frac{90 - x}{r}\frac{dx}{dt} = -\frac{90 - 45}{45\sqrt{5}} \cdot 24 = -\frac{24}{\sqrt{5}} \approx -10.73 \,\text{ft/sec}$.

In other words, the batter's distance to B_2 is decreasing by $10.73 \, \text{ft/sec}$.