Quiz \#6 (Tuesday)

- implicit differentiation (tangent and normal line to a curve)
- compute derivatives involving log's and inverse trig functions

Review. Implicit differentiation and derivatives of inverse functions

Related rates

Example 78. Suppose that the radius r and area $A=\pi r^{2}$ of a circle are differentiable functions of t. Determine an equation that relates $\frac{\mathrm{d} r}{\mathrm{~d} t}$ to $\frac{\mathrm{d} A}{\mathrm{~d} t}$.
Solution. Applying $\frac{\mathrm{d}}{\mathrm{d} t}$ to both sides of $A=\pi r^{2}$, we find $\frac{\mathrm{d} A}{\mathrm{~d} t}=2 \pi r \frac{\mathrm{~d} r}{\mathrm{~d} t}$.
Comment. Make a sketch of two circles, one with larger radius than the other. For which of the two is the area increasing more when the radius r is increased by $\mathrm{d} r$ (so that the new radius is $r+\mathrm{d} r$)? See how this is reflected by the formula relating $\frac{\mathrm{d} A}{\mathrm{~d} t}$ and $\frac{\mathrm{d} r}{\mathrm{~d} t}$.

Example 79. Consider a cone with base a circle of radius r and with height h. Recall that the volume of this cone is $V=\frac{1}{3} \pi r^{2} h$. (Suppose r and h are differentiable functions of t.)
(a) How is $\frac{\mathrm{d} V}{\mathrm{~d} t}$ related to $\frac{\mathrm{d} h}{\mathrm{~d} t}$ if r is constant?
(b) How is $\frac{\mathrm{d} V}{\mathrm{~d} t}$ related to $\frac{\mathrm{d} r}{\mathrm{~d} t}$ if h is constant?
(c) How is $\frac{\mathrm{d} V}{\mathrm{~d} t}$ related to $\frac{\mathrm{d} h}{\mathrm{~d} t}$ and $\frac{\mathrm{d} r}{\mathrm{~d} t}$ if neither h nor r are constant?

Solution. In each case, we apply $\frac{\mathrm{d}}{\mathrm{d} t}$ to both sides of $V=\frac{1}{3} \pi r^{2} h$.
(a) If r is constant, then we get $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{3} \pi r^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}$.
(b) If h is constant, then we get $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{2}{3} \pi r h \frac{\mathrm{~d} r}{\mathrm{~d} t}$.
(c) In general, we get $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{3} \pi r^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}+\frac{2}{3} \pi r h \frac{\mathrm{~d} r}{\mathrm{~d} t}$. (This is nothing but the product rule.)

Note. If, for instance, h is constant, then $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$ and we obtain the earlier formula.
Example 80. A baseball diamond is a square with side 90 ft . A batter hits the ball and runs towards first base with a speed of $24 \mathrm{ft} / \mathrm{sec}$.
At what rate is his distance from second base decreasing when he is halfway to first base?
Solution. Let us introduce coordinates: home plate $H=(0,0)$, 1st base $B_{1}=(90,0)$, 2nd base $B_{2}=(90,90)$.
Let x be the distance of the batter from H. In other words, his position is $(x, 0)$.
Let r be the distance from the batter to B_{2}. Then $r^{2}=(90-x)^{2}+90^{2}$.
Observe that we want $\frac{\mathrm{d} r}{\mathrm{~d} t}$ and that we know $\frac{\mathrm{d} x}{\mathrm{~d} t}=24$.
We apply $\frac{\mathrm{d}}{\mathrm{d} t}$ to both sides of $r^{2}=(90-x)^{2}+90^{2}$ to get $2 r \frac{\mathrm{~d} r}{\mathrm{~d} t}=-2(90-x) \frac{\mathrm{d} x}{\mathrm{~d} t}$. So, $\frac{\mathrm{d} r}{\mathrm{~d} t}=-\frac{90-x}{r} \frac{\mathrm{~d} x}{\mathrm{~d} t}$.
When the batter is halfway to B_{1}, we have $x=45$ and $r=\sqrt{(90-x)^{2}+90^{2}}=45 \sqrt{5}$.
Hence, $\frac{\mathrm{d} r}{\mathrm{~d} t}=-\frac{90-x}{r} \frac{\mathrm{~d} x}{\mathrm{~d} t}=-\frac{90-45}{45 \sqrt{5}} \cdot 24=-\frac{24}{\sqrt{5}} \approx-10.73 \mathrm{ft} / \mathrm{sec}$.
In other words, the batter's distance to B_{2} is decreasing by $10.73 \mathrm{ft} / \mathrm{sec}$.

