Example 74. Determine $\frac{\mathrm{d}}{\mathrm{d} x} x^{x}$.
Solution. (using logarithmic differentiation) Let $y=x^{x}$. Then $\ln (y)=x \ln (x)$. Differentiating both sides, we obtain

$$
\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1 \cdot \ln (x)+x \cdot \frac{1}{x}=1+\ln (x) \quad \Longrightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=y(1+\ln (x))=x^{x}(1+\ln (x))
$$

Solution. (equivalent alternative) Write $x^{x}=e^{\ln \left(x^{x}\right)}=e^{x \ln (x)}$. Therefore,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{x}=\frac{\mathrm{d}}{\mathrm{~d} x} e^{x \ln (x)}=e^{x \ln (x)} \frac{\mathrm{d}}{\mathrm{~d} x}[x \ln (x)]=e^{x \ln (x)}(1+\ln (x))=x^{x}(1+\ln (x))
$$

Comment. Make sure that you can see that the two approaches are actually doing the exact same.

Derivatives of inverse trig functions

$$
\begin{aligned}
\text { - } \frac{\mathrm{d}}{\mathrm{~d} x} \sin ^{-1}(x) & \left.=\frac{1}{\sqrt{1-x^{2}}} \quad \text { (derivative of } \sin ^{-1}(x)\right) \\
\text { - } \frac{\mathrm{d}}{\mathrm{~d} x} \cos ^{-1}(x) & \left.=-\frac{1}{\sqrt{1-x^{2}}} \quad \text { (derivative of } \cos ^{-1}(x)\right) \\
\text { - } \frac{\mathrm{d}}{\mathrm{~d} x} \tan ^{-1}(x) & \left.=\frac{1}{1+x^{2}} \quad \text { (derivative of } \tan ^{-1}(x)\right)
\end{aligned}
$$

Example 75. (derivative of $\tan ^{-1}(x)$)

Solution. Recall (or, rederive it!) that $\frac{\mathrm{d}}{\mathrm{d} x} \tan (x)=\sec ^{2}(x)$. It follows from $\tan \left(\tan ^{-1}(x)\right)=x$ that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \tan \left(\tan ^{-1}(x)\right)=\sec ^{2}\left(\tan ^{-1}(x)\right) \frac{\mathrm{d}}{\mathrm{~d} x} \tan ^{-1}(x)=1 \quad \Longrightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \tan ^{-1}(x)=\frac{1}{\sec ^{2}\left(\tan ^{-1}(x)\right)}=\frac{1}{1+x^{2}}
$$

For the last step, recall that $\sec ^{2}(x)=1+\tan ^{2}(x)$. Therefore, $\sec ^{2}\left(\tan ^{-1}(x)\right)=1+\tan ^{2}(\tan -1(x))=1+x^{2}$.

Example 76. (derivative of $\sin ^{-1}(x)$)

Solution. It follows from $\sin \left(\sin ^{-1}(x)\right)=x$ that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sin \left(\sin ^{-1}(x)\right)=\cos \left(\sin ^{-1}(x)\right) \frac{\mathrm{d}}{\mathrm{~d} x} \sin ^{-1}(x)=1 \quad \Longrightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \sin ^{-1}(x)=\frac{1}{\cos \left(\sin ^{-1}(x)\right)}=\frac{1}{\sqrt{1-x^{2}}}
$$

For the last step, recall that $\cos ^{2}(x)+\sin ^{2}(x)=1$ implies $\cos (x)= \pm \sqrt{1-\sin ^{2}(x)}$. Here, x in $\left[-\frac{\pi}{2}\right.$, $\left.\frac{\pi}{2}\right]$ (because that's the domain for $\sin ^{-1}(x)$) and we know that $\cos (x) \geqslant 0$ for those x. Hence, here, $\cos (x)=\sqrt{1-\sin ^{2}(x)}$ and $\cos \left(\sin ^{-1}(x)\right)=\sqrt{1-\sin ^{2}\left(\sin ^{-1}(x)\right)}=\sqrt{1-x^{2}}$.
Derivative of $\cos ^{-1}(x)$. Repeat the same argument to derive that $\frac{\mathrm{d}}{\mathrm{dx}} \cos ^{-1}(x)=-\frac{1}{\sqrt{1-x^{2}}}$.
Comment. Why did we have to pay more attention to getting the sign right here than for $\tan ^{-1}(x)$? To see that, make a sketch of the curves (not graphs of functions!) $x=\sin (y)$ and $x=\tan (y)$. Then highlight the parts of those curves that are the graph of $\sin ^{-1}(x)$ and $\tan ^{-1}(x)$ (see sketch on next page). Recall that we had to make a choice when defining these inverse trig functions! We could have made other choices; try to see how these other choices would affect the derivative of $\sin ^{-1}(x)$ and $\tan ^{-1}(x)$. (The upshot is that other reasonable choices would change the sign of the derivative of $\sin ^{-1}(x)$, but that the derivative of $\tan ^{-1}(x)$ would be unaffected.)

The curves $x=\sin (y), x=\cos (y), x=\tan (y)$ in dotted orange, and the choice of inverse function in solid blue:

Example 77. Determine $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{4} \tan ^{-1}\left(2 x^{7}\right)\right]$.
Solution. $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{4} \tan ^{-1}\left(2 x^{7}\right)\right]=4 x^{3} \tan ^{-1}\left(2 x^{7}\right)+x^{4} \frac{14 x^{6}}{1+\left(2 x^{7}\right)^{2}}=4 x^{3} \tan ^{-1}\left(2 x^{7}\right)+\frac{14 x^{10}}{1+4 x^{14}}$

