Example 71. Consider the curve $x^{4}+y^{4}=1$.
(a) Determine $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(b) Determine the lines tangent and normal to the curve at the point $\left(\frac{1}{\sqrt[4]{2}}, \frac{1}{\sqrt[4]{2}}\right)$.

Comment. This curve is called a squircle (dinner plates, phone buttons, applied in optics, ...).

https://en.wikipedia.org/wiki/Squircle

Solution.

(a) Applying $\frac{\mathrm{d}}{\mathrm{d} x}$ to both sides of $x^{4}+y^{4}=1$, we obtain $4 x^{3}+4 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$, so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x^{3}}{y^{3}}$.

Consequently, by the quotient rule,

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{~d} x}\left[-\frac{x^{3}}{y^{3}}\right]=-\frac{3 x^{2} \cdot y^{3}-x^{3} \cdot 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}}{\left(y^{3}\right)^{2}}=-\frac{3 x^{2} y^{3}+3 x^{6} y^{-1}}{y^{6}}=-\frac{3 x^{2}}{y^{7}}\left(y^{4}+x^{4}\right)=-\frac{3 x^{2}}{y^{7}}
$$

In the final step, we simplified using $x^{4}+y^{4}=1$.
(b) The slope of the line tangent to the curve at that point is $\left[\frac{\mathrm{d} y}{\mathrm{~d} x}\right]_{x=2^{-1 / 4}, y=2^{-1 / 4}}=-1$.

Hence, the tangent line has equation $\left(y-\frac{1}{\sqrt[4]{2}}\right)=-\left(x-\frac{1}{\sqrt[4]{2}}\right)$, or, $y=-x+2^{3 / 4}$.
The normal line has equation $\left(y-\frac{1}{\sqrt[4]{2}}\right)=+\left(x-\frac{1}{\sqrt[4]{2}}\right)$, or, $y=x$.
Why was this (geometrically) clear from the beginning?! See the sketch above.

Derivatives of inverse functions

- $\frac{\mathrm{d}}{\mathrm{d} x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \quad$ (derivative of inverse functions)

Why? Differentiating both sides of $f\left(f^{-1}(x)\right)=x$ and using the chain rule, we find that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f\left(f^{-1}(x)\right)=f^{\prime}\left(f^{-1}(x)\right) \frac{\mathrm{d}}{\mathrm{~d} x} f^{-1}(x)=1
$$

Comment. Rather than memorizing a formula for $\frac{\mathrm{d}}{\mathrm{d} x} f^{-1}(x)$, it is advisable to remember to apply the chain rule to the defining equation (see examples).
[You can also think of it as using implicit differentiation on $f(y)=x$ (instead of $y=f^{-1}(x)$) to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.]

Example 72. (derivative of $\ln (x)$) It follows from $e^{\ln (x)}=x$ that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} e^{\ln (x)}=e^{\ln (x)} \frac{\mathrm{d}}{\mathrm{~d} x} \ln (x)=1 \quad \Longrightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \ln (x)=\frac{1}{e^{\ln (x)}}=\frac{1}{x}
$$

$$
\text { - } \frac{\mathrm{d}}{\mathrm{~d} x} \ln (x)=\frac{1}{x} \quad \text { (derivative of } \ln (x) \text {) }
$$

Derivatives of other logarithms. To find the derivative of $\log _{a}(x)$, recall that $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$. Hence,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \log _{a}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\ln (x)}{\ln (a)}=\frac{1}{x \ln (a)}
$$

Alternatively. Use $\frac{\mathrm{d}}{\mathrm{d} x} a^{x}=\ln (a) a^{x}$ to derive the derivative of $\log _{a}(x)$, the inverse function of a^{x}.

(logarithmic differentiation) $\frac{\mathrm{d} y}{\mathrm{~d} x}=y \frac{\mathrm{~d}}{\mathrm{~d} x} \ln (y)$

Why? This is equivalent to $\frac{\mathrm{d}}{\mathrm{d} x} \ln (y)=\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$.
Comment. This is another formula not to memorize. Rather, when taking the derivative of a product y (or other function that simplifies when the logarithm is applied), just remember to differentiate $\ln (y)$ instead. Power rule for general exponents.
$x^{n}=e^{\ln \left(x^{n}\right)}=e^{n \ln (x)}$ allows us to define x^{n} for any real exponent n (and $x>0$).
We then find $\frac{\mathrm{d}}{\mathrm{d} x} x^{n}=\frac{\mathrm{d}}{\mathrm{d} x} e^{n \ln (x)}=e^{n \ln (x)} \frac{\mathrm{d}}{\mathrm{d} x}[n \ln (x)]=x^{n} \cdot \frac{n}{x}=n x^{n-1}$, the familiar power rule.

Example 73. Determine $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt[3]{\frac{(x-1)\left(x^{2}+2\right)}{x+2}}$.
Note. We could compute this derivative using the chain rule combined with the product and quotient rule. However, this is quite a bit of work (do it for practice!). Logarithmic differentiation is much quicker and provides a cleaner answer. The reason logarithmic differentiation is beneficial here is that our function breaks into simpler terms when applying the logarithm (see solution).

Solution. (using logarithmic differentiation) Let $y=\sqrt[3]{\frac{(x-1)\left(x^{2}+2\right)}{x+2}}$.
Then $\ln (y)=\frac{1}{3}\left[\ln (x-1)+\ln \left(x^{2}+2\right)-\ln (x+2)\right]$. Differentiating both sides, we obtain

$$
\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{3}\left[\frac{1}{x-1}+\frac{2 x}{x^{2}+2}-\frac{1}{x+2}\right] \Longrightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}\left[\frac{1}{x-1}+\frac{2 x}{x^{2}+2}-\frac{1}{x+2}\right] \sqrt[3]{\frac{(x-1)\left(x^{2}+2\right)}{x+2}}
$$

