Example 66. Determine $\frac{d}{dx} \frac{1}{g(x)}$ (in terms of g(x) and g'(x)).

Solution. (using quotient rule) We apply $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \text{ with } f(x) = 1 \text{ and } f'(x) = 0:$ $\frac{d}{dx} \frac{1}{g(x)} = \frac{0 \cdot g(x) - 1 \cdot g'(x)}{g(x)^2} = -\frac{g'(x)}{g(x)^2}$

Solution. (using chain rule) We apply $\frac{\mathrm{d}}{\mathrm{d}x} f(g(x)) = f'(g(x))g'(x)$ with $f(x) = \frac{1}{x}$ and $f'(x) = -\frac{1}{x^2}$: $\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{g(x)} = -\frac{1}{g(x)^2} \cdot g'(x) = -\frac{g'(x)}{g(x)^2}$

Comment. As illustrated by this example, the quotient rule can be deduced from the product rule and the chain rule.

Important. In the sequel, it will be convenient to write just y instead of g(x). Instead of $\frac{d}{dx} \frac{1}{g(x)} = -\frac{g'(x)}{g(x)^2}$, for instance, we would write $\frac{d}{dx} \frac{1}{y} = -\frac{1}{y^2} \frac{dy}{dx}$.

Example 67. Determine $\frac{d}{dx}y^3$. Solution. By the chain rule, $\frac{d}{dx}y^3 = 3y^2\frac{dy}{dx}$.

Important. $\frac{d}{dy}y^3 = 3y^2$ and the chain rule allows us to write $\frac{d}{dx} \dots = \left[\frac{d}{dy} \dots\right] \frac{dy}{dx}$.

(normal lines) The line normal to a curve at a point P, is the line through P which is perpendicular to the tangent line.

Review. Two lines are perpendicular if the product of their slopes is -1. Hence, if the tangent line has slope m, then the normal line has slope $-\frac{1}{m}$.

Implicit differentiation

Example 68. Consider the unit circle $x^2 + y^2 = 1$. Determine $\frac{dy}{dx}$.

Review. The equation for a circle of radius r and center (a, b) is $(x - a)^2 + (y - b)^2 = r^2$.

Solution. (without implicit differentiation) The circle is composed of the graphs of the two functions $y = \sqrt{1 - x^2}$ (upper half-circle) and $y = -\sqrt{1 - x^2}$ (lower half-circle).

Hence, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left[\pm \sqrt{1-x^2} \right] = \pm \frac{1}{2\sqrt{1-x^2}} \frac{\mathrm{d}}{\mathrm{d}x} [1-x^2] = \pm \frac{-x}{\sqrt{1-x^2}}.$

[These are two formulas in one, but we can combine them by noticing that $\frac{dy}{dx} = \frac{-x}{\pm \sqrt{1-x^2}} = -\frac{x}{y}$.]

Solution. (with implicit differentiation) Applying $\frac{d}{dx}$ to both sides of $x^2 + y^2 = 1$, we obtain $2x + 2y\frac{dy}{dx} = 0$, so that $\frac{dy}{dx} = -\frac{x}{y}$.

Important. We are using $\frac{d}{dx}y^2 = 2y \cdot \frac{dy}{dx}$ (see examples at beginning of class). That's the chain rule!

Solution. (geometrically) Make a sketch! It is clear that the normal line at (x, y) [a point on the circle] has slope $\frac{y}{x}$. It follows that the tangent line must have slope $-\frac{x}{y}$, so that $\frac{dy}{dx} = -\frac{x}{y}$.

Example 69. Consider the curve $3x^2 + 4y^2 = 16$.

- (a) Determine $\frac{\mathrm{d}y}{\mathrm{d}x}$ and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- (b) Determine the lines tangent and normal to the curve at the point (2, 1).

Solution.

(a) Applying $\frac{d}{dx}$ to both sides of $3x^2 + 4y^2 = 16$, we obtain $6x + 8y\frac{dy}{dx} = 0$, so that $\frac{dy}{dx} = -\frac{3x}{4y}$. Consequently, by the quotient rule,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left[-\frac{3}{4} \frac{x}{y} \right] = -\frac{3}{4} \frac{y - x \frac{\mathrm{d}y}{\mathrm{d}x}}{y^2} = -\frac{3}{4} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^2} = -\frac{3}{16} \frac{4y^2 + 3x^2}{y^3} = -\frac{3}{y^3} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^2} = -\frac{3}{16} \frac{4y^2 + 3x^2}{y^3} = -\frac{3}{y^3} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^2} = -\frac{3}{16} \frac{4y^2 + 3x^2}{y^3} = -\frac{3}{y^3} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{y - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^3} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4} \frac{x}{y} \right)}{y^5} = -\frac{3}{16} \frac{x - x \left(-\frac{3}{4}$$

In the final step, we simplified using $3x^2 + 4y^2 = 16$.

(b) The slope of the line tangent to the curve at (2,1) is $\left[\frac{dy}{dx}\right]_{x=2, y=1} = \left[-\frac{3x}{4y}\right]_{x=2, y=1} = -\frac{6}{4} = -\frac{3}{2}$. Hence, the tangent line has equation $(y-1) = -\frac{3}{2}(x-2)$, which simplifies to $y = -\frac{3}{2}x + 4$. The normal line has slope $\frac{2}{3}$ and, thus, equation $(y-1) = \frac{2}{3}(x-2)$, or, $y = \frac{2}{3}x - \frac{1}{3}$.

Comment. This curve is an ellipse.

Example 70. Consider the curve $e^{3x} = \sin(x^2 + 5y^2)$. Determine $\frac{dy}{dx}$. Solution. Applying $\frac{d}{dx}$ to both sides of $e^{3x} = \sin(x^2 + 5y^2)$, we obtain

$$3e^{3x} = \cos(x^2 + 5y^2)\frac{\mathrm{d}}{\mathrm{d}x}[x^2 + 5y^2] = \cos(x^2 + 5y^2)\bigg(2x + 10y\frac{\mathrm{d}y}{\mathrm{d}x}\bigg),$$

so that $2x + 10y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3e^{3x}}{\cos(x^2 + 5y^2)}$ and, therefore, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3e^{3x}}{10y\cos(x^2 + 5y^2)} - \frac{x}{5y}$.

