- $\frac{\mathrm{d}}{\mathrm{d} x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x) \quad$ (chain rule)

In Leibniz notation: if $y=f(u)$ and $u=g(x)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} x}$
Why? $\frac{f(g(x+h))-f(g(x))}{h}=\frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \cdot \frac{g(x+h)-g(x)}{h} \xrightarrow{h \rightarrow 0} f^{\prime}(g(x)) \cdot g^{\prime}(x)$
[to make this into a proper proof, we need to worry about the possibility that $g(x+h)-g(x)=0$ for certain h; if g is locally increasing or decreasing at x, then this is no concern and the above proves the chain rule]

Example 62. $\frac{\mathrm{d}}{\mathrm{d} x} e^{-x}$
Solution. (without chain rule) $\frac{\mathrm{d}}{\mathrm{d} x} e^{-x}=\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{e^{x}}=\frac{0 \cdot e^{x}-1 \cdot e^{x}}{\left(e^{x}\right)^{2}}=-\frac{e^{x}}{e^{2 x}}=-e^{-x}$
Solution. (with chain rule) Write $h(x)=e^{-x}$ as $h(x)=f(g(x))$ with $f(u)=e^{u}$ and $g(x)=-x$.
$\frac{\mathrm{d}}{\mathrm{d} x} e^{-x}=h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)=e^{g(x)} \cdot(-1)=-e^{-x}$

Example 63.

(a) $\frac{\mathrm{d}}{\mathrm{d} x} \cos ^{5}(x)$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \cos ^{5}(7 x)$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{2+\cos ^{5}(7 x)}$

Solution.
(a) Write $h(x)=\cos ^{5}(x)$ as $h(x)=f(g(x))$ with $f(u)=u^{5}$ and $g(x)=\cos (x)$. $\frac{\mathrm{d}}{\mathrm{d} x} \cos ^{5}(x)=f^{\prime}(g(x)) g^{\prime}(x)=5 g(x)^{4} g^{\prime}(x)=5 \cos ^{4}(x) \cdot(-\sin (x))=-5 \cos ^{4}(x) \sin (x)$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \cos ^{5}(7 x)=5 \cos ^{4}(7 x) \frac{\mathrm{d}}{\mathrm{d} x} \cos (7 x)==5 \cos ^{4}(7 x)\left(-\sin (7 x) \cdot \frac{\mathrm{d}}{\mathrm{d} x}[7 x]\right)=-35 \cos ^{4}(7 x) \sin (7 x)$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{2+\cos ^{5}(7 x)}=\frac{1}{2 \sqrt{2+\cos ^{5}(7 x)}} \frac{\mathrm{d}}{\mathrm{d} x}\left[2+\cos ^{5}(7 x)\right]=\frac{-35 \cos ^{4}(7 x) \sin (7 x)}{2 \sqrt{2+\cos ^{5}(7 x)}}$
[in the last step, we used our result from the previous item]
Example 64. (derivatives of exponentials) Note that $a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}$. It follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} a^{x}=\frac{\mathrm{d}}{\mathrm{~d} x} e^{x \ln (a)}=e^{x \ln (a)} \frac{\mathrm{d}}{\mathrm{~d} x}[x \ln (a)]=\ln (a) a^{x} .
$$

Example 65. The position of a particle moving along a line is $s=\sqrt{1+4 t}$, where s is in meters and t in seconds. Find the particle's velocity and acceleration at $t=2$.
Solution. By definition, velocity is $v=\frac{\mathrm{d} s}{\mathrm{~d} t}$ (in $\frac{\mathrm{m}}{\sec }$) and acceleration is $a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$ (in $\frac{\mathrm{m}}{\sec ^{2}}$).
Using the chain rule, $\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{4}{2 \sqrt{1+4 t}}=\frac{2}{\sqrt{1+4 t}}$ and $\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}}{\mathrm{d} s} \frac{2}{\sqrt{1+4 t}}=\frac{2 \cdot\left(-\frac{1}{2}\right) \cdot 4}{(1+4 t)^{3 / 2}}=\frac{-4}{(1+4 t)^{3 / 2}}$.
The velocity at $t=2$ is $\left[\frac{\mathrm{d} s}{\mathrm{~d} t}\right]_{t=2}=\left[\frac{2}{\sqrt{1+4 t}}\right]_{t=2}=\frac{2}{\sqrt{9}}=\frac{2}{3} \frac{\mathrm{~m}}{\mathrm{sec}}$.
The acceleration at $t=2$ is $\left[\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}\right]_{t=2}=\left[\frac{-4}{(1+4 t)^{3 / 2}}\right]_{t=2}=\frac{-4}{9^{3 / 2}}=-\frac{4}{27} \frac{\mathrm{~m}}{\mathrm{sec}}$.

