•
$$\frac{\mathrm{d}}{\mathrm{d}x} f(g(x)) = f'(g(x))g'(x)$$
 (chain rule)

In Leibniz notation: if y = f(u) and u = g(x), then $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}$

Why?
$$\frac{f(g(x+h)) - f(g(x))}{h} = \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \cdot \frac{g(x+h) - g(x)}{h} \xrightarrow{h \to 0} f'(g(x)) \cdot g'(x)$$

[to make this into a proper proof, we need to worry about the possibility that g(x+h) - g(x) = 0 for certain h; if g is locally increasing or decreasing at x, then this is no concern and the above proves the chain rule]

Example 62. $\frac{\mathrm{d}}{\mathrm{d}x}e^{-x}$

Solution. (without chain rule) $\frac{\mathrm{d}}{\mathrm{d}x}e^{-x} = \frac{\mathrm{d}}{\mathrm{d}x}\frac{1}{e^x} = \frac{0 \cdot e^x - 1 \cdot e^x}{(e^x)^2} = -\frac{e^x}{e^{2x}} = -e^{-x}$

Solution. (with chain rule) Write $h(x) = e^{-x}$ as h(x) = f(g(x)) with $f(u) = e^{u}$ and g(x) = -x. $\frac{\mathrm{d}}{\mathrm{d}x}e^{-x} = h'(x) = f'(g(x))g'(x) = e^{g(x)} \cdot (-1) = -e^{-x}$

Example 63.

(a)
$$\frac{d}{dx}\cos^5(x)$$
 (b) $\frac{d}{dx}\cos^5(7x)$ (c) $\frac{d}{dx}\sqrt{2+\cos^5(7x)}$

Solution.

(a) Write
$$h(x) = \cos^5(x)$$
 as $h(x) = f(g(x))$ with $f(u) = u^5$ and $g(x) = \cos(x)$.
 $\frac{d}{dx}\cos^5(x) = f'(g(x))g'(x) = 5g(x)^4g'(x) = 5\cos^4(x) \cdot (-\sin(x)) = -5\cos^4(x)\sin(x)$
(b) $\frac{d}{dx}\cos^5(7x) = 5\cos^4(7x)\frac{d}{dx}\cos(7x) = =5\cos^4(7x)\left(-\sin(7x)\cdot\frac{d}{dx}[7x]\right) = -35\cos^4(7x)\sin(7x)$
(c) $\frac{d}{dx}\sqrt{2+\cos^5(7x)} = \frac{1}{2\sqrt{2+\cos^5(7x)}}\frac{d}{dx}[2+\cos^5(7x)] = \frac{-35\cos^4(7x)\sin(7x)}{2\sqrt{2+\cos^5(7x)}}$

[in the last step, we used our result from the previous item]

Example 64. (derivatives of exponentials) Note that $a^x = e^{\ln(a^x)} = e^{x \ln(a)}$. It follows that

$$\frac{\mathrm{d}}{\mathrm{d}x}a^x = \frac{\mathrm{d}}{\mathrm{d}x}e^{x\ln(a)} = e^{x\ln(a)}\frac{\mathrm{d}}{\mathrm{d}x}[x\ln(a)] = \ln(a)a^x.$$

Example 65. The position of a particle moving along a line is $s = \sqrt{1+4t}$, where s is in meters and t in seconds. Find the particle's velocity and acceleration at t = 2.

Solution. By definition, velocity is $v = \frac{ds}{dt}$ (in $\frac{m}{sec}$) and acceleration is $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$ (in $\frac{m}{sec^2}$). Using the chain rule, $\frac{ds}{dt} = \frac{4}{2\sqrt{1+4t}} = \frac{2}{\sqrt{1+4t}}$ and $\frac{d^2s}{dt^2} = \frac{d}{ds}\frac{2}{\sqrt{1+4t}} = \frac{2 \cdot \left(-\frac{1}{2}\right) \cdot 4}{(1+4t)^{3/2}} = \frac{-4}{(1+4t)^{3/2}}$. The velocity at t = 2 is $\left[\frac{ds}{dt}\right]_{t=2} = \left[\frac{2}{\sqrt{1+4t}}\right]_{t=2} = \frac{2}{\sqrt{9}} = \frac{2}{3}\frac{m}{sec}$. The acceleration at t = 2 is $\left[\frac{d^2s}{dt^2}\right]_{t=2} = \left[\frac{-4}{(1+4t)^{3/2}}\right]_{t=2} = \frac{-4}{9^{3/2}} = -\frac{4}{27}\frac{m}{sec}$.

Armin Straub straub@southalabama.edu