Rules for computing derivatives

- $\frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1} \quad$ (power rule)
- $\frac{\mathrm{d}}{\mathrm{d} x} e^{x}=e^{x} \quad$ (derivative of \boldsymbol{e}^{x})
- $\frac{\mathrm{d}}{\mathrm{d} x}[a f(x)+b g(x)]=a f^{\prime}(x)+b g^{\prime}(x) \quad$ (sum rule)
- $\frac{\mathrm{d}}{\mathrm{d} x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \quad$ (product rule)
- $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \quad$ (quotient rule)

Why? We could derive the power rule via a computation similar to what we did in the last two classes. For the derivative of a^{x}, note that

$$
\frac{a^{x+h}-a^{x}}{h}=a^{x} \frac{a^{h}-1}{h} \quad \xrightarrow{h \rightarrow 0} \quad L a^{x}, \quad \text { where } L=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h} .
$$

Euler's number $e \approx 2.718$ is defined precisely so that $L=1$. [We will see shortly that, in general, $L=\ln (a)$.] The sum rule follows from the corresponding limit rule:

$$
\frac{[a f(x+h)+b g(x+h)]-[a f(x)+b g(x)]}{h}=a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \xrightarrow{h \rightarrow 0} a f^{\prime}(x)+b g^{\prime}(x)
$$

For the product rule:

$$
\begin{aligned}
\frac{f(x+h) g(x+h)-f(x) g(x)}{h} & =\frac{[f(x+h) g(x+h)-f(x) g(x+h)]+[f(x) g(x+h)-f(x) g(x)]}{h} \\
& =\frac{[f(x+h)-f(x)]}{h} g(x+h)+f(x) \frac{g(x+h)-g(x)}{h} \\
& \xrightarrow{h \rightarrow 0} f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

The quotient rule can be derived similarly but actually follows from the product rule and the chain rule (later!).

Example 56. What is $f^{\prime}(x)$ in each case?
(a) $f(x)=x^{2}$
(c) $f(x)=2^{6}$
(e) $f(x)=\frac{1}{x^{2}}$
(b) $f(x)=x^{4}$
(d) $f(x)=\sqrt{x}$

Solution.
(a) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2}=2 x^{1}=2 x$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{4}=4 x^{3}$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} 2^{6}=0 \quad\left(2^{6}=64\right.$ is just a constant! $)$
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x}=\frac{\mathrm{d}}{\mathrm{d} x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$
(e) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{x^{2}}=\frac{\mathrm{d}}{\mathrm{d} x} x^{-2}=-2 x^{-3}$

Alternative solution via quotient rule. Write $f(x)=\frac{u(x)}{v(x)}$ with $u(x)=1$ and $v(x)=x^{2}$.

$$
f^{\prime}(x)=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v(x)^{2}}=\frac{0 \cdot x^{2}-1 \cdot(2 x)}{\left(x^{2}\right)^{2}}=-\frac{2 x}{x^{4}}=-\frac{2}{x^{3}}
$$

Example 57. What is $f^{\prime}(x)$ if $f(x)=-2 x^{4}+3 x^{5}$?
Solution. $f^{\prime}(x)=-2\left(4 x^{3}\right)+3\left(5 x^{4}\right)=-8 x^{3}+15 x^{4}$
(higher order derivatives) The derivative of the derivative is the second derivative.
It is denoted $f^{\prime \prime}(x)$ or $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} f(x)$. Or, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
Similarly, but less important, there is a third derivative, and so on...
Example 58. Compute the first six derivatives of $f(x)=-2 x^{4}+3 x^{5}$.
Solution.

- $f^{\prime}(x)=-8 x^{3}+15 x^{4}$
- $f^{\prime \prime}(x)=-24 x^{2}+60 x^{3}$
- $f^{\prime \prime \prime}(x)=-48 x+180 x^{2}$
- $f^{(4)}(x)=-48+360 x$
- $f^{(5)}(x)=360$
- $f^{(6)}(x)=0$

All further derivatives will be zero.
Comment. If $f(x)$ is a polynomial of degree n (here, $n=5$), then $f^{\prime}(x)$ is a polynomial of degree $n-1$.
Example 59. Compute the derivatives of the following functions.
(a) $h(x)=\left(3 x^{2}-1\right) e^{x}$
(b) $h(x)=\frac{x^{2}-2}{3 x+7}$

Solution.
(a) Write $h(x)=f(x) g(x)$ with $f(x)=3 x^{2}-1$ and $g(x)=e^{x}$.

$$
h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)=(6 x) e^{x}+\left(3 x^{2}-1\right) e^{x}=\left(3 x^{2}+6 x-1\right) e^{x}
$$

(b) Write $h(x)=\frac{f(x)}{g(x)}$ with $f(x)=x^{2}-2$ and $g(x)=3 x+7$.

$$
h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}=\frac{(2 x) \cdot(3 x+7)-\left(x^{2}-2\right) \cdot 3}{(3 x+7)^{2}}=\frac{3 x^{2}+14 x+6}{(3 x+7)^{2}}
$$

