Example 49.

(a) Compute $f^{\prime}(x)$ for $f(x)=\frac{1}{x^{2}}$.
(b) Determine the line tangent to the graph of $f(x)$ at $x=1$.

Solution.

(a) We need to determine $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=\frac{1}{x^{2}}$.

Note that

$$
f(x+h)-f(x)=\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}=\frac{x^{2}-(x+h)^{2}}{(x+h)^{2} x^{2}}=\frac{-2 h x-h^{2}}{(x+h)^{2} x^{2}},
$$

so that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-2 h x-h^{2}}{(x+h)^{2} x^{2} h}=\lim _{h \rightarrow 0} \frac{-2 x-h}{(x+h)^{2} x^{2}}=\frac{-2 x-0}{(x+0)^{2} x^{2}}=-\frac{2 x}{x^{4}}=-\frac{2}{x^{3}} .
$$

Important. As we did in class, sketch both $f(x)$ and $f^{\prime}(x)$ and make sure you see the relation between the two.
(b) From the first part, the slope of that line is $f^{\prime}(1)=-2$. It also passes through $(1, f(1))=(1,1)$. Hence, it has the equation $y-1=-2(x-1)$, which simplifies to $y=-2 x+3$.

Example 50. Using some tool, plot $f(x)=\frac{1}{4} x^{4}-\frac{8}{3} x^{3}+\frac{19}{2} x^{2}-12 x+3$. Then sketch $f^{\prime}(x)$.
Solution. $f(x)$ is plotted in blue. Make sure that you can (roughly) sketch $f^{\prime}(x)$ from that by hand!

Important comment. Notice how we have $f^{\prime}(x)=0$ precisely at the (local) minima/maxima of $f(x)$. This crucial observation will allow us to find these points of special interest.

Example 51. If $f(t)$ describes the temperature in ${ }^{\circ} \mathrm{F}$ at time t in h since 6 AM this morning. What is measured by $f^{\prime}(t)$ and what are the units? Interpret the value $f^{\prime}(2)=4$.
Solution. $f^{\prime}(t)$ describes the rate of change of the temperature over time. The units of $f^{\prime}(t)$ are $\frac{\mathrm{F}}{\mathrm{h}}$. $f^{\prime}(2)=4$ means that, at 8 AM , the temperature is increasing at a rate of $4 \mathrm{~F} / \mathrm{h}$ (meaning that, if that rate didn't change, it will be 4 F warmer at 9AM).

This implies that a function with a discontinuity at $x=x_{0}$ is not differentiable at x_{0}.
Other typical reasons for a function to not be differentiable are corners/cusps and vertical tangents (see the next two examples for instances of each).
Proof of theorem. Suppose f is differentiable at x. Since $f(x+h)=f(x)+h \frac{f(x+h)-f(x)}{h}$, it follows that

$$
\lim _{h \rightarrow 0} f(x+h)=\lim _{h \rightarrow 0}\left[f(x)+h \frac{f(x+h)-f(x)}{h}\right]=f(x)+0 \cdot f^{\prime}(x)=f(x) .
$$

This shows (why?!!) that f is continuous at x.
[This is a precise way of observing that $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ (differentiability at x) can only exist if $\lim _{h \rightarrow 0}[f(x+h)-f(x)]=0$ (continuity at x). $]$

Example 53. (corner) Make a sketch of $f(x)=|x|$ and observe that it has a corner at $x=0$.

- $f(x)$ is differentiable for all $x \neq 0$.
- $f(x)$ is continuous for all x.

See final example for

Example 54. (vertical tangent) Make a sketch of $f(x)=\sqrt[3]{x}$ and observe that it has a vertical tangent line at $x=0$.

- $f(x)$ is differentiable for all $x \neq 0$.
- $f(x)$ is continuous for all x.

Example 55. Compute $f^{\prime}(x)$ for $f(x)=|x|$ for all x where $f(x)$ is differentiable.
Solution. Note that $f(x)= \begin{cases}x, & x \geqslant 0, \\ -x, & x<0 .\end{cases}$

- If $x>0$, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1$.
- If $x<0$, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=-1$.
- If $x=0$, then

$$
\begin{aligned}
& \circ \lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(0+h)-0}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1, \\
& \circ \quad \lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{-(0+h)-(-0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{-h}{h}=-1,
\end{aligned}
$$

so that $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ does not exist. Hence, $f(x)$ is not differentiable at $x=0$.
In conclusion, we have $f^{\prime}(x)= \begin{cases}1, & x>0, \\ -1, & x<0 .\end{cases}$
Comment. Note that $f(x)$ is piecewise a line, so that $f^{\prime}(x)$ will be just the slopes (1 if $x>0$, and -1 if $x<0$) of those two lines.

