Continuity

(Definition of continuity) f(x) is continuous at x = c if $\lim f(x) = f(c)$.

When we simply say that f is continuous, we mean that it is continuous at every point of its domain.

Note that, in particular, f(x) needs to be defined at x = c.

The following are typical ways in which a function might fail to be continuous at a point:

- jump discontinuity,
- infinite discontinuity,
- removable discontinuity,
- oscillating discontinuity.

Make a sketch illustrating each case!

Example 25. Discuss where the sketched function is continuous and the kind of discontinuities.

Solution. The function f(x) is continuous everywhere except at x = 1 (a removable discontinuity), x = 2 (a jump discontinuity) and x = 4 (an oscillating discontinuity).

Note that x = 1 is "removable" because we can define f(1) = 1 and this extended function would then be continuous at x = 1.

Good News! All the basic functions

polynomials, exponentials, trig functions, |x|

(and all functions we can build through adding, subtracting, multiplying, dividing, compositions and inverse functions) are continuous at every point of their domain. More precisely:

• If f and g are both continuous at c, then

$$f+g, \quad f-g, \quad fg, \quad \frac{f}{g}, \quad f^n, \quad \sqrt[n]{f}$$

are each continuous at c.

- If f is continuous at c and g is continuous at f(c), then the composition $g \circ f$ is continuous at c.
- If f is continuous (on all of its domain), then so is its inverse function f^{-1} .

Note that the statement about continuity of compositions is equivalent to the following:

If $\lim_{x \to c} f(x) = L$, then $\lim_{x \to c} g(f(x)) = g(L)$ provided that g is continuous at L.

Example 26. Determine the points at which $f(x) = \cos(|2x+7|) - e^{\sin(7x-1)}$ is continuous. **Solution.** Since f(x) is constructed from functions which are continuous everywhere, we know that f(x) is continuous at every point of its domain. Hence, f(x) is continuous for all x. **Comment.** Make sure you know what exactly is meant by "constructed" here. For instance $\cos(|2x+7|)$ is

Comment. Make sure you know what exactly is meant by "constructed" here. For instance $\cos(|2x+7|)$ is constructed as a composition of $\cos(x)$, |x| and 2x+7.

Example 27. Determine the points at which $f(x) = \frac{\cos(x)}{\sin(x) + 1}$ is continuous.

Solution. Since f(x) is constructed from functions which are continuous everywhere, we know that f(x) is continuous at every point of its domain. Hence, f(x) is continuous for all x for which $\sin(x) \neq -1$. That is, all x except the points $-\frac{\pi}{2} + 2\pi m$, where m is an integer.

Example 28. Define f(1) in a way that extends $f(x) = \frac{x^2 + 2x - 3}{x - 1}$ to be continuous at x = 1.

Solution. Note that $\frac{x^2+2x-3}{x-1} = \frac{(x-1)(x+3)}{x-1} = x+3$ (for all $x \neq 1$).

We can therefore define f(1) = 1 + 3 = 4 to obtain a function f(x) that is continuous everywhere.

Note. The resulting function is f(x) = x + 3 (which makes this example a bit artificial). The next example illustrates that we usually cannot simply cancel terms and replace the function with the simplified expression.

Example 29. (a nontrivial continuous extension)

- (a) Determine the points at which $f(x) = \frac{\sin(x)}{x}$ is continuous.
- (b) If possible, extend f(x) in such a way that it is continuous everywhere.

Solution.

- (a) Since f(x) is a quotient of functions $(\sin(x) \text{ and } x)$ which are continuous everywhere, we know that f(x) is continuous at every point of its domain. Hence, f(x) is continuous for all $x \neq 0$.
- (b) Recall that $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$. Hence, defining f(0) = 1 results in a function which is continuous everywhere.