Example 15. Let $f(x)=1 / x$. Determine $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow 0} f(x)$. What about $\lim _{x \rightarrow 0^{+}} f(x)$?
Solution. Make a sketch!

- $\lim _{x \rightarrow 2} f(x)=f(2)=\frac{1}{2}$
- $\lim _{x \rightarrow 0^{+}} f(x)=+\infty, \lim _{x \rightarrow 0^{-}} f(x)=-\infty$ so that (because the two are different) $\lim _{x \rightarrow 0} f(x)$ does not exist.

If $f(x)$ is continuous at $x=c$, then $\lim _{x \rightarrow c} f(x)=f(c)$.

Actually, this will soon be our definition of what it means for a function to be continuous at a point.
For now, think of continuous at $x=c$ meaning that $f(x)$ does not have any sort of jump (or problem) at $x=c$. All of the basic functions we are familiar with are continuous everywhere except at points with an obvious problem (like a division by zero).

Example 16. Determine $\lim _{x \rightarrow 2} \frac{x^{2}-x+3}{x^{2}-1}$.
Solution. There is no problem at $x=2$, so that we can just plug in $x=2: \lim _{x \rightarrow 2} \frac{x^{2}-x+3}{x^{2}-1}=\frac{2^{2}-2+3}{2^{2}-1}=\frac{5}{3}$.

We have to work harder in cases, where there is an issue preventing us from just plugging in:

Example 17. Determine $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}$. [The denominator is 0 for $x=2$, so we cannot just plug in.]
Note. Top and bottom both approach 0 as $x \rightarrow 2$, which means that the limit is of the undetermined form " $\frac{0}{0}$ " and we need to work to determine whether the limit exists or not, and what its value might be.
Solution. Note that $\frac{x^{2}-x-2}{x^{2}-4}=\frac{(x-2)(x+1)}{(x-2)(x+2)}=\frac{x+1}{x+2}$.
Hence, $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x+1}{x+2}=\frac{3}{4}$.

Example 18. Determine $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2}$.
[Again, note that we cannot just plug in.]
Solution. We need to use a standard "trick": multiplying both numerator and denominator with $\sqrt{x^{2}+5}+3$.

$$
\begin{aligned}
\frac{\sqrt{x^{2}+5}-3}{x-2} & =\frac{\left(\sqrt{x^{2}+5}-3\right)\left(\sqrt{x^{2}+5}+3\right)}{(x-2)\left(\sqrt{x^{2}+5}+3\right)} \\
& =\frac{\left(x^{2}+5\right)-3^{2}}{(x-2)\left(\sqrt{x^{2}+5}+3\right)}=\frac{x^{2}-4}{(x-2)\left(\sqrt{x^{2}+5}+3\right)}=\frac{x+2}{\sqrt{x^{2}+5}+3}
\end{aligned}
$$

Hence, $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2}=\lim _{x \rightarrow 2} \frac{x+2}{\sqrt{x^{2}+5}+3}=\frac{2+2}{\sqrt{2^{2}+5}+3}=\frac{2}{3}$.
Comment. Although we cannot plug in $x=2$ into the original expression, we can plug in values close to 2 to get a numerical impression: for instance, for $x=2.01$, we get $\frac{\sqrt{x^{2}+5}-3}{x-2} \approx 0.668$.

Example 19. Compute $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}+2$ and $x=3$.
Solution. First, $f(3)=11$ and $f(3+h)=(3+h)^{2}+2=h^{2}+6 h+11$, so that

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\left(h^{2}+6 h+11\right)-11}{h}=\lim _{h \rightarrow 0} \frac{h^{2}+6 h}{h}=\lim _{h \rightarrow 0}(h+6)=6 .
$$

Comment. We could have done that computation without choosing a special value for x.
Since $f(x+h)=(x+h)^{2}+2=x^{2}+2 h x+h^{2}+2$, we have

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 h x+h^{2}+2\right)-\left(x^{2}+2\right)}{h}=\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x .
$$

Advanced comment. This limit defines the derivative of $f(x)$, which we will meet later and denote $f^{\prime}(x)$. In other words, our computation shows that $f(x)=x^{2}+2$ has derivative $f^{\prime}(x)=2 x$.
Can you see how the limit describes the slope of the line tangent to the graph of f at x ?
(limit laws) If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then:

- $\lim _{x \rightarrow c}[f(x)+g(x)]=L+M$
- $\lim _{x \rightarrow c}[f(x)-g(x)]=L-M$
- $\lim _{x \rightarrow c}[f(x) g(x)]=L M$
- $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M} \quad$ (provided that $M \neq 0$)

It follows from the product rule that $\lim _{x \rightarrow c}[f(x)]^{n}=L^{n}$ for all positive integers n.
Similarly, we have $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{L}$.
Advanced comment. In fact, we will learn that $\lim _{x \rightarrow c} g(f(x))=g(L)$ provided that $g(x)$ is continuous at $x=L$.
Example 20. Suppose $\lim _{x \rightarrow a} f(x)=3$ and $\lim _{x \rightarrow a} g(x)=5$. Determine $\lim _{x \rightarrow a}\left[f(x)^{2}-7 g(x)\right]$.
Solution. Using the limit laws,

$$
\begin{aligned}
\lim _{x \rightarrow a}\left[f(x)^{2}-7 g(x)\right] & =\lim _{x \rightarrow a}\left[f(x)^{2}\right]-\lim _{x \rightarrow a}[7 g(x)] \\
& =3^{2}-7 \cdot 5=-26 .
\end{aligned}
$$

