Sketch of Lecture 3

Quiz #1 (Tuesday)

- laws for exponentials/logarithms
- sketch trig function, determine value of inverse

Review. compound interest, APR vs APY, $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$

Example 12. (real life) My car loan contract quotes an APR of 6.79% (and compounds monthly). What is the APY?

Solution. Since $\left(1 + \frac{0.0679}{12}\right)^{12} \approx 1.07005$, the APY is about 7.01%. [Obviously, the lender prefers to quote the lower but less meaningful APR.]

Limits and Continuity

$$\lim_{x \to c} f(x) = L$$

means that f(x) approaches the value L as x approaches the value c.

More precisely, f(x) is as close to L as we want for all x (different from c but) sufficiently close to c.

We will soon make it very precise what we mean by "approach"! For now, let us build some first intuition.

Similarly, we have the one-sided limits

- $\lim_{x \to c^-} f(x) = L$ for the case when x approaches c from the left, and
- $\lim_{x \to c^+} f(x) = L$ for the case when x approaches c from the right.

Example 13. For f(x) as sketched below, discuss the limits $\lim_{x \to c} f(x)$ for c = 1, 2, 3, 4 as well as the corresponding one-sided limits.

Armin Straub straub@southalabama.edu Solution.

- $(c=1) \lim_{x \to 1^{-}} f(x) = 1$ while $\lim_{x \to 1^{+}} f(x) = 2$, so that $\lim_{x \to 1} f(x)$ does not exist. [Note that f(1) = 2, but that this is irrelevant for the limits.]
- $(c=2) \lim_{x \to 2} f(x) = 2$ (which automatically implies that $\lim_{x \to 2^-} f(x) = 2$ and $\lim_{x \to 2^+} f(x) = 2$ as well)
- $(c=3) \lim_{x\to 3} f(x) = 1$ (which automatically implies that $\lim_{x\to 3^-} f(x) = 1$ and $\lim_{x\to 3^+} f(x) = 1$ as well) [Note that f(3) = 2, but that this is irrelevant for the limits.]
- $(c=4) \lim_{x \to 4} f(x) = 2$ (which automatically implies that $\lim_{x \to 4^-} f(x) = 2$ and $\lim_{x \to 4^+} f(x) = 2$ as well)

Example 14. Sketch a function with $\lim_{x \to 2^-} f(x) = 2$, $\lim_{x \to 2^+} f(x) = 1$ and f(2) = 3.

Solution. The possibilities are endless. Here's one such f(x):

