Sketch of Lecture 2

Example 5. GAP has 40% off and there is a coupon for an additional 20% off. What is the total savings?

Solution. $0.6 \cdot 0.8 = 0.48$, so that the savings are 52%.

Example 6. Determine the domain and range of $f(x) = \frac{5}{1 - e^{3x}}$.

Review. f(x) is a composition of two simpler functions! Namely, f(x) = g(h(x)) where $g(z) = \frac{5}{1-z}$ and $h(x) = e^{3x}$. Recall that we also write $f = g \circ h$.

Note. Other good choices are possible: for instance, $g(z) = \frac{5}{z}$ and $h(x) = 1 - e^{3x}$.

Solution. The domain of f(x) consists of all x such that $1 - e^{3x} \neq 0$. Since $1 - e^{3x} = 0$ has only the solution x = 0, the domain of f(x) is $\{x : x \neq 0\}$ or, in interval notation, $(-\infty, 0) \cup (0, \infty)$.

Since e^{3x} has range $(0, \infty)$, the range of f(x) is the same as the range of $\frac{5}{1-z}$ with z restricted to $(0, \infty)$. Make a plot of $\frac{5}{1-z}$! (How can it be obtained from the familiar plot of $\frac{1}{z}$?)

From that plot, we conclude that the range of f(x) is $(-\infty, 0) \cup (5, \infty)$.

Example 7. cos(x), sin(x) and tan(x) are not 1-1. What do we do to define their inverses arccos(x), arcsin(x), arctan(x) nevertheless?

Solution. We restrict the domain of these functions, so that they become 1-1.

Specifically, we restrict $\cos(x)$ to $x \in [0, \pi]$. And $\sin(x)$ to $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. And $\tan(x)$ to $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, as well. Make sketches!

Example 8. Suppose we have capital 1 and that, annually, we are receiving 1 = 100% interest. How much capital do we have at the end of a year, if $\frac{1}{n}$ interest is paid *n* times a year?

[For instance, n = 12 if we receive monthly interest payments.]

Solution. At the end of the year, we have $\left(1+\frac{1}{n}\right)^n$. For instance. If n=1, we will have $(1+1)^1=2$.

If
$$n = 2$$
, we will have $\left(1 + \frac{1}{2}\right)^2 = \frac{9}{4} = 2.25$.

If
$$n = 12$$
, we will have $\left(1 + \frac{1}{12}\right)^{12} \approx 2.613$.

If n = 365, we will have $\left(1 + \frac{1}{365}\right)^{365} \approx 2.715$.

If we keep increasing n, then we will get closer and closer to e = 2.7182818284590452...

We will learn how to compute such limits. The limit here is: $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$.

Comment. Though, obviously, the choice of n makes a big difference, in each case the APR (annual percentage rate) is $\frac{1}{n} \cdot n = 1$. On the other hand, the APY (annual percentage yield) takes compounding interest into account.

Example 9. (extra) $\log_2 6 - \log_2 15 + \log_2 20 = \log_2 \frac{6 \cdot 20}{15} = \log_2 8 = 3$

Example 10. (extra) $\ln(a+b) + \ln(a-b) - 2\ln(c) = \ln \frac{a^2 - b^2}{c^2}$

Example 11. (extra) Find the inverse of $f(x) = x^2 - x$, with the domain restricted to $x \ge 1/2$. Solution. We solve $y = x^2 - x$ for x, and find $x = \frac{1 \pm \sqrt{1+4y}}{2}$. Since $x \ge 1/2$, we take "+" and conclude that $f^{-1}(x) = \frac{1 + \sqrt{1+4x}}{2}$.

Armin Straub straub@southalabama.edu