Example 5. GAP has $40 \%$ off and there is a coupon for an additional $20 \%$ off. What is the total savings?
Solution. $0.6 \cdot 0.8=0.48$, so that the savings are $52 \%$.
Example 6. Determine the domain and range of $f(x)=\frac{5}{1-e^{3 x}}$.
Review. $f(x)$ is a composition of two simpler functions! Namely, $f(x)=g(h(x))$ where $g(z)=\frac{5}{1-z}$ and $h(x)=e^{3 x}$. Recall that we also write $f=g \circ h$.
Note. Other good choices are possible: for instance, $g(z)=\frac{5}{z}$ and $h(x)=1-e^{3 x}$.
Solution. The domain of $f(x)$ consists of all $x$ such that $1-e^{3 x} \neq 0$. Since $1-e^{3 x}=0$ has only the solution $x=0$, the domain of $f(x)$ is $\{x: x \neq 0\}$ or, in interval notation, $(-\infty, 0) \cup(0, \infty)$.
Since $e^{3 x}$ has range $(0, \infty)$, the range of $f(x)$ is the same as the range of $\frac{5}{1-z}$ with $z$ restricted to $(0, \infty)$.
Make a plot of $\frac{5}{1-z}$ ! (How can it be obtained from the familiar plot of $\frac{1}{z}$ ?)
From that plot, we conclude that the range of $f(x)$ is $(-\infty, 0) \cup(5, \infty)$.
Example 7. $\cos (x), \sin (x)$ and $\tan (x)$ are not 1-1. What do we do to define their inverses $\arccos (x), \arcsin (x), \arctan (x)$ nevertheless?
Solution. We restrict the domain of these functions, so that they become 1-1.
Specifically, we restrict $\cos (x)$ to $x \in[0, \pi]$. And $\sin (x)$ to $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. And $\tan (x)$ to $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, as well. Make sketches!

Example 8. Suppose we have capital 1 and that, annually, we are receiving $1=100 \%$ interest. How much capital do we have at the end of a year, if $\frac{1}{n}$ interest is paid $n$ times a year?
[For instance, $n=12$ if we receive monthly interest payments.]
Solution. At the end of the year, we have $\left(1+\frac{1}{n}\right)^{n}$.
For instance. If $n=1$, we will have $(1+1)^{1}=2$.
If $n=2$, we will have $\left(1+\frac{1}{2}\right)^{2}=\frac{9}{4}=2.25$.
If $n=12$, we will have $\left(1+\frac{1}{12}\right)^{12} \approx 2.613$.
If $n=365$, we will have $\left(1+\frac{1}{365}\right)^{365} \approx 2.715$.
If we keep increasing $n$, then we will get closer and closer to $e=2.7182818284590452 \ldots$
We will learn how to compute such limits. The limit here is: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
Comment. Though, obviously, the choice of $n$ makes a big difference, in each case the APR (annual percentage rate) is $\frac{1}{n} \cdot n=1$. On the other hand, the APY (annual percentage yield) takes compounding interest into account.

Example 9. (extra) $\log _{2} 6-\log _{2} 15+\log _{2} 20=\log _{2} \frac{6 \cdot 20}{15}=\log _{2} 8=3$
Example 10. (extra) $\ln (a+b)+\ln (a-b)-2 \ln (c)=\ln \frac{a^{2}-b^{2}}{c^{2}}$
Example 11. (extra) Find the inverse of $f(x)=x^{2}-x$, with the domain restricted to $x \geqslant 1 / 2$.
Solution. We solve $y=x^{2}-x$ for $x$, and find $x=\frac{1 \pm \sqrt{1+4 y}}{2}$.
Since $x \geqslant 1 / 2$, we take " + " and conclude that $f^{-1}(x)=\frac{1+\sqrt{1+4 x}}{2}$.

