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A(n) =
n∑

k=0

(
n

k

)2(n+ k

k

)2

= diag
1

(1− x− y)(1− z − w)− xyzw

(
n

k

)
≡

(
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k0

)(
n1

k1

)(
n2

k2

)
· · · (mod p)

where ni and ki are the base p digits of n and k.

THM
Lucas
1878
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Lucas congruences(
n

k

)
≡

(
n0

k0

)(
n1

k1

)(
n2

k2

)
· · · (mod p),

where ni and ki are the p-adic digits of n and k.

THM
Lucas
1878

(
136

79

)
≡

(
3

2

)(
5

4

)(
2

1

)
= 3 · 5 · 2 ≡ 2 (mod 7)

LHS = 1009220746942993946271525627285911932800

EG

• Interesting sequences like the Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy such Lucas congruences as well:

A(n) ≡ A(n0)A(n1) · · ·A(nr) (mod p)
THM
Gessel ’82

• Equivalently:
Here and elsewhere: 0 ⩽ k < p

A(pn+ k) ≡ A(n)A(k) (mod p)
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∞∑
n=1

1

n3
is irrational.

THM
Apéry ’78
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The same recurrence is satisfied by the “near”-integers

B(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2
 n∑

j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof
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n
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k
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satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
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n=1

1

n3
is irrational.

THM
Apéry ’78

Are there other tuples (a, b, c) for which the recurrence

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1.

has an integral solution?

Q
Beukers,
Zagier,

Almkvist,
Zudilin,
Cooper

• Similar (and intertwined) story for:
• (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 (Beukers, Zagier)

• (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1 (Cooper)

• 6 + 6 + 3 sporadic sequences known.
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The six (basic) sporadic Apéry-like numbers of order 3

(a, b, c) A(n)

(17, 5, 1) Apéry numbers

∑
k

(
n

k

)2(n+ k

n

)2

(12, 4, 16) Kauers–Zeilberger diagonal

∑
k

(
n

k

)2(2k
n

)2

(10, 4, 64) Domb numbers

∑
k

(
n

k

)2(2k
k

)(
2(n− k)

n− k

)

(7, 3, 81) Almkvist–Zudilin numbers

∑
k

(−1)k3n−3k

(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125)
∑
k

(−1)k
(
n

k

)3(4n− 5k

3n

)

(9, 3,−27)
∑
k,l

(
n

k

)2(n
l

)(
k

l

)(
k + l

n

)

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1
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Modularity of Apéry-like numbers

• Beukers (’87) observed that the Apéry numbers 1, 5, 73, 1145, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy:

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 + O(q4)

modular form

=
∑
n⩾0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n

q − 12q2 + 66q3 + O(q4)

modular function

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT

• Context: f(τ) modular form of weight k
x(τ) modular function
y(x) such that y(x(τ)) = f(τ)

Then y(x) satisfies a linear differential equation of order k + 1.
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Gessel–Lucas congruences

• Lucas congruences: A(pn+ k) ≡ A(n)A(k) (mod p)

All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas
congruences modulo every prime. (Proof long and technical for 2 sequences)

THM
Malik–S

’16

• In the case of the Apéry numbers, Gessel (’82) observed that
these congruences can be extended modulo p2.

All of the 6 + 6 + 3 known sporadic sequences satisfy
Gessel–Lucas congruences modulo every odd prime:

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2)

THM
S ’24

• Here, A′(n) is the formal derivative of A(n).
These are rational numbers!

Gessel-Lucas congruences for sporadic sequences Armin Straub
6 / 18



Gessel–Lucas congruences

• Lucas congruences: A(pn+ k) ≡ A(n)A(k) (mod p)

All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas
congruences modulo every prime. (Proof long and technical for 2 sequences)

THM
Malik–S

’16
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The formal derivative of recurrence sequences

• Suppose A(n) is the unique solution for all n ⩾ 0 to

r∑
j=0

cj(n)A(n− j) = 0 with A(0) = 1 and A(j) = 0 for j < 0.

The cj(n) are polynomials with c0(n) ∈ n2Z[n] and c0(n) ̸= 0 for n > 0.

• Then the formal derivative A′(n) is the unique solution to

r∑
j=0

cj(n)A
′(n− j) +

r∑
j=0

c′j(n)A(n− j) = 0 with A′(j) = 0 for j ⩽ 0.

Let F (x) =
∑
n⩾0

A(n)xn and G(x) =
∑
n⩾1

A′(n)xn.

Then the corresponding differential equation satisfied by F (x)

is also solved by log(x)F (x) +G(x).

Note
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The formal derivative of recurrence sequences: example

• A(n) =
n∑

k=0

(
n

k

)2(
n+ k

k

)
is the unique solution with A(0) = 1 to:

(n+ 1)2A(n+ 1) = (11n2 + 11n+ 3)A(n) + n2A(n− 1)

• Then A′(n) is the unique solution with A′(0) = 0 to:

(n+ 1)2A′(n+ 1) = (11n2 + 11n+ 3)A′(n) + n2A′(n− 1)

− 2(n+ 1)A(n+ 1) + 11(2n+ 1)A(n) + 2nA(n− 1)

A′(1), A′(2), . . . = 5,
75

2
,
1855

6
,
10875

4
,
299387

12
,
943397

4
,
63801107

28
, . . .

EG

• Since the interpolation satisfies the continuous version of the recurrence :

A′(n) =
d

dx

∞∑
k=0

(
x

k

)2(
x+ k

k

) ∣∣∣∣∣∣ x=n

= 5
n∑

k=0

(
n

k

)2(
n+ k

k

)
(Hn −Hk)
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Approaches to proving Lucas congruences

• From suitable expressions as a binomial sum. Gessel ’82, McIntosh ’92

Apéry numbers:
∑
k

(
n

k

)2(
n+ k

n

)2

Sequence (η):
∑
k

(−1)k
(
n

k

)3(
4n− 5k

3n

)

• From suitable constant term expressions. Samol–van Straten ’09, Mellit–Vlasenko ’16

Suppose the origin is the only interior integral point
of the Newton polytope of P ∈ Z[x±1].

Then A(n) = ct[P (x)n] satisfies Lucas congruences.

THM
Samol, van
Straten ’09

P =
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz

(
1− 1

xy(1 + z)5

)
(1 + x)(1 + y)(1 + z)4

z3

• From suitable diagonal expressions. Rowland–Yassawi ’15

For instance, diagonals of 1/Q(x) for Q(x) ∈ Z[x] with Q(x) linear in
each variable and Q(0) = 1.

• From suitable modular parametrizations. Beukers–Tsai–Ye ’25
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Apéry numbers:
∑
k

(
n

k

)2(
n+ k

n

)2

Sequence (η):
∑
k

(−1)k
(
n

k

)3(
4n− 5k

3n

)

• From suitable constant term expressions. Samol–van Straten ’09, Mellit–Vlasenko ’16

Suppose the origin is the only interior integral point
of the Newton polytope of P ∈ Z[x±1].

Then A(n) = ct[P (x)n] satisfies Lucas congruences.

THM
Samol, van
Straten ’09

P =
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz

(
1− 1

xy(1 + z)5

)
(1 + x)(1 + y)(1 + z)4

z3

• From suitable diagonal expressions. Rowland–Yassawi ’15

For instance, diagonals of 1/Q(x) for Q(x) ∈ Z[x] with Q(x) linear in
each variable and Q(0) = 1.

• From suitable modular parametrizations. Beukers–Tsai–Ye ’25

Gessel-Lucas congruences for sporadic sequences Armin Straub
9 / 18



Approaches to proving Lucas congruences

• From suitable expressions as a binomial sum. Gessel ’82, McIntosh ’92
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Lucas congruences in terms of the GF

• Given F (x) =
∞∑

n=0

A(n)xn, we write Fp(x) =

p−1∑
n=0

A(n)xn for its p-truncation.

A(n) satisfies Lucas congruences modulo p

⇐⇒ 1

F p−1(x)
modulo p is a polynomial of degree < p.

LEM

A(n) ≡ A(n0)A(n1)A(n2) · · · (mod p)

⇐⇒ F (x) ≡ Fp(x) Fp(x
p)Fp(x

p2

) · · · (mod p)

⇐⇒ F (x) ≡ Fp(x) F (xp) (mod p)

⇐⇒ Fp(x) ≡
F (x)

F (xp)
(mod p)

(by little Fermat) ≡ F (x)

F p(x)
=

1

F p−1(x)

Since the first p coefficients of . . . always match, the final congruence
is equivalent to the RHS being a polynomial of degree ⩽ p− 1.

proof
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A(n) ≡ A(n0)A(n1)A(n2) · · · (mod p)

⇐⇒ F (x) ≡ Fp(x) Fp(x
p)Fp(x

p2

) · · · (mod p)

⇐⇒ F (x) ≡ Fp(x) F (xp) (mod p)

⇐⇒ Fp(x) ≡
F (x)

F (xp)
(mod p)

(by little Fermat) ≡ F (x)

F p(x)

=
1

F p−1(x)

Since the first p coefficients of . . . always match, the final congruence
is equivalent to the RHS being a polynomial of degree ⩽ p− 1.

proof
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Lucas congruences via modular forms

• Suppose F (x) =
∞∑

n=0

A(n)xn has modular parametrization:

F (x) is a modular form for some modular function x(τ).

Suppose that:

• x(τ) = q + q2Z[[q]] with q = e2πiτ is a Hauptmodul
for Γ = Γ0(N) (or Atkin–Lehner extension).

• F (x(τ)) = 1 + qZ[[q]] is a weight 2 modular form for Γ.

• F (x(τ)) has a unique zero at [τ0] of order ⩽ 1,
where [τ0] is the (unique) pole of x(τ).

Then A(n) satisfies the Lucas congruences for all primes p.

THM
Beukers–
Tsai–Ye

’25

Suppose E(τ) is a modular form for Γ with weight 2(p− 1) such that
E(τ) ≡ 1 (mod p).

Then

1

F p−1(x)
≡

E(τ)

F p−1(x)
= poly(x)

(mod p).

is a modular function with a unique pole at [τ0] of order ⩽ p− 1.

proof
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Lucas congruences via modular forms, cont’d

• Needed: weight 2(p− 1) modular form E(τ) for Γ with E(τ) ≡ 1 (mod p).

The normalized Eisenstein series

Ek(τ) = 1 +
2k

Bk

∞∑
n=1

nk−1qn

1− qn

is a modular form for Γ0(1) of even weight k ⩾ 2.

Since 1/Bp−1 ≡ 0 (mod p), we have Ep−1(τ) ≡ 1 (mod p).

EG

• If p ⩾ 5 and Γ = Γ0(N), we can select:

E(τ) := Ep−1(τ)
2

• If p ⩾ 5 and Γ is Γ0(N) extended by τ → − 1
Nτ :

E(τ) := 1
2

[
Ep−1(τ)

2 +Np−1Ep−1(Nτ)2
]
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Time?

Bonus material:

Lucas and Gessel–Lucas congruences are natural
from the point of view of congruence automata

Gessel-Lucas congruences for sporadic sequences Armin Straub
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Sporadic sequences mod pr are automatic

If an integer sequence A(n) is the diagonal of F (x) ∈ Z(x),
then the reductions A(n) (mod pr) are p-automatic.

THM
Rowland,

Yassawi ’15

Constructive proof of results by Denef and Lipshitz ’87.
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0

1

22

0, 1

2

0, 1, 2

0

2

1

2

0

1

1

2

0

C(35) = 3,116,285,494,907,301,262

≡ 1 (mod 3)

Instead via automaton:

35 = 1 0 2 2 in base 3

C( 2 )C(2) ≡ 2

C( 2 2 )C(8) ≡ 2

C( 0 2 2 ) ≡ 2

C( 1 0 2 2 )C(35) ≡ 1

EG
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Linear congruence schemes

• The Catalan numbers C(n) modulo 3 can be described:
• by an automaton with 4 states (plus a zero state)
• by a linear 3-scheme with 2 states

(Rowland–Zeilberger ’14)

1start

0

1

22

0, 1

2

0, 1, 2

0

2

1

2

0

1

1

2

0

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = A2(n)

A1(3n) = A1(n)
A1(3n+ 1) = A3(n)
A1(3n+ 2) = 0

A2(3n) = A3(n)
A2(3n+ 1) = 0
A2(3n+ 2) = A2(n)

A3(3n) = A3(n)
A3(3n+ 1) = A1(n)
A3(3n+ 2) = 0

Initial conditions:
A0(0) = A1(0) = 1, A2(0) = A3(0) = 2

EG
mod 3

automatic
3-scheme

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = A0(n) +A1(n)

A1(3n) = A1(n)
A1(3n+ 1) = 2A1(n)
A1(3n+ 2) = 0

Initial conditions: A0(0) = A1(0) = 1

EG
mod 3

linear
3-scheme
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Few-state linear p-schemes

Lucas congruences:

A(pn+ k) ≡ A(k)A(n) (mod p)

A(n) (mod p) satisfies a single-state linear p-scheme (and A(0) = 1).
⇐⇒ A(n) satisfies Lucas congruences modulo p.

PROP
Henningsen

S ’22

Gessel–Lucas congruences:

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2)

Gessel–Lucas congruences yield explicit 2-state linear p-schemes.Note
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Conclusions

The known sporadic sequences satisfy the Gessel–Lucas congruences

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2).

THM
S ’24

• Lucas congruences correspond to single-state linear p-schemes.
Gessel–Lucas congruences are instances of 2-state linear p-schemes.

• It would be of interest to study few-state p-schemes systematically:
• What kind of “generalized Lucas congruences” does one get?
• Which sequences satisfy such congruences? (mod p, mod p2?)

Partial results by Henningsen–S (’22) for certain constant term sequences.

• Are there interesting q-analogs?
• q-Lucas congruences have been studied. Olive ’65, Désarménien ’82

• For k = 0, we get A(pn) ≡ A(n) (mod p2). (Supercongruences!)

q-analogs known for some sporadic sequences. S ’19, Gorodetsky ’19
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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