## **Gessel-Lucas congruences for sporadic** sequences

Special Session on Modular Forms in Combinatorics and Number Theory AMS Fall Southeastern Sectional Meeting, Tulane University

### Armin Straub

October 5, 2025

University of South Alabama

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \binom{n_2}{k_2} \cdots \pmod{p}$$

where  $n_i$  and  $k_i$  are the base p digits of n and k.

$$\begin{split} A(n) &= \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 \\ &= \operatorname{diag} \frac{1}{(1-x-y)(1-z-w)-xyzw} \end{split}$$



Slides available at: http://arminstraub.com/talks

Gessel-Lucas congruences for sporadic sequences

### **Lucas congruences**

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \binom{n_2}{k_2} \cdots \pmod{p},$$



where  $n_i$  and  $k_i$  are the p-adic digits of n and k.

$$\binom{136}{79} \equiv \binom{3}{2} \binom{5}{4} \binom{2}{1} = 3 \cdot 5 \cdot 2 \equiv 2 \pmod{7}$$

 $\mathsf{LHS} = 1009220746942993946271525627285911932800$ 

### Lucas congruences

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \binom{n_2}{k_2} \cdots \pmod{p},$$



where  $n_i$  and  $k_i$  are the p-adic digits of n and k.

EG

$$\binom{136}{79} \equiv \binom{3}{2} \binom{5}{4} \binom{2}{1} = 3 \cdot 5 \cdot 2 \equiv 2 \pmod{7}$$

 $\mathsf{LHS} = 1009220746942993946271525627285911932800$ 

Interesting sequences like the Apéry numbers

$$1, 5, 73, 1445, \dots$$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy such Lucas congruences as well:



$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$



• Equivalently:  $A(pn+k) \equiv A(n)A(k) \pmod{p}$ Here and elsewhere:  $0 \le k < p$ 

Gessel-Lucas congruences for sporadic sequences

## Apéry numbers and the irrationality of $\zeta(3)$

The Apéry numbers

 $1, 5, 73, 1445, \ldots$ 

satisfy

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

 $A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$ 



THM Apéry '78 
$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is irrational.

## Apéry numbers and the irrationality of $\zeta(3)$

The Apéry numbers

 $1, 5, 73, 1445, \ldots$ 

satisfy

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$



THM Apéry '78 
$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is irrational.

**proof** The same recurrence is satisfied by the "near"-integers

$$B(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 \left( \sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 \binom{n}{m} \binom{n+m}{m}} \right).$$

 $A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$ 

Then,  $\frac{B(n)}{A(n)} \to \zeta(3)$ . But too fast for  $\zeta(3)$  to be rational.

## Apéry numbers and the irrationality of $\zeta(3)$

The Apéry numbers

 $1, 5, 73, 1445, \ldots$ 

satisfy

$$A(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$$
 sfy 
$$(n+1)^3 u_{n+1} = (2n+1)(17n^2+17n+5)u_n - n^3 u_{n-1}.$$



THM Apéry '78 
$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is irrational.

Beukers. Zagier, Almkvist. Zudilin. Cooper

Are there other tuples (a, b, c) for which the recurrence

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

has an integral solution?

- Similar (and intertwined) story for:
  - $(n+1)^2 u_{n+1} = (an^2 + an + b)u_n cn^2 u_{n-1}$

(Beukers, Zagier)

•  $(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - n(cn^2 + d)u_{n-1}$ 

• 6+6+3 sporadic sequences known.

## The six (basic) sporadic Apéry-like numbers of order 3

$$(a,b,c) \qquad A(n) \qquad \qquad (n+1)^3 u_{n+1} = (2n+1)(an^2+an+b)u_n - cn^3 u_{n-1} \\ (17,5,1) \qquad \sum_k \binom{n}{k}^2 \binom{n+k}{n}^2 \qquad \qquad \text{Apéry numbers} \\ (12,4,16) \qquad \sum_k \binom{n}{k}^2 \binom{2k}{n}^2 \qquad \qquad \text{Kauers-Zeilberger diagonal} \\ (10,4,64) \qquad \sum_k \binom{n}{k}^2 \binom{2k}{k} \binom{2(n-k)}{n-k} \qquad \qquad \text{Domb numbers} \\ (7,3,81) \qquad \sum_k (-1)^k 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3} \qquad \qquad \text{Almkvist-Zudilin numbers} \\ (11,5,125) \qquad \sum_k (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n} \qquad \qquad \qquad (9,3,-27) \qquad \sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$$

### Modularity of Apéry-like numbers

• Beukers ('87) observed that the Apéry numbers

 $1, 5, 73, 1145, \dots$ 

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$

satisfy:

$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \\ \underset{1+5q+13q^2+23q^3+O(q^4)}{\text{modular function}} \\ q-12q^2+66q^3+O(q^4)$$



### Modularity of Apéry-like numbers

Beukers ('87) observed that the Apéry numbers

 $1, 5, 73, 1145, \ldots$ 

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$



$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \\ {}_{1+5q+13q^2+23q^3+O(q^4)} \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}}$$

**FACT** Not at all evidently, such a **modular parametrization** exists for all known Apéry-like numbers!

- $f(\tau)$  modular form of weight kContext:
  - $x(\tau)$  modular function
    - y(x) such that  $y(x(\tau)) = f(\tau)$

Then y(x) satisfies a linear differential equation of order k+1.

satisfy:

### **Gessel-Lucas congruences**

• Lucas congruences:  $A(pn+k) \equiv A(n)A(k) \pmod{p}$ 



Malik-S '16

**THM** All of the 6+6+3 known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)

### **Gessel-Lucas congruences**

• Lucas congruences:  $A(pn+k) \equiv A(n)A(k) \pmod{p}$ 



Malik-S '16

**THM** All of the 6+6+3 known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)



 In the case of the Apéry numbers, Gessel ('82) observed that these congruences can be extended modulo  $p^2$ .



All of the 6+6+3 known sporadic sequences satisfy Gessel-Lucas congruences modulo every odd prime:

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}$$

• Here, A'(n) is the formal derivative of A(n). These are rational numbers!

### The formal derivative of recurrence sequences

• Suppose A(n) is the unique solution for all  $n \geqslant 0$  to

$$\sum_{j=0}^r c_j(n)A(n-j)=0 \qquad \text{with } A(0)=1 \text{ and } A(j)=0 \text{ for } j<0.$$

The  $c_j(n)$  are polynomials with  $c_0(n) \in n^2 \mathbb{Z}[n]$  and  $c_0(n) \neq 0$  for n > 0.

### The formal derivative of recurrence sequences

• Suppose A(n) is the unique solution for all  $n \geqslant 0$  to

$$\sum_{j=0}^r c_j(n)A(n-j)=0 \qquad \text{with } A(0)=1 \text{ and } A(j)=0 \text{ for } j<0.$$

The  $c_j(n)$  are polynomials with  $c_0(n) \in n^2 \mathbb{Z}[n]$  and  $c_0(n) \neq 0$  for n > 0.

• Then the **formal derivative** A'(n) is the unique solution to

$$\sum_{j=0}^{r} c_j(n)A'(n-j) + \sum_{j=0}^{r} c'_j(n)A(n-j) = 0 \quad \text{with } A'(j) = 0 \text{ for } j \leqslant 0.$$

### The formal derivative of recurrence sequences

• Suppose A(n) is the unique solution for all  $n \geqslant 0$  to

$$\sum_{j=0}^{r} c_j(n)A(n-j) = 0 \quad \text{with } A(0) = 1 \text{ and } A(j) = 0 \text{ for } j < 0.$$

The  $c_j(n)$  are polynomials with  $c_0(n) \in n^2 \mathbb{Z}[n]$  and  $c_0(n) \neq 0$  for n > 0.

• Then the **formal derivative** A'(n) is the unique solution to

$$\sum_{j=0}^{r} c_j(n)A'(n-j) + \sum_{j=0}^{r} c'_j(n)A(n-j) = 0$$
 with  $A'(j) = 0$  for  $j \le 0$ .

Note Let 
$$F(x) = \sum_{n\geqslant 0} A(n)x^n$$
 and  $G(x) = \sum_{n\geqslant 1} A'(n)x^n$ .

Then the corresponding differential equation satisfied by F(x) is also solved by  $\log(x)F(x)+G(x)$ .

### The formal derivative of recurrence sequences: example

•  $A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}$  is the unique solution with A(0) = 1 to:

$$(n+1)^2 A(n+1) = (11n^2 + 11n + 3)A(n) + n^2 A(n-1)$$

• Then A'(n) is the unique solution with A'(0) = 0 to:

$$(n+1)^{2}A'(n+1) = (11n^{2} + 11n + 3)A'(n) + n^{2}A'(n-1)$$
$$-2(n+1)A(n+1) + 11(2n+1)A(n) + 2nA(n-1)$$

### The formal derivative of recurrence sequences: example

•  $A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}$  is the unique solution with A(0) = 1 to:

$$(n+1)^2 A(n+1) = (11n^2 + 11n + 3)A(n) + n^2 A(n-1)$$

• Then A'(n) is the unique solution with A'(0) = 0 to:

$$(n+1)^2 A'(n+1) = (11n^2 + 11n + 3)A'(n) + n^2 A'(n-1)$$
$$-2(n+1)A(n+1) + 11(2n+1)A(n) + 2nA(n-1)$$

**EG** 
$$A'(1), A'(2), \ldots = 5, \frac{75}{2}, \frac{1855}{6}, \frac{10875}{4}, \frac{299387}{12}, \frac{943397}{4}, \frac{63801107}{28}, \ldots$$

## The formal derivative of recurrence sequences: example

•  $A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}$  is the unique solution with A(0) = 1 to:

$$(n+1)^2 A(n+1) = (11n^2 + 11n + 3)A(n) + n^2 A(n-1)$$

• Then A'(n) is the unique solution with A'(0) = 0 to:

$$(n+1)^{2}A'(n+1) = (11n^{2} + 11n + 3)A'(n) + n^{2}A'(n-1)$$
$$-2(n+1)A(n+1) + 11(2n+1)A(n) + 2nA(n-1)$$

EG 
$$A'(1), A'(2), \ldots = 5, \frac{75}{2}, \frac{1855}{6}, \frac{10875}{4}, \frac{299387}{12}, \frac{943397}{4}, \frac{63801107}{28}, \ldots$$

Since the interpolation satisfies the continuous version of the recurrence:

$$A'(n) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k} \bigg|_{x=n}$$
$$= 5 \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k} (H_n - H_k)$$

From suitable expressions as a **binomial sum**.

Gessel '82. McIntosh '92

Apéry numbers: 
$$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$$

Sequence 
$$(\eta)$$
:  $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$ 

From suitable expressions as a **binomial sum**.

Gessel '82. McIntosh '92

Apéry numbers: 
$$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$$

Sequence 
$$(\eta)$$
:  $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$ 

From suitable constant term expressions. Samol-van Straten '09, Mellit-Vlasenko '16

THM Suppose the origin is the only interior integral point Samol, van Straten '09 of the Newton polytope of  $P \in \mathbb{Z}[x^{\pm 1}]$ .

Then  $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$  satisfies Lucas congruences.





$$P = \frac{(x+y)(z+1)(x+y+z)(y+z+1)}{xyz}$$

$$\left(1 - \frac{1}{xy(1+z)^5}\right) \frac{(1+x)(1+y)(1+z)^4}{z^3}$$

From suitable expressions as a binomial sum.

Gessel '82. McIntosh '92

Apéry numbers: 
$$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$$

Sequence 
$$(\eta)$$
:  $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$ 

From suitable constant term expressions. Samol-van Straten '09, Mellit-Vlasenko '16

THM Suppose the origin is the only interior integral point Samol, van Straten '09 of the Newton polytope of  $P \in \mathbb{Z}[x^{\pm 1}]$ .

Then  $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$  satisfies Lucas congruences.





$$P = \frac{(x+y)(z+1)(x+y+z)(y+z+1)}{xyz}$$

$$\left(1 - \frac{1}{xy(1+z)^5}\right) \frac{(1+x)(1+y)(1+z)^4}{z^3}$$

From suitable diagonal expressions.

Rowland-Yassawi '15

For instance, diagonals of 1/Q(x) for  $Q(x) \in \mathbb{Z}[x]$  with Q(x) linear in each variable and  $Q(\mathbf{0}) = 1$ .

From suitable expressions as a binomial sum.

Gessel '82. McIntosh '92

Apéry numbers: 
$$\sum_{k} \binom{n}{k}^2 \binom{n+k}{n}^2$$

Sequence 
$$(\eta)$$
:  $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$ 

• From suitable **constant term** expressions. Samol-van Straten '09, Mellit-Vlasenko '16



THM Suppose the origin is the only interior integral point Straten '09 of the Newton polytope of  $P \in \mathbb{Z}[x^{\pm 1}]$ .







$$P = \frac{(x+y)(z+1)(x+y+z)(y+z+1)}{xyz}$$

$$\left(1 - \frac{1}{xy(1+z)^5}\right) \frac{(1+x)(1+y)(1+z)^4}{z^3}$$

From suitable diagonal expressions.

Rowland-Yassawi '15

For instance, diagonals of 1/Q(x) for  $Q(x) \in \mathbb{Z}[x]$  with Q(x) linear in each variable and  $Q(\mathbf{0}) = 1$ .

From suitable modular parametrizations.

Beukers-Tsai-Ye '25

• Given  $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ , we write  $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$  for its p-truncation.

## A(n) satisfies Lucas congruences modulo p

$$\iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree } < p.$$

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots \pmod{p}$$

$$\iff$$
  $F(x) \equiv F_p(x) F_p(x^p) F_p(x^{p^2}) \cdots \pmod{p}$ 

• Given  $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ , we write  $F_p(x) = \sum_{n=0}^{r-1} A(n)x^n$  for its p-truncation.

# LEM A(n) satisfies Lucas congruences modulo p

$$\iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree } < p.$$

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots \pmod{p}$$

$$\iff$$
  $F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{(\text{mod } p)}$ 

$$\iff F(x) \equiv F_p(x) \frac{F(x^p)}{F(x^p)} \pmod{p}$$

• Given  $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ , we write  $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$  for its p-truncation.

## 

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots$$
 (mod  $p$ )

$$\Rightarrow F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{(\text{mod } p)}$$

$$\iff$$
  $F(x) \equiv F_p(x) \frac{F(x^p)}{}$  (mod  $p$ )

$$\iff$$
  $F_p(x) \equiv \frac{F(x)}{F(x^p)}$  (mod  $p$ )

• Given  $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ , we write  $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$  for its p-truncation.

# $\begin{array}{c} \textbf{LEM} \\ A(n) \text{ satisfies Lucas congruences modulo } p \\ \iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree} < p. \end{array}$

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots \qquad \pmod{p}$$

$$\iff F(x) \equiv F_p(x)\frac{F_p(x^p)F_p(x^{p^2})\cdots}{F(x^p)} \qquad \pmod{p}$$

$$\iff F(x) \equiv F_p(x)\frac{F(x^p)}{F(x^p)} \qquad \pmod{p}$$

$$\iff F_p(x) \equiv \frac{F(x)}{F(x^p)} \qquad \pmod{p}$$
(by little Fermat) 
$$\equiv \frac{F(x)}{F^p(x)}$$

• Given  $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ , we write  $F_p(x) = \sum_{n=0}^{\infty} A(n)x^n$  for its p-truncation.

**LEM** A(n) satisfies Lucas congruences modulo p $\iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree } < p.$ 

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots \qquad \pmod{p}$$

$$\iff F(x) \equiv F_p(x)\frac{F_p(x^p)F_p(x^{p^2})\cdots}{F(x^p)} \qquad \pmod{p}$$

$$\iff F(x) \equiv F_p(x)\frac{F(x^p)}{F(x^p)} \qquad \pmod{p}$$

$$\iff F_p(x) \equiv \frac{F(x)}{F(x^p)} \qquad \pmod{p}$$

$$\text{(by little Fermat)} \qquad \equiv \frac{F(x)}{F^p(x)} = \frac{1}{F^{p-1}(x)}$$

• Given  $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ , we write  $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$  for its p-truncation.

 $\begin{array}{c} \textbf{LEM} \\ A(n) \text{ satisfies Lucas congruences modulo } p \\ \iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree} < p. \end{array}$ 

proof

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots$$
 (mod  $p$ )

$$\iff$$
  $F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{(\text{mod } p)}$ 

$$\iff$$
  $F(x) \equiv F_p(x) \frac{F(x^p)}{F(x^p)}$  (mod  $p$ )

$$\iff \frac{F_p(x)}{F(x^p)} \equiv \frac{F(x)}{F(x^p)} \pmod{p}$$

(by little Fermat) 
$$\equiv \frac{F(x)}{F^p(x)} = \frac{1}{F^{p-1}(x)}$$

Since the first p coefficients of  $\dots$  always match, the final congruence is equivalent to the RHS being a polynomial of degree  $\leq p-1$ .

• Suppose  $F(x) = \sum A(n)x^n$  has modular parametrization:

F(x) is a modular form for some modular function  $x(\tau)$ .

### Beukers-Tsai-Ye '25

### **THM** Suppose that:

- $x(\tau) = q + q^2 \mathbb{Z}[[q]]$  with  $q = e^{2\pi i \tau}$  is a **Hauptmodul** for  $\Gamma = \Gamma_0(N)$  (or Atkin–Lehner extension).
- $F(x(\tau)) = 1 + q\mathbb{Z}[[q]]$  is a weight 2 modular form for  $\Gamma$ .
- $F(x(\tau))$  has a unique zero at  $[\tau_0]$  of order  $\leq 1$ , where  $[\tau_0]$  is the (unique) pole of  $x(\tau)$ .

Then A(n) satisfies the Lucas congruences for all primes p.







• Suppose  $F(x) = \sum_{n=0}^{\infty} A(n)x^n$  has modular parametrization:

F(x) is a modular form for some modular function  $x(\tau)$ .



THM Beukers-Tsai-Ye '25

### Suppose that:

•  $x(\tau) = q + q^2 \mathbb{Z}[[q]]$  with  $q = \mathrm{e}^{2\pi i \tau}$  is a **Hauptmodul** for  $\Gamma = \Gamma_0(N)$  (or Atkin–Lehner extension).



•  $F(x(\tau))$  has a unique zero at  $[\tau_0]$  of order  $\leqslant 1$ , where  $[\tau_0]$  is the (unique) pole of  $x(\tau)$ .

Then A(n) satisfies the Lucas congruences for all primes p.





proof Suppose  $E(\tau)$  is a modular form for  $\Gamma$  with weight 2(p-1) such that  $E(\tau) \equiv 1 \pmod p$ .

• Suppose  $F(x) = \sum_{n=0} A(n)x^n$  has modular parametrization: F(x) is a modular form for some modular function  $x(\tau)$ .



### THM Beukers-Tsai-Ye '25

### Suppose that:

•  $x(\tau) = q + q^2 \mathbb{Z}[[q]]$  with  $q = \mathrm{e}^{2\pi i \tau}$  is a **Hauptmodul** for  $\Gamma = \Gamma_0(N)$  (or Atkin–Lehner extension).



•  $F(x(\tau))$  has a unique zero at  $[\tau_0]$  of order  $\leqslant 1$ , where  $[\tau_0]$  is the (unique) pole of  $x(\tau)$ .

Then A(n) satisfies the Lucas congruences for all primes p.





**proof** Suppose  $E(\tau)$  is a modular form for Γ with weight 2(p-1) such that  $E(\tau) \equiv 1 \pmod{p}$ . Then

$$\frac{1}{F^{p-1}(x)} \equiv \pmod{p}.$$



• Suppose  $F(x) = \sum A(n)x^n$  has modular parametrization:

F(x) is a modular form for some modular function  $x(\tau)$ .



### THM Beukers-Tsai-Ye '25

### Suppose that:

- $x(\tau) = q + q^2 \mathbb{Z}[[q]]$  with  $q = \mathrm{e}^{2\pi i \tau}$  is a **Hauptmodul** for  $\Gamma = \Gamma_0(N)$  (or Atkin–Lehner extension).
- $F(x(\tau)) = 1 + q\mathbb{Z}[[q]]$  is a weight 2 modular form for  $\Gamma$ .
- $F(x(\tau))$  has a unique zero at  $[\tau_0]$  of order  $\leqslant 1$ , where  $[\tau_0]$  is the (unique) pole of  $x(\tau)$ .

Then A(n) satisfies the Lucas congruences for all primes p.





**proof** Suppose  $E(\tau)$  is a modular form for Γ with weight 2(p-1) such that  $E(\tau) \equiv 1 \pmod{p}$ . Then

$$\frac{1}{F^{p-1}(x)} \equiv \frac{E(\tau)}{F^{p-1}(x)} \pmod{p}.$$

is a modular function with a unique pole at  $[\tau_0]$  of order  $\leqslant p-1$ .

• Suppose  $F(x) = \sum A(n)x^n$  has modular parametrization:

F(x) is a modular form for some modular function  $x(\tau)$ .



### THM Beukers-Tsai-Ye '25

### Suppose that:

•  $x(\tau)=q+q^2\mathbb{Z}[[q]]$  with  $q=\mathrm{e}^{2\pi i \tau}$  is a **Hauptmodul** for  $\Gamma=\Gamma_0(N)$  (or Atkin–Lehner extension).



•  $F(x(\tau))$  has a unique zero at  $[\tau_0]$  of order  $\leqslant 1$ , where  $[\tau_0]$  is the (unique) pole of  $x(\tau)$ .

Then A(n) satisfies the Lucas congruences for all primes p.





**proof** Suppose  $E(\tau)$  is a modular form for Γ with weight 2(p-1) such that  $E(\tau) \equiv 1 \pmod{p}$ . Then

$$\frac{1}{F^{p-1}(x)} \equiv \frac{E(\tau)}{F^{p-1}(x)} = \text{poly}(x) \pmod{p}.$$

is a modular function with a unique pole at  $[\tau_0]$  of order  $\leqslant p-1$ .

### Lucas congruences via modular forms, cont'd

Needed: weight 2(p-1) modular form  $E(\tau)$  for  $\Gamma$  with  $E(\tau) \equiv 1 \pmod{p}$ .

#### EG The normalized **Eisenstein series**

$$E_k(\tau) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \frac{n^{k-1}q^n}{1 - q^n}$$



is a modular form for  $\Gamma_0(1)$  of even weight  $k \geq 2$ .

Since  $1/B_{p-1} \equiv 0 \pmod{p}$ , we have  $E_{p-1}(\tau) \equiv 1 \pmod{p}$ .

### Lucas congruences via modular forms, cont'd

• Needed: weight 2(p-1) modular form  $E(\tau)$  for  $\Gamma$  with  $E(\tau) \equiv 1 \pmod{p}$ .

### **EG** The normalized **Eisenstein series**

$$E_k(\tau) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \frac{n^{k-1}q^n}{1 - q^n}$$



is a modular form for  $\Gamma_0(1)$  of even weight  $k \geqslant 2$ .

Since  $1/B_{p-1} \equiv 0 \pmod{p}$ , we have  $E_{p-1}(\tau) \equiv 1 \pmod{p}$ .

• If  $p\geqslant 5$  and  $\Gamma=\Gamma_0(N)$ , we can select:

$$E(\tau) := E_{p-1}(\tau)^2$$

### Lucas congruences via modular forms, cont'd

• Needed: weight 2(p-1) modular form  $E(\tau)$  for  $\Gamma$  with  $E(\tau) \equiv 1 \pmod{p}$ .

### EG The normalized **Eisenstein series**

$$E_k(\tau) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \frac{n^{k-1}q^n}{1 - q^n}$$



is a modular form for  $\Gamma_0(1)$  of even weight  $k \geq 2$ .

Since  $1/B_{p-1} \equiv 0 \pmod{p}$ , we have  $E_{p-1}(\tau) \equiv 1 \pmod{p}$ .

• If  $p \ge 5$  and  $\Gamma = \Gamma_0(N)$ , we can select:

$$E(\tau) := E_{p-1}(\tau)^2$$

• If  $p\geqslant 5$  and  $\Gamma$  is  $\Gamma_0(N)$  extended by  $au \to -\frac{1}{N\tau}$ :

$$E(\tau) := \frac{1}{2} \left[ E_{p-1}(\tau)^2 + N^{p-1} E_{p-1}(N\tau)^2 \right]$$

# Time?

Bonus material:

Lucas and Gessel-Lucas congruences are natural from the point of view of congruence automata



**THM** If an integer sequence A(n) is the diagonal of  $F(x) \in \mathbb{Z}(x)$ , Yassawi '15 then the reductions  $A(n) \pmod{p^r}$  are p-automatic.



Constructive proof of results by Denef and Lipshitz '87.





**THM** If an integer sequence A(n) is the diagonal of  $F(x) \in \mathbb{Z}(x)$ , Yassawi '15 then the reductions  $A(n) \pmod{p^r}$  are p-automatic.



Constructive proof of results by Denef and Lipshitz '87.

#### EG Catalan numbers C(n) modulo 3:





$$35 = 1 \ 0 \ 2 \ 2$$
 in base  $3$ 





**THM** If an integer sequence A(n) is the diagonal of  $F(x) \in \mathbb{Z}(x)$ , Yassawi '15 then the reductions  $A(n) \pmod{p^r}$  are p-automatic.



Constructive proof of results by Denef and Lipshitz '87.

#### EG Catalan numbers C(n) modulo 3:





$$C(35) = 3,116,285,494,907,301,262$$
  

$$\equiv 1 \pmod{3}$$

$$35 = 1 \ 0 \ 2 \ 2$$
 in base 3

$$C(2)$$
  $C(2) \equiv 2$ 



**THM** If an integer sequence A(n) is the diagonal of  $F(x) \in \mathbb{Z}(x)$ , Yassawi '15 then the reductions  $A(n) \pmod{p^r}$  are p-automatic.



Constructive proof of results by Denef and Lipshitz '87.

#### EG Catalan numbers C(n) modulo 3:





$$35 = 1 \ 0 \ 2 \ 2$$
 in base 3

$$C(2) C(2) \equiv 2$$

$$C(8) C(2,2) = 2$$



**THM** If an integer sequence A(n) is the diagonal of  $F(x) \in \mathbb{Z}(x)$ , Yassawi '15 then the reductions  $A(n) \pmod{p^r}$  are p-automatic.



Constructive proof of results by Denef and Lipshitz '87.

#### Catalan numbers C(n) modulo 3: EG





Instead via automaton:

$$35 = 1 \ 0 \ 2 \ 2$$
 in base 3

 $\equiv 1 \pmod{3}$ 

$$C(2) C(2) \equiv 2$$

$$C(8) C(22) \equiv 2$$

$$C(0\ 2\ 2) \equiv 2$$



**THM** If an integer sequence A(n) is the diagonal of  $F(x) \in \mathbb{Z}(x)$ , Yassawi '15 then the reductions  $A(n) \pmod{p^r}$  are p-automatic.



Constructive proof of results by Denef and Lipshitz '87.

#### EG Catalan numbers C(n) modulo 3:





$$35 = 1 0 2 2$$
 in base 3

$$C(2) C(2) \equiv 2$$

$$C(8) C(2 2) \equiv 2$$

$$C(0\ 2\ 2) \equiv 2$$

$$C(35)$$
  $C(1 \ 0 \ 2 \ 2) \equiv 1$ 

- The Catalan numbers C(n) modulo 3 can be described:
  - by an automaton with 4 states (plus a zero state)
  - by a **linear** 3-**scheme** with 2 states (Rowland-Zeilberger '14)





- The Catalan numbers C(n) modulo 3 can be described:
  - ullet by an automaton with 4 states (plus a zero state)
  - by a linear 3-scheme with 2 states (Rowland–Zeilberger '14)





EG mod 3

3-scheme



$$\begin{array}{rclcrcl} A_0(3n) & = & A_1(n) & & A_2(3n) & = & A_3(n) \\ A_0(3n+1) & = & A_1(n) & & A_2(3n+1) & = & 0 \\ A_0(3n+2) & = & A_2(n) & & A_2(3n+2) & = & A_2(n) \\ A_1(3n) & = & A_1(n) & & A_3(3n) & = & A_3(n) \\ A_1(3n+1) & = & A_3(n) & & A_3(3n+1) & = & A_1(n) \\ A_1(3n+2) & = & 0 & & A_3(3n+2) & = & 0 \end{array}$$

Initial conditions:

$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

- The Catalan numbers C(n) modulo 3 can be described:
  - by an automaton with 4 states (plus a zero state)
  - by a **linear** 3-**scheme** with 2 states (Rowland-Zeilberger '14)







$$\begin{array}{rclcrcl} A_0(3n) & = & A_1(n) & & A_2(3n) & = & A_3(n) \\ A_0(3n+1) & = & A_1(n) & & A_2(3n+1) & = & 0 \\ A_0(3n+2) & = & A_2(n) & & A_2(3n+2) & = & A_2(n) \\ A_1(3n) & = & A_1(n) & & A_3(3n) & = & A_3(n) \\ A_1(3n+1) & = & A_3(n) & & A_3(3n+1) & = & A_1(n) \\ A_1(3n+2) & = & 0 & & A_3(3n+2) & = & 0 \end{array}$$

## Initial conditions:

$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

$$A_0(3n) = A_1(n)$$
  
$$A_0(3n+1) = A_1(n)$$

$$A_1(3n) = A_1(n)$$

$$A_0(3n+1) = A_1(n)$$
  $A_1(3n+1) = 2A_1(n)$   
 $A_0(3n+2) = A_0(n) + A_1(n)$   $A_1(3n+2) = 0$ 

Initial conditions:  $A_0(0) = A_1(0) = 1$ 

- The Catalan numbers C(n) modulo 3 can be described:
  - by an automaton with 4 states (plus a zero state)
  - by a linear 3-scheme with 2 states (Rowland–Zeilberger '14)







$$\begin{array}{rclrcl} A_0(3n) & = & A_1(n) & A_2(3n) & = & A_3(n) \\ A_0(3n+1) & = & A_1(n) & A_2(3n+1) & = & 0 \\ A_0(3n+2) & = & A_2(n) & A_2(3n+2) & = & A_2(n) \\ A_1(3n) & = & A_1(n) & A_3(3n) & = & A_3(n) \\ A_1(3n+1) & = & A_3(n) & A_3(3n+1) & = & A_1(n) \\ A_1(3n+2) & = & 0 & A_3(3n+2) & = & 0 \end{array}$$

Initial conditions:

$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

linear 3-scheme

$$A_0(3n) = A_1(n)$$
  $A_1(3n) = A_1(n)$   
 $A_0(3n+1) = A_1(n)$   $A_1(3n+1) = 2A_1(n)$   
 $A_0(3n+2) = A_0(n) + A_1(n)$   $A_1(3n+2) = 0$ 

Initial conditions:  $A_0(0) = A_1(0) = 1$ 

- The Catalan numbers C(n) modulo 3 can be described:
  - by an automaton with 4 states (plus a zero state)
  - by a **linear** 3-**scheme** with 2 states (Rowland-Zeilberger '14)







$$\begin{array}{rclrcl} A_0(3n) & = & A_1(n) & A_2(3n) & = & A_3(n) \\ A_0(3n+1) & = & A_1(n) & A_2(3n+1) & = & 0 \\ A_0(3n+2) & = & A_2(n) & A_2(3n+2) & = & A_2(n) \\ A_1(3n) & = & A_1(n) & A_3(3n) & = & A_3(n) \\ A_1(3n+1) & = & A_3(n) & A_3(3n+1) & = & A_1(n) \\ A_1(3n+2) & = & 0 & A_3(3n+2) & = & 0 \end{array}$$

Initial conditions:

$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

 $A_0(3n) = A_1(n)$  $A_0(3n+1) = A_1(n)$ 

$$A_1(n)$$

$$A_1(3n+1) = \frac{2A_1(n)}{2}$$

$$A_1(3n) = A_1(n)$$

$$A_0(3n+1) = A_1(n)$$
  $A_1(3n+1) = 0$   
 $A_0(3n+2) = A_0(n) + A_1(n)$   $A_1(3n+2) = 0$ 

$$A_1(3n+1)$$

$$2A_1(n)$$

$$(3n+2) = 0$$

Initial conditions:  $A_0(0) = A_1(0) = 1$ 

## Few-state linear p-schemes



## Lucas congruences:

$$A(pn+k) \equiv A(k)A(n) \pmod{p}$$

 $\begin{array}{l} \textbf{PROP} \\ \text{Henningsen} \\ \text{S} \ \ 22 \end{array} \\ \longleftrightarrow A(n) \ \ (\text{mod} \ \ p) \ \ \text{satisfies a single-state linear} \ \ p\text{-scheme (and } A(0)=1). \\ \end{array}$ 

## Few-state linear *p*-schemes

## Lucas congruences:

$$A(pn+k) \equiv A(k)A(n) \pmod{p}$$



## **Gessel-Lucas congruences:**

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}$$

**Note** Gessel–Lucas congruences yield explicit 2-state linear p-schemes.

## Conclusions

### THM S '24

The known sporadic sequences satisfy the **Gessel–Lucas congruences** 

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}.$$

- Gessel–Lucas congruences are instances of 2-state linear p-schemes.
- It would be of interest to study **few-state** *p***-schemes** systematically:
  - What kind of "generalized Lucas congruences" does one get?

• Lucas congruences correspond to single-state linear *p*-schemes.

• Which sequences satisfy such congruences? (mod p, mod  $p^2$ ?)

Partial results by Henningsen-S ('22) for certain constant term sequences.

- Are there interesting q-analogs?
  - q-Lucas congruences have been studied.
  - For k = 0, we get  $A(pn) \equiv A(n) \pmod{p^2}$ . q-analogs known for some sporadic sequences.

Olive '65. Désarménien '82

(Supercongruences!) S '19, Gorodetsky '19

# THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks



Frits Beukers, Wei-Lun Tsai, Dongxi Ye

Lucas congruences using modular forms

Bulletin of the London Mathematical Society, Vol. 57, 2025, p. 69-78



Joel Henningsen, Armin Straub

Generalized Lucas congruences and linear p-schemes

Advances in Applied Mathematics, Vol. 141, 2022, p. 1-20, #102409



Armin Straub

Gessel-Lucas congruences for sporadic sequences

Monatshefte für Mathematik, Vol. 203, 2024, p. 883-898