Numbers à la Apéry and their remarkable properties

Quebec-Vermont Number Theory Seminar

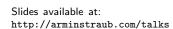
Armin Straub

October 9, 2025

University of South Alabama

CONJ $\pi, \zeta(3), \zeta(5), \ldots$ are algebraically independent over \mathbb{Q} .

- Apéry (1978): $\zeta(3)$ is irrational
- Open: $\zeta(5)$ is irrational
- Open: $\zeta(3)$ is transcendental
- Open: $\zeta(3)/\pi^3$ is irrational



Rough outline

- Introducing Apéry-like numbers
 - they are integer solutions to certain three-term recurrences
 - are all of them known?
- Apéry-like numbers have interesting properties
 - connection to modular forms
 - special p-adic properties
 - multivariate extensions
 - polynomial analogs (skipped today)
- A walk down memory lane: running into Apéry-like numbers
 - planar random walks
 - series for $1/\pi$
 - positivity of rational functions
 - counting points on algebraic varieties (skipped today)
 - . . .

The Riemann zeta function

• The Riemann zeta function is the analytic continuation of

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}.$$

Its zeros and values are fundamental, yet mysterious to this day.

CONJ If
$$\zeta(s)=0$$
 then $s\in\{-2,-4,\ldots\}$ or $\mathrm{Re}\,(s)=\frac{1}{2}.$

The Riemann zeta function

• The Riemann zeta function is the analytic continuation of

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}.$$

Its zeros and values are fundamental, yet mysterious to this day.

CONJ If $\zeta(s)=0$ then $s\in\{-2,-4,\ldots\}$ or $\mathrm{Re}\,(s)=\frac{1}{2}.$

$$\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \dots, \qquad \zeta(2n) = \frac{(-1)^{n+1} (2\pi)^{2n} B_{2n}}{2(2n)!}$$

CONJ The values $\zeta(3), \zeta(5), \zeta(7), \ldots$ are all transcendental.

The Riemann zeta function

The Riemann zeta function is the analytic continuation of

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}.$$

Its zeros and values are fundamental, yet mysterious to this day.

CONJ If $\zeta(s) = 0$ then $s \in \{-2, -4, ...\}$ or $\text{Re}(s) = \frac{1}{2}$.

$$\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \dots, \qquad \zeta(2n) = \frac{(-1)^{n+1} (2\pi)^{2n} B_{2n}}{2(2n)!}$$

$$\zeta(2n) = \frac{(-1)^{n+1} (2\pi)^{2n} B_{2n}}{2(2n)!}$$

CONJ The values $\zeta(3), \zeta(5), \zeta(7), \ldots$ are all transcendental.

THM
$$\zeta(3)$$
 is irrational.

Apéry numbers and the irrationality of $\zeta(3)$

The Apéry numbers

 $1, 5, 73, 1445, \ldots$

satisfy

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

 $A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$

THM Apéry '78
$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is irrational.

Apéry numbers and the irrationality of $\zeta(3)$

The Apéry numbers

 $1, 5, 73, 1445, \ldots$

satisfy

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

THM Apéry '78
$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is irrational.

The same recurrence is satisfied by the "near"-integers

$$B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}}\right).$$

 $A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$

Then, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

Apéry numbers and the irrationality of $\zeta(3)$

The Apéry numbers

 $1, 5, 73, 1445, \ldots$

satisfy

$$A(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$$
 sfy
$$(n+1)^3 u_{n+1} = (2n+1)(17n^2+17n+5)u_n - n^3 u_{n-1}.$$

THM Apéry '78
$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is irrational.

The same recurrence is satisfied by the "near"-integers

$$B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}}\right).$$

Then, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

After a few days of fruitless effort the specific problem was mentioned to Don Zagier (Bonn), and with irritating speed he showed that indeed the sequence satisfies the recurrence.

Alfred van der Poorten — A proof that Euler missed... (1979)

Zagier's search and Apéry-like numbers

• The Apéry numbers $B(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}$ for $\zeta(2)$ satisfy

$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}, (a,b,c) = (11,3,-1).$$

Q Beukers Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

Zagier's search and Apéry-like numbers

• The Apéry numbers $B(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}$ for $\zeta(2)$ satisfy

$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}, (a,b,c) = (11,3,-1).$$

Are there other tuples (a,b,c) for which the solution defined by $u_{-1}=0,\ u_0=1$ is integral?

• Apart from degenerate cases, Zagier found 6 sporadic integer solutions:

*	$igg C_*(n)$	*	$C_*(n)$
	$\sum_{k=0}^{n} \binom{n}{k}^{3}$	D	$\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{n}$
В	$\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k 3^{n-3k} \binom{n}{3k} \frac{(3k)!}{k!^3}$		$\sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} \binom{2(n-k)}{n-k}$
c	$\sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{k}$	F	$\sum_{k=0}^n (-1)^k 8^{n-k} \binom{n}{k} C_{\boldsymbol{A}}(k)$

Almkvist–Zudilin's search for sporadic sequences of order 3

$$(a,b,c) \qquad A(n) \qquad \underbrace{(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}}_{\text{Apéry numbers}}$$

$$(17,5,1) \qquad \sum_k \binom{n}{k}^2 \binom{n+k}{n}^2 \qquad \text{Apéry numbers}$$

$$(12,4,16) \qquad \sum_k \binom{n}{k}^2 \binom{2k}{n}^2 \qquad \text{Kauers-Zeilberger diagonal}$$

$$(10,4,64) \qquad \sum_k \binom{n}{k}^2 \binom{2k}{k} \binom{2(n-k)}{n-k} \qquad \text{Domb numbers}$$

$$\begin{array}{c|c}
(7,3,81) & \sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}} \\
\hline
(11,5,125) & \sum_{k} (-1)^{k} \binom{n}{k}^{3} \binom{4n-5k}{3n} \\
\end{array}$$

$$(9,3,-27) \qquad \sum_{k} \binom{n}{k} \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$$

Modularity of Apéry-like numbers

• Beukers ('87) observed that the Apéry numbers

 $1, 5, 73, 1145, \dots$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$

satisfy:

$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \\ _{1+5q+13q^2+23q^3+O(q^4)} \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}}$$

Modularity of Apéry-like numbers

• Beukers ('87) observed that the Apéry numbers

 $1, 5, 73, 1145, \dots$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$

satisfy:

$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \\ {}_{1+5q+13q^2+23q^3+O(q^4)} \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}}$$

FACT Not at all evidently, such a modular parametrization exists for all known Apéry-like numbers!

- Context: f(au) modular form of weight k
 - $x(\tau)$ modular function
 - y(x) such that $y(x(\tau)) = f(\tau)$

Then y(x) satisfies a linear differential equation of order k+1.

 $1 + 5q + 13q^2 + 23q^3 + O(q^4)$

$$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n$$
 modular form modular function

$$q - 12q^2 + 66q^3 + O(q^4) q = e^{2\pi i q}$$

 $1 + 5q + 13q^2 + 23q^3 + O(q^4)$

$$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n$$
 modular form modular function

 $q - 12q^2 + 66q^3 + O(q^4)$

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$

 n_i are the p-adic digits of n

$$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n$$
 modular form
$$\frac{\eta^7(2\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}$$

 $a - 12a^2 + 66a^3 + O(a^4)$

$$1 + 5q + 13q^2 + 23q^3 + O(q^4)$$

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$

 n_i are the p-adic digits of n

THM

Gessel '82

$$A(p^r m) \equiv A(p^{r-1} m) \pmod{p^{3r}}$$

 $1 + 5q + 13q^2 + 23q^3 + O(q^4)$

$$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n$$
 modular form modular function

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$

 n_i are the p-adic digits of n

$$A(p^r m) \equiv A(p^{r-1} m) \pmod{p^{3r}}$$

$$A\left(\frac{p-1}{2}\right) \equiv c(p) \pmod{p^2}$$

$$f(\tau)=\sum_{n\geqslant 1}c(n)q^n=\eta(2\tau)^4\eta(4\tau)^4\in S_4(\Gamma_0(8))$$

 $q - 12q^2 + 66q^3 + O(q^4)$

 $1 + 5a + 13a^2 + 23a^3 + O(a^4)$

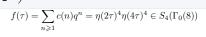
$$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n$$
 modular form modular function

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$

 n_i are the p-adic digits of n

$$A(p^r m) \equiv A(p^{r-1} m) \pmod{p^{3r}}$$

$$A\left(\frac{p-1}{2}\right) \equiv c(p) \pmod{p^2}$$



 $q - 12q^2 + 66q^3 + O(q^4)$

$$A\left(-\frac{1}{2}\right) = \frac{16}{\pi^2}L(f,2)$$

• These extend to all known sporadic (Apéry-like) numbers!!!??

? = partially known

Short random walks

based on joint work(s) with:

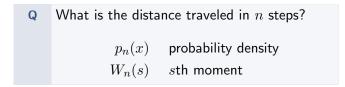
Jon Borwein (U. Newcastle, AU) (K.U.Leuven, BE)

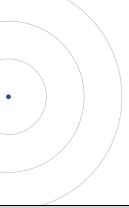
Dirk Nuyens

James Wan (SUTD, SG)

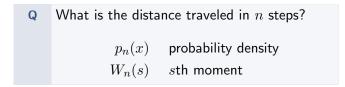
Wadim Zudilin (Radboud U., NL)

n steps in the plane (length 1, random direction)

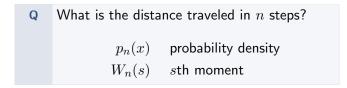


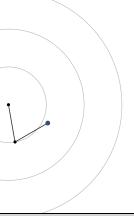


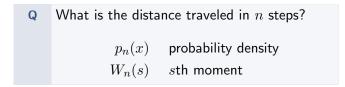
n steps in the plane $_{\rm (length\ 1,\ random\ direction)}$

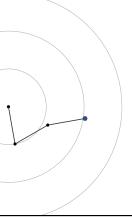


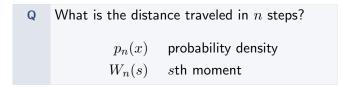
n steps in the plane $_{\rm (length\ 1,\ random\ direction)}$

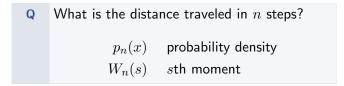


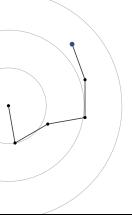


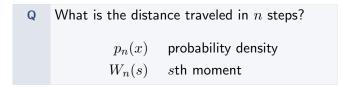


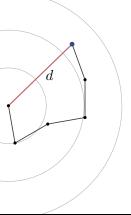




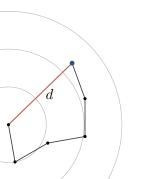








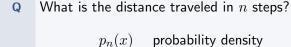
n steps in the plane (length 1, random direction)



Q What is the distance traveled in n steps? $p_n(x) \quad \text{probability density} \\ W_n(s) \quad \text{sth moment}$

 $W_2(1) = \frac{4}{\pi}$

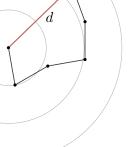
n steps in the plane (length 1, random direction)



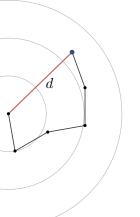
EG

$$W_n(s)$$
 sth moment

 $W_2(1) = \frac{4}{\pi}$



n steps in the plane (length 1, random direction)



Q What is the distance traveled in n steps?

$$p_n(x)$$
 probability density $W_n(s)$ sth moment

EG

$$W_2(1) = \frac{4}{\pi}$$

• Karl Pearson famously asked for $p_n(x)$ in 1905, coining the term random walk.

THM Rayleigh, 1905

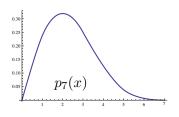
$$p_n(x) \approx \frac{2x}{n} e^{-x^2/n}$$

 $\quad \text{for large } n$

Long random walks

$$p_n(x) \approx \frac{2x}{n} e^{-x^2/n}$$

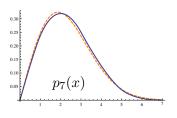
 $\quad \text{for large } n$



$$W_n(1) \approx \sqrt{n\pi/2}$$

Long random walks

$$p_n(x) \approx \frac{2x}{n} e^{-x^2/n}$$



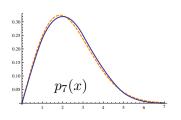
$$W_n(1) \approx \sqrt{n\pi/2}$$

for large n

Long random walks

$$p_n(x) \approx \frac{2x}{n} e^{-x^2/n}$$

 $\quad \text{for large } n$

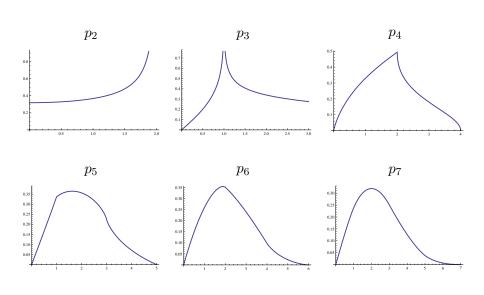


$$W_n(1) \approx \sqrt{n\pi}/2$$

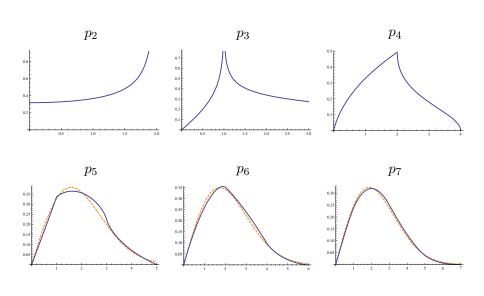
The lesson of Lord Rayleigh's solution is that in open country the most probable place to find a drunken man who is at all capable of keeping on his feet is somewhere near his starting point!

Karl Pearson, 1905

Densities of short walks



Densities of short walks



Classical results on the densities

$$p_2(x) = \frac{2}{\pi\sqrt{4-x^2}}$$
 easy
$$p_3(x) = \operatorname{Re}\left(\frac{\sqrt{x}}{\pi^2}K\left(\sqrt{\frac{(x+1)^3(3-x)}{16x}}\right)\right)$$
 G. J. Bennett
$$p_4(x) = ??$$

$$\vdots$$

$$p_n(x) = \int_0^\infty xtJ_0(xt)J_0^n(t)\,\mathrm{d}t$$
 J. C. Kluyver

Numbers à la Apéry and their remarkable properties

J. C. Kluyver 1906

Classical results on the densities

$$p_2(x) = \frac{2}{\pi\sqrt{4-x^2}}$$

$$p_3(x) = \operatorname{Re}\left(\frac{\sqrt{x}}{\pi^2}K\left(\sqrt{\frac{(x+1)^3(3-x)}{16x}}\right)\right)$$

$$p_4(x) = ??$$

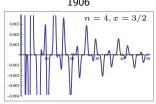
$$\vdots$$

easy

G. J. Bennett

$$p_n(x) = \int_0^\infty xt J_0(xt) J_0^n(t) dt$$

J. C. Kluyver



$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi ix} + e^{2\pi iy} \right| dx dy = ?$$

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$
$$= \int_0^1 \left| 1 + e^{2\pi i y} \right| dy$$

$$W_{2}(1) = \int_{0}^{1} \int_{0}^{1} \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$

$$|1 + e^{2\pi i y}|$$

$$= |1 + (\cos \pi y + i \sin \pi y)^{2}|$$

$$= 2\cos(\pi y)$$

$$= \int_{0}^{1} 1 + e^{2\pi i y} | dy$$

$$= \int_{0}^{1} 2\cos(\pi y) dy$$

$$W_{2}(1) = \int_{0}^{1} \int_{0}^{1} \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$

$$|1 + e^{2\pi i y}|$$

$$= |1 + (\cos \pi y + i \sin \pi y)^{2}|$$

$$= 2\cos(\pi y)$$

$$= \int_{0}^{1} 1 + e^{2\pi i y} | dy$$

$$= \int_{0}^{1} 2\cos(\pi y) dy$$

$$= \frac{4}{\pi} \approx 1.27324$$

The average distance in two steps:

$$W_2(1) = \int_0^1 \int_0^1 |e^{2\pi i x} + e^{2\pi i y}| \, dx dy = ?$$

$$|1 + e^{2\pi i y}|$$

$$= |1 + (\cos \pi y + i \sin \pi y)^2|$$

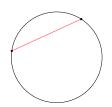
$$= 2\cos(\pi y)$$

$$= \int_0^1 |1 + e^{2\pi i y}| \, dy$$

$$= \int_0^1 2\cos(\pi y) \, dy$$

$$= \frac{4}{\pi} \approx 1.27324$$

 This is the average length of a random arc on a unit circle.



DEF

The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

• On a desktop:

$$W_3(1) \approx 1.57459723755189365749$$

 $W_4(1) \approx 1.79909248$
 $W_5(1) \approx 2.00816$

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}x$$

• On a desktop:

$$W_3(1) \approx 1.57459723755189365749$$

$$W_4(1) \approx 1.79909248$$

$$W_5(1) \approx 2.00816$$

On a supercomputer:

David Bailey, Lawrence Berkeley National Laboratory (256 cores)

$$W_5(1) \approx 2.0081618$$

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

• On a desktop:

$$W_3(1) \approx 1.57459723755189365749$$

 $W_4(1) \approx 1.79909248$
 $W_5(1) \approx 2.00816$

On a supercomputer:

David Bailey, Lawrence Berkeley National Laboratory (256 cores)

$$W_5(1) \approx 2.0081618$$

• Hard to evaluate numerically to high precision. Monte-Carlo integration gives approximations with an asymptotic error of $O(1/\sqrt{N})$ where N is the number of sample points.

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

n	s = 1	s=2	s=3	s=4	s=5	s = 6	s = 7
2	1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	1.575	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\boldsymbol{x}$$

n	s=1	s=2	s=3	s=4	s=5	s = 6	s = 7
2	_1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	/ 1.575	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.
		'	'	'		'	'
$W_2(1$	$(1) = \frac{4}{\pi}$						

DEF The sth moment
$$W_n(s)$$
 of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

DEF The sth moment
$$W_n(s)$$
 of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

The even moments

n	s = 0	s=2	s=4	s = 6	s = 8	s = 10	OEIS
2	1	2	6	20	70	252	A000984
3	1	3	15	93	639	4653	A002893
4	1	4	28	256	2716	31504	A002895
5	1	5	45	545	7885	127905	A169714
6	1	6	66	996	18306	384156	A169715

EG

$$W_3(2k) = \sum_{j=0}^k \binom{k}{j}^2 \binom{2j}{j}$$

Apéry-like

$$W_4(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} {2(k-j) \choose k-j}$$

Domb numbers

The even moments

n	s = 0	s=2	s=4	s = 6	s = 8	s = 10	OEIS
2	1	2	6	20	70	252	A000984
3	1	3	15	93	639	4653	A002893
4	1	4	28	256	2716	31504	A002895
5	1	5	45	545	7885	127905	A169714
6	1	6	66	996	18306	384156	A169715

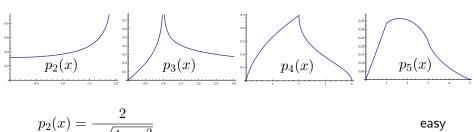
EG

$$W_3(2k)=\sum_{j=0}^k \binom{k}{j}^2 \binom{2j}{j}$$
 Apéry-like $W_4(2k)=\sum_{j=0}^k \binom{k}{j}^2 \binom{2j}{j} \binom{2(k-j)}{k-j}$ Domb numbers

THM Borwein-Nuyens-S-Wan, 2010

$$W_3(1) = \frac{3}{16} \frac{2^{1/3}}{\pi^4} \Gamma^6 \left(\frac{1}{3}\right) + \frac{27}{4} \frac{2^{2/3}}{\pi^4} \Gamma^6 \left(\frac{2}{3}\right)$$

Densities of random walks



$$p_2(x) = \frac{2}{\pi\sqrt{4 - x^2}}$$

$$p_3(x) = \frac{2\sqrt{3}}{\pi} \frac{x}{(3+x^2)^2} {}_{2}F_{1} \left(\frac{\frac{1}{3}, \frac{2}{3}}{1} \left| \frac{x^2 (9-x^2)^2}{(3+x^2)^3} \right) \right)$$

$$p_4(x) = \frac{2}{\pi^2} \frac{\sqrt{16 - x^2}}{x} \text{ Re } _3F_2\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{\frac{5}{6}, \frac{7}{6}} \middle| \frac{\left(16 - x^2\right)^3}{108x^4}\right)$$

$$p_5'(0) = \frac{\sqrt{5}}{40\pi^4} \Gamma(\frac{1}{15}) \Gamma(\frac{2}{15}) \Gamma(\frac{4}{15}) \Gamma(\frac{8}{15}) \approx 0.32993$$

DEF

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

• $W_n(s) = \int_{[0,1]^n} \left| e^{2\pi i t_1} + \dots + e^{2\pi i t_n} \right|^s dt$

DEI

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

• $W_n(s) = \int_{[0,1]^n} \left| e^{2\pi i t_1} + \dots + e^{2\pi i t_n} \right|^s dt$

EG

$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

DEF

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

• $W_n(s) = \int_{[0,1]_n} \left| e^{2\pi i t_1} + \ldots + e^{2\pi i t_n} \right|^s dt$

EG

$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

EG Smvth. 1981

$$\mu(1+x+y) = \frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2) = W_3'(0)$$

$$1+x+y+z) = \frac{7}{2}\frac{\zeta(3)}{2} = W_4'(0)$$

$$\mu(1+x+y+z) = \frac{7}{2} \frac{\zeta(3)}{\pi^2} \qquad = W_4'(0)$$

DEF

(Logarithmic) Mahler measure of
$$p(x_1, \ldots, x_n)$$
:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

•
$$W_n(s) = \int_{[0,1]^n} \left| e^{2\pi i t_1} + \dots + e^{2\pi i t_n} \right|^s dt$$

EG

$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

EG Smvth. 1981

$$\mu(1+x+y) = \frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2) = W_3'(0)$$

$$\mu(1+x+y+z) = \frac{7}{2} \frac{\zeta(3)}{\pi^2} = W_4'(0)$$

CONT Rodriguez-Villegas

$$W_5'(0) \stackrel{?}{=} \left(\frac{\sqrt{-15}}{2\pi i}\right)^5 3! L(g_{15}, 4) = -L'(g_{15}, -1)$$

$$g_{15} = \eta(3\tau)^3 \eta(5\tau)^3 + \eta(\tau)^3 \eta(15\tau)^3$$

$$W_6'(0) \stackrel{?}{=} 8\left(\frac{\sqrt{-6}}{2\pi i}\right)^6 4! L(g_6, 5) = -8L'(g_6, -1)$$

 $q_6 = \eta(\tau)^2 \eta(2\tau)^2 \eta(3\tau)^2 \eta(6\tau)^2$

Ramanujan-type series for $1/\pi$

$$\frac{4}{\pi} = 1 + \frac{7}{4} \left(\frac{1}{2}\right)^3 + \frac{13}{4^2} \left(\frac{1.3}{2.4}\right)^3 + \frac{19}{4^3} \left(\frac{1.3.5}{2.4.6}\right)^3 + \dots$$

based on joint work with:

Mathew Rogers (Université de Montréal, now: data scientist)

Ramanujan's series for $1/\pi$

$$\frac{4}{\pi} = 1 + \frac{7}{4} \left(\frac{1}{2}\right)^3 + \frac{13}{4^2} \left(\frac{1.3}{2.4}\right)^3 + \frac{19}{4^3} \left(\frac{1.3.5}{2.4.6}\right)^3 + \dots$$

$$= \sum_{n=0}^{\infty} \frac{(1/2)_n^3}{n!^3} (6n+1) \frac{1}{4^n}$$

$$\frac{8}{\pi} = \sum_{n=0}^{\infty} \frac{(1/2)_n^3}{n!^3} (42n+5) \frac{1}{2^{6n}}$$

 Starred in High School Musical, a 2006 Disney production

Srinivasa Ramanujan

Modular equations and approximations to π Quart. J. Math., Vol. 45, p. 350–372, 1914

Ramanujan's series for $1/\pi$

$$\frac{4}{\pi} = 1 + \frac{7}{4} \left(\frac{1}{2}\right)^3 + \frac{13}{4^2} \left(\frac{1.3}{2.4}\right)^3 + \frac{19}{4^3} \left(\frac{1.3.5}{2.4.6}\right)^3 + \dots$$

$$= \sum_{n=0}^{\infty} \frac{(1/2)_n^3}{n!^3} (6n+1) \frac{1}{4^n}$$

$$\frac{16}{\pi} = \sum_{n=0}^{\infty} \frac{(1/2)_n^3}{n!^3} (42n+5) \frac{1}{2^{6n}}$$

 Starred in High School Musical, a 2006 Disney production

Srinivasa Ramanujan

Modular equations and approximations to π Quart. J. Math., Vol. 45, p. 350–372, 1914

Another one of Ramanujan's series

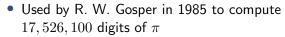
$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{n!^4} \frac{1103 + 26390n}{396^{4n}}$$

• Used by R. W. Gosper in 1985 to compute 17, 526, 100 digits of π

Correctness of first 3 million digits showed that the series sums to $1/\pi$ in the first place.

Another one of Ramanujan's series

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{n!^4} \frac{1103 + 26390n}{396^{4n}}$$



Correctness of first 3 million digits showed that the series sums to $1/\pi$ in the first place.

• First proof of all of Ramanujan's 17 series for $1/\pi$ by Borwein brothers

Jonathan M. Borwein and Peter B. Borwein

Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity Wiley, 1987

Apéry-like numbers and series for $1/\pi$

• Sato observed that series for $\frac{1}{\pi}$ can be built from Apéry-like numbers:

For the Domb numbers $D(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{k} \binom{2(n-k)}{n-k}$,

$$\frac{8}{\sqrt{3}\pi} = \sum_{n=0}^{\infty} D(n) \frac{5n+1}{2^{6n}}.$$

Apéry-like numbers and series for $1/\pi$

• Sato observed that series for $\frac{1}{\pi}$ can be built from Apéry-like numbers:

For the Domb numbers
$$D(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{k} \binom{2(n-k)}{n-k}$$
,

$$\frac{8}{\sqrt{3}\pi} = \sum_{n=0}^{\infty} D(n) \frac{5n+1}{2^{6n}}.$$

Sun offered a \$520 bounty for a proof the following series:

$$\frac{520}{\pi} = \sum_{n=0}^{\infty} \frac{1054n + 233}{480^n} {2n \choose n} \sum_{k=0}^{n} {n \choose k}^2 {2k \choose n} (-1)^k 8^{2k-n}$$

A brief guide to proving series for $1/\pi$

• Suppose we have a sequence a_n with modular parametrization

$$\sum_{n=0}^{\infty} a_n \underbrace{x(\tau)^n}_{\substack{\text{modular} \\ \text{function}}} = \underbrace{f(\tau)}_{\substack{\text{modular} \\ \text{form}}}.$$

Then:

$$\sum_{n=0}^{\infty} a_n (A + Bn) x(\tau)^n = Af(\tau) + B \frac{x(\tau)}{x'(\tau)} f'(\tau)$$
$$\sum_{n=0}^{\infty} \frac{(1/2)_n^3}{n!^3} (42n + 5) \frac{1}{2^{6n}} = \frac{16}{\pi}$$

A brief guide to proving series for $1/\pi$

• Suppose we have a sequence a_n with modular parametrization

$$\sum_{n=0}^{\infty} a_n \underbrace{x(\tau)^n}_{\substack{\text{modular} \\ \text{function}}} = \underbrace{f(\tau)}_{\substack{\text{modular} \\ \text{form}}}.$$

Then:

$$\sum_{n=0}^{\infty} a_n (A + Bn) x(\tau)^n = Af(\tau) + B \frac{x(\tau)}{x'(\tau)} f'(\tau)$$
$$\sum_{n=0}^{\infty} \frac{(1/2)_n^3}{n!^3} (42n + 5) \frac{1}{2^{6n}} = \frac{16}{\pi}$$

FACT

- For $\tau \in \mathbb{Q}(\sqrt{-d})$, $x(\tau)$ is an algebraic number.
- $f'(\tau)$ is a quasimodular form.
- Prototypical $E_2(\tau)$ satisfies $\tau^{-2}E_2(-\frac{1}{\tau})-E_2(\tau)=\frac{6}{\pi i \tau}$.
- These are the main ingredients for series for $1/\pi$. Mix and stir.

$$\frac{1}{1 - (x + y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw}$$

based on joint work with:

Wadim Zudilin (Radboud U., NL)

A rational function

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a_{n_1, \dots, n_d} x_1^{n_1} \cdots x_d^{n_d}$$

is **positive** if $a_{n_1,...,n_d} > 0$ for all indices.

EG The following rational functions are positive.

$$S(x,y,z) = \frac{1}{1-(x+y+z)+\frac{3}{4}(xy+yz+zx)} \\ S(x,y,z) = \frac{1}{1-(x+y+z)+\frac{3}{4}(xy+yz+zx)} \\ A(x,y,z) = \frac{1}{1-(x+y+z)+4xyz} \\ S(x) \\ Askey-Gasper '77 \\ Koornwinder '78 \\ Ismail-Tamhankar '79 \\ Gillis-Reznick-Zeilberger '83 \\ Smail-Tamhankar '84 \\ Smail-T$$

Both functions are on the boundary of positivity.

A rational function

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a_{n_1, \dots, n_d} x_1^{n_1} \cdots x_d^{n_d}$$

is **positive** if $a_{n_1,...,n_d} > 0$ for all indices.

EG The following rational functions are positive.

$$S(x,y,z) = \frac{1}{1-(x+y+z)+\frac{3}{4}(xy+yz+zx)} \\ A(x,y,z) = \frac{1}{1-(x+y+z)+4xyz} \\ A(x,y,z) = \frac{1}{1-(x+y+z)+4xyz} \\ Szegó '33 \\ Askey-Gasper '77 \\ Askey-Gasper '77 \\ Koornwinder '78 \\ Ismail-Tamhankar '79 \\ Gillis-Reznick-Zeilberger '83 \\ Gillis-Reznick$$

- Both functions are on the boundary of positivity.
- The diagonal coefficients of A are the **Franel numbers** $\sum_{k=0}^{n} {n \choose k}^3$.

CONJ The following rational function is positive:

$$\frac{1}{1-(x+y+z+w)+2(yzw+xzw+xyw+xyz)+4xyzw}.$$

Would imply conjectured positivity of Lewy–Askey function

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+\ldots+(1-z)(1-w)}.$$

Non-negativity proved by a very general result of Scott-Sokal ('14)

Kauers-Zeilberger 2008

CONJ The following rational function is positive:

 $\overline{1 - (x + y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw}$

Would imply conjectured positivity of Lewy–Askey function

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+\ldots+(1-z)(1-w)}.$$

Non-negativity proved by a very general result of Scott-Sokal ('14)

S-Zudilin 2013

PROP The Kauers–Zeilberger function has diagonal coefficients

$$d_n = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{n}^2.$$

- Consider rational functions $F=1/p(x_1,\ldots,x_d)$ with p a symmetric polynomial, linear in each variable.
 - Under what condition(s) is the positivity of F implied by the positivity of its diagonal?

EG

- $\frac{1}{1-(x+y)}$ is positive.
- $\frac{1}{1+x+y}$ has positive diagonal but is not positive.

- Consider rational functions $F=1/p(x_1,\dots,x_d)$ with p a symmetric polynomial, linear in each variable.
 - Under what condition(s) is the positivity of F implied by the positivity of its diagonal?

EG

- $\frac{1}{1-(x+y)}$ is positive.
- $\frac{1}{1+x+y}$ has positive diagonal but is not positive.
- $\frac{1}{1+x}$ is not positive.

Positivity of rational functions

- Consider rational functions $F=1/p(x_1,\dots,x_d)$ with p a symmetric polynomial, linear in each variable.
 - Under what condition(s) is the positivity of F implied by the positivity of its diagonal?

EG

- $\frac{1}{1-(x+y)}$ is positive.
- $\frac{1}{1+x+y}$ has positive diagonal but is not positive.
- $\frac{1}{1+x}$ is not positive.
- Q F positive \iff diagonal of F and $F|_{x_d=0}$ are positive?

Positivity of rational functions

- Consider rational functions $F=1/p(x_1,\ldots,x_d)$ with p a symmetric polynomial, linear in each variable.
 - Under what condition(s) is the positivity of F implied by the positivity of its diagonal?
 - **EG** $\frac{1}{1-(x+y)}$ is positive.
 - $\frac{1}{1+x+y}$ has positive diagonal but is not positive.
 - $\frac{1}{1+x}$ is not positive.
 - $\mathbf{Q} \quad F \text{ positive} \Longleftrightarrow \text{diagonal of } F \text{ and } F|_{x_d=0} \text{ are positive?}$

$$F(x,y) = \frac{1}{1 + c_1(x+y) + c_2xy}$$
 is positive

 \iff diagonal of F and $F|_{y=0}$ are positive

Diagonal and constant term representations

$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 = \operatorname{diag} \frac{1}{(1-x-y)(1-z-w) - xyzw}$$
$$= \operatorname{ct} \left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz} \right)^n \right]$$

based on joint work with:

Alin Bostan (Université Paris-Saclay)

Sergey Yurkevich (University of Vienna)

$$\mathop{\mathrm{EG}}_{\underset{\mathrm{term}}{\text{constant}}} \; \binom{2n}{n} = [x^n] \; (1+x)^{2n}$$

$$\begin{array}{l} \mathbf{EG} \\ \text{constant} \\ \text{term} \end{array} \begin{pmatrix} 2n \\ n \end{pmatrix} = [x^n] \; (1+x)^{2n} = \operatorname{ct} \left[\mathbf{P}^n \right], \qquad \mathbf{P}(x) = \frac{(1+x)^2}{x}.$$

$$\mathbf{P}(x) = \frac{(1+x)^2}{x}$$

$$\mathbf{P}(x) = \frac{(1+x)^2}{x}$$

$$\sum_{n_1,\ldots,n_d\geqslant 0} \alpha$$

$$\sum_{n_1,\dots,n_d\geqslant 0} \left|\begin{array}{c} a(n_1,\dots,n_d) \ x_1^{n_1}\cdots x_d^{n_d} \end{array}\right|$$
 multivariate series

$$a(n,\ldots,n)$$

diagonal

EG diagonal
$$\binom{2n}{n}$$
 is the diagonal of $\frac{1}{1-x-y}=\sum_{k=0}^{\infty}(x+y)^k$
$$=\sum_{n\,m\geq 0}\binom{m+n}{m}x^my^n.$$

$$\sum_{n_1,\dots,n_d\geqslant 0} \left| \begin{array}{c} a(n_1,\dots,n_d) \ x_1^{n_1} \cdots x_d^{n_d} \end{array} \right|$$
 multivariate series

 $a(n,\ldots,n)$

diagonal

$$P(x) = \frac{(1+x)^2}{x}$$

diagonal
$$\binom{2n}{n}$$
 is the diagonal of $\frac{1}{1-x-y}=\sum_{k=0}^{\infty}(x+y)^k$
$$=\sum_{n,m\geq 0}\binom{m+n}{m}x^my^n.$$

$$\sum_{n_1,\dots,n_d\geqslant 0} |$$

 $\sum_{\dots,n_d\geqslant 0} a(n_1,\dots,n_d) x_1^{n_1} \cdots x_d^{n_d}$

 $a(n,\ldots,n)$

multivariate series

diagonal

Diagonals of rational functions Zeilberger, are P-recursive.

HW

Constant terms are always diagonals.

Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m},1-\frac{1}{m};1;x\right), \qquad m \in \{2,3,4,6\}.$$

(m = 2: classical; m = 3, 4, 6: alternative bases)

LEM Bostan, S. Yurkevich
$$A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2}$$
 where $m \geqslant 2$ is an integer.

Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m},1-\frac{1}{m};1;x\right), \qquad m \in \{2,3,4,6\}.$$

(m = 2: classical; m = 3, 4, 6: alternative bases)

1 $A_m(n)$ is a **diagonal** for all $m \ge 2$.

Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m},1-\frac{1}{m};1;x\right), \qquad m \in \{2,3,4,6\}.$$

(m = 2: classical; m = 3, 4, 6: alternative bases)

- **1** $A_m(n)$ is a **diagonal** for all $m \ge 2$.
- 2 $A_m(n)$ is a **constant term** if and only if $m \in \{2, 3, 4, 6\}$.

Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m},1-\frac{1}{m};1;x\right), \qquad m \in \{2,3,4,6\}.$$

(m = 2: classical; m = 3, 4, 6: alternative bases)

- **1** $A_m(n)$ is a **diagonal** for all $m \ge 2$.
- 2 $A_m(n)$ is a **constant term** if and only if $m \in \{2, 3, 4, 6\}$.

$$\mathbf{EG}$$
 $n=3$

$${\mathsf{EG} \atop {m=3}} \ 3^{3n} A_3(n) = \frac{(3n)!}{n!^3} = \binom{2n}{n} \binom{3n}{n} = \operatorname{ct} \left[\left(\frac{(1+x)^2 (1+y)^3}{xy} \right)^n \right]$$

 $\mathop{\mathbf{EG}}_{m=5}$ $5^{3n}A_5(n)=1,20,1350,115500,10972500,\dots$ is an integer sequence and diagonal but not a constant term.

Homework

Such classifications are generally not straightforward!

EG open! Is the following hypergeometric sequence a constant term?

$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = \binom{8n}{4n} \binom{4n}{n} \binom{2n}{n}^{-1}$$

$$A(n) = 1,140,60060,29745716,15628090140,... = \text{ct} \left[\left(\frac{(1+x)^8}{(1-x)^2 x^3} \right)^n \right]$$

(This is algebraic and therefore a diagonal.)

not a Laurent polynomial so doesn't count as constant term today

Numbers à la Apéry and their remarkable properties

Homework

Such classifications are generally not straightforward!

EG open!

Is the following hypergeometric sequence a constant term?

$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = \binom{8n}{4n} \binom{4n}{n} \binom{2n}{n}^{-1}$$

$$A(n) = 1,140,60060,29745716,15628090140,... = \operatorname{ct}\left[\left(\frac{(1+x)^8}{(1-x)^2x^3}\right)^n\right]$$
(This is algebraic and therefore a diagonal) not a Laurent polynomial so doesn't

(This is algebraic and therefore a diagonal.)

count as **constant term** today

EG open!

Is the following hypergeometric sequence a diagonal?

$$A(n) = \frac{\left(\frac{1}{9}\right)_n \left(\frac{4}{9}\right)_n \left(\frac{5}{9}\right)_n}{n!^2 \left(\frac{1}{3}\right)_n}$$

 $3^{6n}A(n) = 1,60,20475,9373650,4881796920,...$

EG

Diagonals of rational functions

• F(x) = C-finite sequences

Diagonals of rational functions **EG**

- $\begin{array}{lll} \bullet \ F(x) & = & C\text{-finite sequences} \\ \bullet \ F(x,y) & = & \text{sequences with algebraic GF} \end{array}$

(Furstenberg '67)

To see the latter, express the diagonal as $\frac{1}{2\pi i} \int_{|x|=s} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d}x}{x}$.

EG Diagonals of rational functions

• F(x) = C-finite sequences

• F(x,y) = sequences with algebraic GF

(Furstenberg '67)

To see the latter, express the diagonal as $\frac{1}{2\pi i} \int_{|x|=z} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d}x}{x}$.

 THN Bostan. Lairez Salvy '17 Diagonals of rational functions (multiple) binomial sums

EG Diagonals of rational functions

- F(x) = C-finite sequences
- F(x,y) = sequences with algebraic GF

(Furstenberg '67)

To see the latter, express the diagonal as $\frac{1}{2\pi i} \int_{|x|=z} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d}x}{x}$.

 THN Bostan. Lairez Salvy '17

Diagonals of rational functions (multiple) binomial sums

Diagonals of rational functions over Q

globally bounded, P-recursive sequences

(i.e. $cd^n a_n \in \mathbb{Z}$ for $c, d \in \mathbb{Z}$ and at most exponential growth)

Application: Integrality of *P*-recursive sequences

• A sequence is P-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

EG The **Apéry numbers** A(n) satisfy A(0) = 1, A(1) = 5 and

$$(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$$

 $\zeta(3)$ is irrational!

OPEN Criterion/algorithm for classifying integrality of P-recursive sequences?

Application: Integrality of P-recursive sequences

ullet A sequence is P-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

The **Apéry numbers** A(n) satisfy A(0) = 1, A(1) = 5 and EG

$$(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$$

 $\zeta(3)$ is irrational!

OPEN Criterion/algorithm for classifying integrality of P-recursive sequences?

Christol

CONJ Every *P*-recursive integer sequence of at most exponential growth is the diagonal of a rational function.

EG S 2014 The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-xuzw}$.

Applications: asymptotics, congruences, geometry, . . .

EG S 2014 The Apéry numbers are the diagonal of
$$\frac{1}{(1-x-y)(1-z-w)-xyzw}$$
.

- Well-developed theory of multivariate asymptotics
- OGFs of such diagonals are algebraic modulo p^r . Automatically leads to congruences such as

$$A(n) \equiv \begin{cases} 1 & (\text{mod } 8), & \text{if } n \text{ even,} \\ 5 & (\text{mod } 8), & \text{if } n \text{ odd.} \end{cases}$$

e.g., Pemantle-Wilson

Furstenberg, Deligne '67, '84

Chowla-Cowles-Cowles '80 Rowland-Yassawi '13 Rowland-Zeilberger '14

Applications: asymptotics, congruences, geometry, ...

EG S 2014 The Apéry numbers are the diagonal of
$$\frac{1}{(1-x-y)(1-z-w)-xyzw}$$
.

- Well-developed theory of multivariate asymptotics
- OGFs of such diagonals are algebraic modulo p^r.
 Automatically leads to congruences such as

$$A(n) \equiv \begin{cases} 1 & (\text{mod } 8), & \text{if } n \text{ even,} \\ 5 & (\text{mod } 8), & \text{if } n \text{ odd.} \end{cases}$$

e.g., Pemantle-Wilson

Furstenberg, Deligne '67, '84

Chowla-Cowles-Cowles '80 Rowland-Yassawi '13 Rowland-Zeilberger '14

Univariate generating function:

$$\sum_{n \ge 0} A(n)t^n = \frac{17 - t - z}{4\sqrt{2}(1 + t + z)^{3/2}} \, {}_3F_2\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1} \left| -\frac{1024t}{(1 - t + z)^4}\right), \quad z = \sqrt{1 - 34t + t^2}.$$

Applications: asymptotics, congruences, geometry, ...

EG S 2014 The Apéry numbers are the diagonal of
$$\frac{1}{(1-x-y)(1-z-w)-xyzw}$$
.

Well-developed theory of multivariate asymptotics

e.g., Pemantle–Wilson

• OGFs of such diagonals are algebraic modulo p^r . Automatically leads to **congruences** such as

Furstenberg, Deligne '67, '84

Chowla–Cowles–Cowles '80

$$A(n) \equiv \begin{cases} 1 & (\text{mod } 8), & \text{if } n \text{ even,} \\ 5 & (\text{mod } 8), & \text{if } n \text{ odd.} \end{cases}$$

Rowland-Yassawi '13 Rowland-Zeilberger '14

Univariate generating function:

$$\sum_{n\geqslant 0} A(n)t^n = \frac{17 - t - z}{4\sqrt{2}(1 + t + z)^{3/2}} \, {}_{3}F_2\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1 \end{array} \middle| -\frac{1024t}{(1 - t + z)^4}\right), \quad z = \sqrt{1 - 34t + t^2}.$$

$$\underbrace{ \text{EG}}_{\substack{\text{constant term} \\ \text{term}}} A(n) = \operatorname{ct} \left[L^n \right] \text{ with } L = \frac{(1+y)(1+z)(1+x+z)(1+x+z+yz)}{xyz}$$

• $F_A(t) = \sum_{n \ge 0} A(n)t^n = \operatorname{ct}\left[\frac{1}{1-tL}\right]$ is a period function.

The DE satisfied by $F_A(t)$ is the **Picard–Fuchs DE** for the family $V_t: 1-tL=0$.

Generically, V_t is birationally equivalent to a K3 surface with Picard number 19.

(Beukers-Peters '84)

• c(n) is a constant term if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ Rowland-Zeilberger '14 for Laurent polynomials $P, Q \in \mathbb{Q}[\mathbf{x}^{\pm 1}]$ in $\mathbf{x} = (x_1, \dots, x_d)$.

$$\sum_{k=0}^{\mathbf{FG}} \binom{n}{k}^2 \binom{n+k}{k}^2 = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz}\right)^n\right]$$

Catalan
$$\frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

• c(n) is a constant term if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ Rowland-Zeilberger '14 for Laurent polynomials $P, Q \in \mathbb{Q}[\mathbf{x}^{\pm 1}]$ in $\mathbf{x} = (x_1, \dots, x_d)$.

$$\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz}\right)^n\right]$$

$$\frac{\mathbf{EG}}{\operatorname{Catalan}} \qquad \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

Which integer sequences are constant terms? Zagier '16 And in which case can we choose Q = 1?

• c(n) is a constant term if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ for Laurent polynomials $P, Q \in \mathbb{Q}[\mathbf{x}^{\pm 1}]$ in $\mathbf{x} = (x_1, \dots, x_d)$.

Rowland-Zeilberger '14

$$\mathbf{EG}$$
 $Q = 1$

$$\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz}\right)^n\right]$$

$$\frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

Zagier '16

Which integer sequences are constant terms? And in which case can we choose Q = 1?

Constant terms are necessarily diagonals.

$$\frac{Q(\boldsymbol{x})}{1 - tx_1 \cdots x_d P(\boldsymbol{x})}$$

Which diagonals are constant terms? Q Which are linear combinations of constant terms?

• c(n) is a **constant term** if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ for Laurent polynomials $P, Q \in \mathbb{Q}[\boldsymbol{x}^{\pm 1}]$ in $\boldsymbol{x} = (x_1, \dots, x_d)$.

Rowland–Zeilberger '14

$$\sum_{Q=1}^{\mathbf{FG}} \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz}\right)^n\right]$$

$$\frac{\mathbf{EG}}{\mathbf{Catalan}} \qquad \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

- Q
 Zagier '16
 Which integer sequences are constant terms?
 And in which case can we choose Q = 1?
- Constant terms are necessarily diagonals.

$$\frac{Q(\boldsymbol{x})}{1 - tx_1 \cdots x_d P(\boldsymbol{x})}$$

- Q Which diagonals are constant terms?
 Which are linear combinations of constant terms?
- We will answer this in the case of a single variable.
- For instance: Are Fibonacci numbers constant terms?

 $(C ext{-finite sequences!})$

 $\frac{x}{1-x-x^2}$

• *C*-finite sequences:

$$A_0(n) + \sum_{j=1}^d \sum_{r=0}^{m_j-1} c_{j,r} n^r \lambda_j^n \qquad \text{(characteristic roots λ_j)}$$

C-finite sequences:

$$A_0(n) + \sum_{j=1}^{a} \sum_{r=0}^{m_j-1} c_{j,r} n^r \lambda_j^n \qquad \text{(characteristic roots λ_j)}$$

• It is not hard to see that $A(n) = \text{poly}(n)\lambda^n$ is a constant term if $\lambda \in \mathbb{Q}$. And so are sequences of finite support $(\lambda = 0)$.

$$\mathbf{EG}$$

$$\lambda = 2$$

•
$$2^n = \operatorname{ct}[(x+2)^n] = \operatorname{ct}[2^n]$$

•
$$n^2 2^n = \operatorname{ct} \left[(x+2)^n \left(\frac{8}{x^2} + \frac{2}{x} \right) \right]$$

C-finite sequences:

$$A_0(n) + \sum_{j=1}^d \sum_{r=0}^{m_j-1} c_{j,r} n^r \lambda_j^n \qquad \text{(characteristic roots λ_j)}$$
 (finite support)

• It is not hard to see that $A(n) = \text{poly}(n)\lambda^n$ is a constant term if $\lambda \in \mathbb{Q}$. And so are sequences of finite support $(\lambda = 0)$.

$$\mathbf{EG} \\ \lambda = 2$$

•
$$2^n = \operatorname{ct}[(x+2)^n] = \operatorname{ct}[2^n]$$

•
$$n^2 2^n = \operatorname{ct} \left[(x+2)^n \left(\frac{8}{x^2} + \frac{2}{x} \right) \right]$$

There are no further C-finite sequences that are constant terms. Or linear combinations of constant terms.

• More precisely: A C-finite sequence A(n) is a \mathbb{Q} -linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.

C-finite sequences:

$$A_0(n) + \sum_{j=1}^d \sum_{r=0}^{m_j-1} c_{j,r} n^r \lambda_j^n \qquad \text{(characteristic roots λ_j)}$$

• It is not hard to see that $A(n) = \text{poly}(n)\lambda^n$ is a constant term if $\lambda \in \mathbb{Q}$. And so are sequences of finite support $(\lambda = 0)$.

$$\mathbf{EG} \\ \lambda = 2$$

•
$$2^n = \operatorname{ct}[(x+2)^n] = \operatorname{ct}[2^n]$$

•
$$n^2 2^n = \operatorname{ct} \left[(x+2)^n \left(\frac{8}{x^2} + \frac{2}{x} \right) \right]$$

THM Bostan, S, Yurkevich There are no further C-finite sequences that are constant terms. Or linear combinations of constant terms.

- More precisely: A C-finite sequence A(n) is a \mathbb{Q} -linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
 - **EG** Fibonacci numbers are not (sums of) constant terms.
- **EG** $2^n + 1$ is not a constant term but is a sum of two.

• Our key ingredient to answer these questions are **congruences**:

Yurkevich '23

LEM If A(n) is a constant term then, for all large enough primes p,

$$A(p) \equiv \underset{\in \mathbb{Q}}{\mathsf{const}} \pmod{p}.$$

proof

$$A(p) = \operatorname{ct}[P(\boldsymbol{x})^p Q(\boldsymbol{x})]$$

• Our key ingredient to answer these questions are **congruences**:

Yurkevich '23

LEM If A(n) is a constant term then, for all large enough primes p,

$$A(p) \equiv \underset{\in \mathbb{Q}}{\mathsf{const}} \pmod{p}.$$

proof

$$A(p) = \mathrm{ct}[P(\boldsymbol{x})^p Q(\boldsymbol{x})]$$

$$\equiv \mathrm{ct}[P(\boldsymbol{x}^p) Q(\boldsymbol{x})] \qquad \text{(little Fermat)}$$

Our key ingredient to answer these questions are congruences:

Yurkevich '23

LEM If A(n) is a constant term then, for all large enough primes p,

$$A(p) \equiv \underset{\in \mathbb{Q}}{\mathsf{const}} \pmod{p}.$$

proof

$$\begin{split} A(p) &= \operatorname{ct}[P(\boldsymbol{x})^p Q(\boldsymbol{x})] \\ &\equiv \operatorname{ct}[P(\boldsymbol{x}^p) Q(\boldsymbol{x})] \qquad \text{(little Fermat)} \end{split}$$
 (if $p > \deg Q$) $\qquad = \operatorname{ct}[Q(\boldsymbol{x})]\operatorname{ct}[P(\boldsymbol{x}^p)] = \operatorname{ct}[Q(\boldsymbol{x})]\operatorname{ct}[P(\boldsymbol{x})]$

Our key ingredient to answer these questions are congruences:

Bostan, S Yurkevich '23

If A(n) is a constant term then, for all large enough primes p,

$$A(p) \equiv \underset{\in \mathbb{Q}}{\mathsf{const}} \pmod{p}.$$

proof

$$\begin{split} A(p) &= \mathrm{ct}[P(\boldsymbol{x})^p Q(\boldsymbol{x})] \\ &\equiv \mathrm{ct}[P(\boldsymbol{x}^p) Q(\boldsymbol{x})] \qquad \text{(little Fermat)} \end{split}$$
 (if $p > \deg Q$)
$$= \mathrm{ct}[Q(\boldsymbol{x})] \, \mathrm{ct}[P(\boldsymbol{x}^p)] = \mathrm{ct}[Q(\boldsymbol{x})] \, \mathrm{ct}[P(\boldsymbol{x})]$$

EG

The Fibonacci numbers are $F(n) = \frac{\varphi_+^n - \varphi_-^n}{\sqrt{5}}$ with $\varphi_\pm = \frac{1 \pm \sqrt{5}}{2}$.

• Our key ingredient to answer these questions are **congruences**:

LEM Bostan, S Yurkevich '23

If A(n) is a constant term then, for all large enough primes p,

$$A(p) \equiv \underset{\in \mathbb{Q}}{\mathsf{const}} \pmod{p}.$$

proof

$$\begin{split} A(p) &= \mathrm{ct}[P(\boldsymbol{x})^p Q(\boldsymbol{x})] \\ &\equiv \mathrm{ct}[P(\boldsymbol{x}^p)Q(\boldsymbol{x})] \qquad \text{(little Fermat)} \end{split}$$
 (if $p > \deg Q$)
$$= \mathrm{ct}[Q(\boldsymbol{x})]\,\mathrm{ct}[P(\boldsymbol{x}^p)] = \mathrm{ct}[Q(\boldsymbol{x})]\,\mathrm{ct}[P(\boldsymbol{x})]$$

EG

The Fibonacci numbers are $F(n)=\frac{\varphi_+^n-\varphi_-^n}{\sqrt{5}}$ with $\varphi_\pm=\frac{1\pm\sqrt{5}}{2}$. It follows that

$$F(p) \equiv \begin{cases} 1, & \text{if } p \equiv 1, 4 \bmod 5, \\ -1, & \text{if } p \equiv 2, 3 \bmod 5, \end{cases} \pmod{p}.$$

Hence, the Fibonacci numbers cannot be constant terms.

• A sequence c(n) is **hypergeometric** if $\frac{c(n+1)}{c(n)}$ is a rational function.

These are the P-recursive sequences of order 1.

• A sequence c(n) is **hypergeometric** if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the P-recursive sequences of order 1.

CONJ Every P-recursive integer sequence with at most exponential growth is the diagonal of a rational function.

Open even for hypergeometric sequences!

• A sequence c(n) is **hypergeometric** if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the P-recursive sequences of order 1.

CONJ Every P-recursive integer sequence with at most exponential growth is the diagonal of a rational function.

Open even for hypergeometric sequences!

EG open! Is the following hypergeometric sequence a diagonal?

$$A(n) = \frac{\left(\frac{1}{9}\right)_n \left(\frac{4}{9}\right)_n \left(\frac{5}{9}\right)_n}{n!^2 \left(\frac{1}{3}\right)_n}$$

 $3^{6n}A(n) = 1,60,20475,9373650,4881796920,...$

• A sequence c(n) is **hypergeometric** if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the P-recursive sequences of order 1.

CONJ Every P-recursive integer sequence with at most exponential growth is the diagonal of a rational function.

Open even for hypergeometric sequences!

EG open! Is the following hypergeometric sequence a diagonal?

$$A(n) = \frac{\left(\frac{1}{9}\right)_n \left(\frac{4}{9}\right)_n \left(\frac{5}{9}\right)_n}{n!^2 \left(\frac{1}{3}\right)_n}$$

$$3^{6n}A(n) = 1,60,20475,9373650,4881796920,...$$

This hypergeometric sequence is not a constant term (or a linear combination of constant terms).

Proof idea: A(p) takes different values modulo p depending on whether $p \equiv \pm 1 \pmod{9}$.

Constant terms are special

For hypergeometric sequences:

(or C-finite or P-recursive)

```
\{\operatornamewithlimits{constant\ terms}_{(or\ linear\ combinations)} \subsetneq \{\operatorname{diagonals}\} \subseteq \{P\text{-recursive},\ \operatorname{globally\ bounded\ seq's}\}
```

The second inclusion is strict iff Christol's conjecture is false.

Constant terms are special

For hypergeometric sequences:

(or *C*-finite or *P*-recursive)

 $\{ \operatornamewithlimits{constant\ terms}_{\text{(or linear\ combinations)}} \subsetneq \{ \operatornamewithlimits{diagonals} \} \subseteq \{ P\text{-recursive,\ globally\ bounded\ seq's} \}$

- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.

Bostan, S. Yurkevich $A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!2}$ where $m \geqslant 2$ is an integer.

 \mathbf{n} $A_m(n)$ is a diagonal for all $m \ge 2$.

Constant terms are special

For hypergeometric sequences:

(or *C*-finite or *P*-recursive)

$$\{ \underset{(\text{or linear combinations})}{\mathsf{constant terms}} \subsetneq \{ \mathsf{diagonals} \} \subseteq \{ P\text{-recursive, globally bounded seq's} \}$$

- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.

$$\text{ Let } A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2} \text{ where } m \geqslant 2 \text{ is an integer.}$$

- \mathbf{n} $A_m(n)$ is a diagonal for all $m \ge 2$.
- \mathbf{Q} $A_m(n)$ is a constant term if and only if $m \in \{2, 3, 4, 6\}$.
- The cases $m \in \{2, 3, 4, 6\}$ correspond to the hypergeometric functions underlying Ramanujan's theory of elliptic functions.

$$(m=2:$$
 classical case; $m=3,4,6:$ alternative bases)

Collecting some thoughts...

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
 - Hypergeometric sequences
 - Algebraic sequences (diagonals in two variables)
 - Algebraic hypergeometric series
 - Integral factorial ratios

(Bober, 2007; via Beukers-Heckman)

EG

Is
$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = \binom{8n}{4n} \binom{4n}{n} \binom{2n}{n}^{-1}$$
 a constant term?
 $1,140,60060,29745716,15628090140,... = \operatorname{ct}\left[\left(\frac{(1+x)^8}{(1-x)^2x^3}\right)^n\right]$

This is algebraic (and therefore a diagonal) and hypergeometric.

Collecting some thoughts...

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
 - Hypergeometric sequences
 - Algebraic sequences (diagonals in two variables)
 - Algebraic hypergeometric series
 - Integral factorial ratios

(Bober, 2007; via Beukers-Heckman)

EG

Is
$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = \binom{8n}{4n} \binom{4n}{n} \binom{2n}{n}^{-1}$$
 a constant term?
 $1,140,60060,29745716,15628090140,... = \operatorname{ct}\left[\left(\frac{(1+x)^8}{(1-x)^2x^3}\right)^n\right]$

This is algebraic (and therefore a diagonal) and hypergeometric.

- How to find representations as (nice) constant terms or diagonals?
 Once found, such representations can be proved using creative telescoping.
- How unique are the Laurent polynomials in a constant term?
 Connections to cluster algebras, mutations of Laurent polynomials, . . .

Gessel-Lucas congruences

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}$$

A. Straub

Gessel-Lucas congruences for sporadic sequences

Monatshefte für Mathematik, Vol. 203, 2024, p. 883-898

Lucas congruences

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \binom{n_2}{k_2} \cdots \pmod{p},$$

where n_i and k_i are the p-adic digits of n and k.

$$\binom{136}{79} \equiv \binom{3}{2} \binom{5}{4} \binom{2}{1} = 3 \cdot 5 \cdot 2 \equiv 2 \pmod{7}$$

 $\mathsf{LHS} = 1009220746942993946271525627285911932800$

Lucas congruences

 THM Lucas 1878

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \binom{n_2}{k_2} \cdots \pmod{p},$$

where n_i and k_i are the p-adic digits of n and k.

EG

$$\binom{136}{79} \equiv \binom{3}{2} \binom{5}{4} \binom{2}{1} = 3 \cdot 5 \cdot 2 \equiv 2 \pmod{7}$$

 $\mathsf{LHS} = 1009220746942993946271525627285911932800$

Interesting sequences like the **Apéry numbers**

$$1, 5, 73, 1445, \dots$$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy such Lucas congruences as well:

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$

Rowland-Yassawi '15

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n). Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

Rowland-Yassawi '15

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n).

Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

EG p = 7 • The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are 1, 5, 3, 3, 3, 5, 1.

Rowland-Yassawi '15

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n).

Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

EG p = 7

- The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are 1, 5, 3, 3, 3, 5, 1.
- Hence, the Lucas congruences imply that 7 does not divide any Apéry number.

Rowland-Yassawi '15

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n).

Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

EG p = 7

- The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are 1, 5, 3, 3, 3, 5, 1.
- Hence, the Lucas congruences imply that 7 does not divide any Apéry number.

Malik-S

CONJ The proportion of primes not dividing any Apéry number A(n)is $e^{-1/2} \approx 60.65\%$.

Rowland-Yassawi '15

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n).

Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

$$\mathbf{EG}$$
 $p = 7$

- The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are 1, 5, 3, 3, 3, 5, 1.
- Hence, the Lucas congruences imply that 7 does not divide any Apéry number.

CONJ The proportion of primes not dividing any Apéry number A(n)Malik-S is $e^{-1/2} \approx 60.65\%$.

- Heuristically, combine Lucas congruences,
- palindromic behavior of Apéry numbers, that is

$$A(n) \equiv A(p-1-n) \pmod{p},$$

• and $e^{-1/2} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{(p+1)/2}$.

Gessel-Lucas congruences

• Lucas congruences: $A(pn+k) \equiv A(n)A(k) \pmod{p}$

THM All of the 6+6+3 known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)

Gessel-Lucas congruences

• Lucas congruences: $A(pn+k) \equiv A(n)A(k) \pmod{p}$

Malik-S '16

THM All of the 6+6+3 known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)

 In the case of the Apéry numbers, Gessel ('82) observed that these congruences can be extended modulo p^2 .

All of the 6+6+3 known sporadic sequences satisfy Gessel-Lucas congruences modulo every odd prime:

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}$$

• Here, A'(n) is the formal derivative of A(n). These are rational numbers!

The formal derivative of recurrence sequences

Suppose A(n) is the unique solution for all $n \ge 0$ to

$$\sum_{j=0}^r c_j(n)A(n-j)=0 \qquad \text{with } A(0)=1 \text{ and } A(j)=0 \text{ for } j<0.$$

The $c_i(n)$ are polynomials with $c_0(n) \in n^2 \mathbb{Z}[n]$ and $c_0(n) \neq 0$ for n > 0.

The formal derivative of recurrence sequences

Suppose A(n) is the unique solution for all $n \ge 0$ to

$$\sum_{j=0}^r c_j(n)A(n-j)=0 \qquad \text{with } A(0)=1 \text{ and } A(j)=0 \text{ for } j<0.$$

The $c_i(n)$ are polynomials with $c_0(n) \in n^2 \mathbb{Z}[n]$ and $c_0(n) \neq 0$ for n > 0.

• Then the **formal derivative** A'(n) is the unique solution to

$$\sum_{j=0}^{r} c_j(n)A'(n-j) + \sum_{j=0}^{r} c'_j(n)A(n-j) = 0 \quad \text{with } A'(j) = 0 \text{ for } j \leqslant 0.$$

The formal derivative of recurrence sequences

• Suppose A(n) is the unique solution for all $n \ge 0$ to

$$\sum_{j=0}^{r} c_j(n) A(n-j) = 0 \qquad \text{with } A(0) = 1 \text{ and } A(j) = 0 \text{ for } j < 0.$$

The $c_i(n)$ are polynomials with $c_0(n) \in n^2 \mathbb{Z}[n]$ and $c_0(n) \neq 0$ for n > 0.

• Then the **formal derivative** A'(n) is the unique solution to

$$\sum_{j=0}^{r} c_j(n)A'(n-j) + \sum_{j=0}^{r} c'_j(n)A(n-j) = 0$$
 with $A'(j) = 0$ for $j \le 0$.

Note Let
$$F(x) = \sum_{n\geqslant 0} A(n)x^n$$
 and $G(x) = \sum_{n\geqslant 1} A'(n)x^n$.

Then the corresponding differential equation satisfied by F(x)is also solved by $\log(x)F(x) + G(x)$.

The formal derivative of recurrence sequences: example

• $A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}$ is the unique solution with A(0) = 1 to:

$$(n+1)^2 A(n+1) = (11n^2 + 11n + 3)A(n) + n^2 A(n-1)$$

• Then A'(n) is the unique solution with A'(0) = 0 to:

$$(n+1)^{2}A'(n+1) = (11n^{2} + 11n + 3)A'(n) + n^{2}A'(n-1)$$
$$-2(n+1)A(n+1) + 11(2n+1)A(n) + 2nA(n-1)$$

The formal derivative of recurrence sequences: example

• $A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}$ is the unique solution with A(0) = 1 to:

$$(n+1)^2 A(n+1) = (11n^2 + 11n + 3)A(n) + n^2 A(n-1)$$

• Then A'(n) is the unique solution with A'(0) = 0 to:

$$(n+1)^{2}A'(n+1) = (11n^{2} + 11n + 3)A'(n) + n^{2}A'(n-1)$$
$$-2(n+1)A(n+1) + 11(2n+1)A(n) + 2nA(n-1)$$

EG
$$A'(1), A'(2), \ldots = 5, \frac{75}{2}, \frac{1855}{6}, \frac{10875}{4}, \frac{299387}{12}, \frac{943397}{4}, \frac{63801107}{28}, \ldots$$

The formal derivative of recurrence sequences: example

• $A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}$ is the unique solution with A(0) = 1 to:

$$(n+1)^2 A(n+1) = (11n^2 + 11n + 3)A(n) + n^2 A(n-1)$$

• Then A'(n) is the unique solution with A'(0) = 0 to:

$$(n+1)^2 A'(n+1) = (11n^2 + 11n + 3)A'(n) + n^2 A'(n-1)$$
$$-2(n+1)A(n+1) + 11(2n+1)A(n) + 2nA(n-1)$$

EG
$$A'(1), A'(2), \ldots = 5, \frac{75}{2}, \frac{1855}{6}, \frac{10875}{4}, \frac{299387}{12}, \frac{943397}{4}, \frac{63801107}{28}, \ldots$$

Since the interpolation satisfies the continuous version of the recurrence:

$$A'(n) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k} \bigg|_{x=n}$$
$$= 5 \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k} (H_n - H_k)$$

From suitable expressions as a binomial sum.

Gessel '82, McIntosh '92

Apéry numbers:
$$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$$

Sequence
$$(\eta)$$
: $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$

From suitable expressions as a **binomial sum**.

Gessel '82. McIntosh '92

Apéry numbers:
$$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$$

Sequence
$$(\eta)$$
: $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$

From suitable constant term expressions. Samol-van Straten '09, Mellit-Vlasenko '16

THM Suppose the origin is the only interior integral point Samol, van Straten '09 of the Newton polytope of $P \in \mathbb{Z}[x^{\pm 1}]$.

Then $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$ satisfies Lucas congruences.

$$P = \frac{(x+y)(z+1)(x+y+z)(y+z+1)}{xyz}$$

$$\left(1 - \frac{1}{xy(1+z)^5}\right) \frac{(1+x)(1+y)(1+z)^4}{z^3}$$

From suitable expressions as a binomial sum.

Gessel '82. McIntosh '92

Apéry numbers:
$$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$$

Sequence
$$(\eta)$$
: $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$

From suitable constant term expressions. Samol-van Straten '09, Mellit-Vlasenko '16

THM Suppose the origin is the only interior integral point Samol, van Straten '09 of the Newton polytope of $P \in \mathbb{Z}[x^{\pm 1}]$.

Then $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$ satisfies Lucas congruences.

$$P = \frac{(x+y)(z+1)(x+y+z)(y+z+1)}{xyz}$$

$$\left(1 - \frac{1}{xy(1+z)^5}\right) \frac{(1+x)(1+y)(1+z)^4}{z^3}$$

From suitable diagonal expressions.

Rowland-Yassawi '15

For instance, diagonals of 1/Q(x) for $Q(x) \in \mathbb{Z}[x]$ with Q(x) linear in each variable and $Q(\mathbf{0}) = 1$.

From suitable expressions as a binomial sum.

Gessel '82. McIntosh '92

Apéry numbers:
$$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$$

Sequence
$$(\eta)$$
: $\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$

• From suitable **constant term** expressions. Samol-van Straten '09, Mellit-Vlasenko '16

THM Suppose the origin is the only interior integral point Straten '09 of the Newton polytope of $P \in \mathbb{Z}[x^{\pm 1}]$.

$$P = \frac{(x+y)(z+1)(x+y+z)(y+z+1)}{xyz}$$

$$\left(1 - \frac{1}{xy(1+z)^5}\right) \frac{(1+x)(1+y)(1+z)^4}{z^3}$$

From suitable diagonal expressions.

Rowland-Yassawi '15

- For instance, diagonals of 1/Q(x) for $Q(x) \in \mathbb{Z}[x]$ with Q(x) linear in each variable and $Q(\mathbf{0}) = 1$.
- From suitable modular parametrizations.

Beukers-Tsai-Ye '25

Suitable constant term representations

Suppose the origin is the only interior integral point Straten '09 of the Newton polytope of $P \in \mathbb{Z}[x^{\pm 1}]$.

- Then $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$ satisfies Lucas congruences. In fact, we get the stronger Dwork congruences.
- This implies that Lucas congruences are somewhat generic. (Gessel-Lucas congruences are not!)

Suitable constant term representations

In fact, we get the stronger Dwork congruences.

THM Suppose the origin is the only interior integral point Samol, van Straten '09 of the Newton polytope of $P \in \mathbb{Z}[x^{\pm 1}].$

- Then $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$ satisfies Lucas congruences.
- This implies that Lucas congruences are somewhat generic. (Gessel-Lucas congruences are not!)

Each sporadic sequence, except possibly (η) , can be expressed as $\operatorname{ct}[P(x)^n]$ so that the result of Samol-van Straten applies.

$$\mathop{\mathrm{EG}}_{\text{Gorodetsky}} \atop {}^{\circ} 21} \left(\eta \right) : \ \frac{(zx + xy - yz - x - 1)(xy + yz - zx - y - 1)(yz + zx - xy - z - 1)}{xyz}$$

(1,0,0), (1,1,0) and their permutations are interior points.

Q Algorithmic tools to find (useful) constant term expressions?

Once found, algorithmically provable using creative telescoping.

• Given $F(x) = \sum_{n=0}^{\infty} A(n)x^n$, we write $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p

$$\iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree } < p.$$

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots \pmod{p}$$

$$\iff$$
 $F(x) \equiv F_p(x) F_p(x^p) F_p(x^{p^2}) \cdots \pmod{p}$

• Given $F(x) = \sum_{n=0}^{\infty} A(n)x^n$, we write $F_p(x) = \sum_{n=0}^{r-1} A(n)x^n$ for its p-truncation.

LEM

A(n) satisfies Lucas congruences modulo $p \iff \frac{1}{F^{p-1}(x)}$ modulo p is a polynomial of degree < p.

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots \pmod{p}$$

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{F_p(x^p) F_p(x^{p^2}) \cdots}$ (mod p)

$$\iff F(x) \equiv F_p(x) \frac{F(x^p)}{F(x^p)} \pmod{p}$$

• Given $F(x) = \sum_{n=0}^{\infty} A(n)x^n$, we write $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$ for its p-truncation.

$\begin{array}{c} \textbf{LEM} \\ A(n) \text{ satisfies Lucas congruences modulo } p \\ \iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree} < p. \end{array}$

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots$$
 (mod p)

$$F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{(\text{mod } p)}$$

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F(x^p)}{F(x^p)}$ (mod p)

$$\iff$$
 $F_p(x) \equiv \frac{F(x)}{F(x^p)}$ (mod p)

• Given $F(x) = \sum_{n=0}^{\infty} A(n)x^n$, we write $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$ for its p-truncation.

$\begin{array}{c} \textbf{LEM} \\ A(n) \text{ satisfies Lucas congruences modulo } p \\ \iff \frac{1}{F^{p-1}(x)} \text{ modulo } p \text{ is a polynomial of degree} < p. \end{array}$

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots \pmod{p}$$

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{F_p(x^p) F_p(x^{p^2}) \cdots}$ (mod p)

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F(x^p)}{F(x^p)}$ (mod p)

$$\iff F_p(x) \equiv \frac{F(x)}{F(x^p)} \pmod{p}$$

$$F(x^p)$$
 $F(x)$

(by little Fermat)
$$\equiv \frac{F(x)}{F^p(x)}$$

• Given $F(x) = \sum_{n=0}^{\infty} A(n)x^n$, we write $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$ for its p-truncation.

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots$$
 (mod p)

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{F_p(x^p) F_p(x^{p^2}) \cdots}$ (mod p)

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F(x^p)}{F(x^p)}$ (mod p)

$$\iff$$
 $F_p(x) \equiv \frac{F(x)}{F(x^p)}$ (mod p)

(by little Fermat)
$$\equiv rac{F(x)}{F^p(x)} = rac{1}{F^{p-1}(x)}$$

Lucas congruences in terms of the GF

• Given $F(x) = \sum_{n=0}^{\infty} A(n)x^n$, we write $F_p(x) = \sum_{n=0}^{p-1} A(n)x^n$ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p $\iff \frac{1}{F^{p-1}(x)}$ modulo p is a polynomial of degree < p.

proof

$$A(n) \equiv A(n_0)A(n_1)A(n_2)\cdots$$
 (mod p)

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F_p(x^p) F_p(x^{p^2}) \cdots}{(\text{mod } p)}$

$$\iff$$
 $F(x) \equiv F_p(x) \frac{F(x^p)}{F(x^p)}$ (mod p)

$$\iff \frac{F_p(x)}{F(x^p)} \equiv \frac{F(x)}{F(x^p)} \pmod{p}$$

(by little Fermat)
$$\equiv \frac{F(x)}{F^p(x)} = \frac{1}{F^{p-1}(x)}$$

Since the first p coefficients of \dots always match, the final congruence is equivalent to the RHS being a polynomial of degree $\leqslant p-1$.

• Suppose $F(x) = \sum A(n)x^n$ has modular parametrization:

F(x) is a modular form for some modular function $x(\tau)$.

THM Suppose that:

- $x(\tau) = q + q^2 \mathbb{Z}[[q]]$ with $q = e^{2\pi i \tau}$ is a **Hauptmodul** for $\Gamma = \Gamma_0(N)$ (or Atkin–Lehner extension).
- $F(x(\tau)) = 1 + q\mathbb{Z}[[q]]$ is a weight 2 modular form for Γ .
- $F(x(\tau))$ has a unique zero at $[\tau_0]$ of order ≤ 1 , where $[\tau_0]$ is the (unique) pole of $x(\tau)$.

Then A(n) satisfies the Lucas congruences for all primes p.

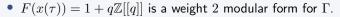
• Suppose $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ has modular parametrization:

F(x) is a modular form for some modular function $x(\tau)$.

THM Beukers-Tsai-Ye '25

Suppose that:

• $x(\tau) = q + q^2 \mathbb{Z}[[q]]$ with $q = \mathrm{e}^{2\pi i \tau}$ is a **Hauptmodul** for $\Gamma = \Gamma_0(N)$ (or Atkin–Lehner extension).



• $F(x(\tau))$ has a unique zero at $[\tau_0]$ of order $\leqslant 1$, where $[\tau_0]$ is the (unique) pole of $x(\tau)$.

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose $E(\tau)$ is a modular form for Γ with weight 2(p-1) such that $E(\tau) \equiv 1 \pmod p$.

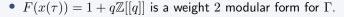
• Suppose $F(x) = \sum_{n=0}^{\infty} A(n)x^n$ has modular parametrization:

F(x) is a modular form for some modular function $x(\tau)$.

THM Beukers-Tsai-Ye '25

Suppose that:

• $x(\tau) = q + q^2 \mathbb{Z}[[q]]$ with $q = \mathrm{e}^{2\pi i \tau}$ is a **Hauptmodul** for $\Gamma = \Gamma_0(N)$ (or Atkin–Lehner extension).



• $F(x(\tau))$ has a unique zero at $[\tau_0]$ of order $\leqslant 1$, where $[\tau_0]$ is the (unique) pole of $x(\tau)$.

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose $E(\tau)$ is a modular form for Γ with weight 2(p-1) such that $E(\tau) \equiv 1 \pmod{p}$. Then

$$\frac{1}{F^{p-1}(x)} \equiv \pmod{p}.$$

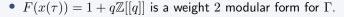
• Suppose $F(x) = \sum A(n)x^n$ has modular parametrization:

F(x) is a modular form for some modular function $x(\tau)$.

THM Beukers-Tsai-Ye '25

Suppose that:

• $x(\tau) = q + q^2 \mathbb{Z}[[q]]$ with $q = \mathrm{e}^{2\pi i \tau}$ is a **Hauptmodul** for $\Gamma = \Gamma_0(N)$ (or Atkin–Lehner extension).



• $F(x(\tau))$ has a unique zero at $[\tau_0]$ of order $\leqslant 1$, where $[\tau_0]$ is the (unique) pole of $x(\tau)$.

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose $E(\tau)$ is a modular form for Γ with weight 2(p-1) such that $E(\tau) \equiv 1 \pmod{p}$. Then

$$\frac{1}{F^{p-1}(x)} \equiv \frac{E(\tau)}{F^{p-1}(x)} \pmod{p}.$$

is a modular function with a unique pole at $[\tau_0]$ of order $\leqslant p-1$.

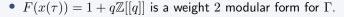
• Suppose $F(x) = \sum A(n)x^n$ has modular parametrization:

F(x) is a modular form for some modular function $x(\tau)$.

THM Beukers-Tsai-Ye '25

Suppose that:

• $x(\tau) = q + q^2 \mathbb{Z}[[q]]$ with $q = \mathrm{e}^{2\pi i \tau}$ is a **Hauptmodul** for $\Gamma = \Gamma_0(N)$ (or Atkin–Lehner extension).



• $F(x(\tau))$ has a unique zero at $[\tau_0]$ of order $\leqslant 1$, where $[\tau_0]$ is the (unique) pole of $x(\tau)$.

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose $E(\tau)$ is a modular form for Γ with weight 2(p-1) such that $E(\tau) \equiv 1 \pmod{p}$. Then

$$\frac{1}{F^{p-1}(x)} \equiv \frac{E(\tau)}{F^{p-1}(x)} = \text{poly}(x) \pmod{p}.$$

is a modular function with a unique pole at $[\tau_0]$ of order $\leq p-1$.

Lucas congruences via modular forms, cont'd

Needed: weight 2(p-1) modular form $E(\tau)$ for Γ with $E(\tau) \equiv 1 \pmod{p}$.

EG The normalized **Eisenstein series**

$$E_k(\tau) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \frac{n^{k-1}q^n}{1 - q^n}$$

is a modular form for $\Gamma_0(1)$ of even weight $k \geq 2$.

Since $1/B_{p-1} \equiv 0 \pmod{p}$, we have $E_{p-1}(\tau) \equiv 1 \pmod{p}$.

Lucas congruences via modular forms, cont'd

Needed: weight 2(p-1) modular form $E(\tau)$ for Γ with $E(\tau) \equiv 1 \pmod{p}$.

EG The normalized **Eisenstein series**

$$E_k(\tau) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \frac{n^{k-1}q^n}{1 - q^n}$$

is a modular form for $\Gamma_0(1)$ of even weight $k \geq 2$.

Since $1/B_{p-1} \equiv 0 \pmod{p}$, we have $E_{p-1}(\tau) \equiv 1 \pmod{p}$.

• If $p \geqslant 5$ and $\Gamma = \Gamma_0(N)$, we can select:

$$E(\tau) := E_{p-1}(\tau)^2$$

Lucas congruences via modular forms, cont'd

• Needed: weight 2(p-1) modular form $E(\tau)$ for Γ with $E(\tau) \equiv 1 \pmod{p}$.

EG The normalized **Eisenstein series**

$$E_k(\tau) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \frac{n^{k-1}q^n}{1 - q^n}$$

is a modular form for $\Gamma_0(1)$ of even weight $k \geq 2$.

Since $1/B_{p-1} \equiv 0 \pmod{p}$, we have $E_{p-1}(\tau) \equiv 1 \pmod{p}$.

• If $p \ge 5$ and $\Gamma = \Gamma_0(N)$, we can select:

$$E(\tau) := E_{p-1}(\tau)^2$$

• If $p\geqslant 5$ and Γ is $\Gamma_0(N)$ extended by $au \to -\frac{1}{N\tau}$:

$$E(\tau) := \frac{1}{2} \left[E_{p-1}(\tau)^2 + N^{p-1} E_{p-1}(N\tau)^2 \right]$$

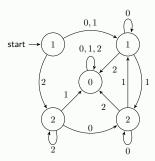
THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 3:



$$C(35) = 3,116,285,494,907,301,262$$

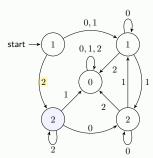
 $\equiv 1 \pmod{3}$

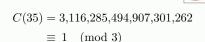
$$35 = 1\ 0\ 2\ 2\ \text{in base}\ 3$$

THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

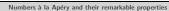
EG Catalan numbers C(n) modulo 3:





$$35 = 1 \ 0 \ 2 \ 2$$
 in base 3

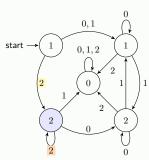
$$C(2)$$
 $C(2) \equiv 2$



THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

Catalan numbers C(n) modulo 3: EG



$$C(35) = 3,116,285,494,907,301,262$$

$$\equiv 1 \pmod{3}$$

$$35 = 1 \ 0 \ 2 \ 2$$
 in base 3

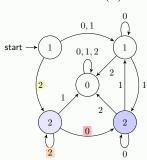
$$C(2) C(2) \equiv 2$$

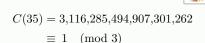
$$C(8) C(2,2) = 2$$

THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

Catalan numbers C(n) modulo 3: EG





$$35 = 1$$
 0 2 2 in base 3

$$C(2) C(2) \equiv 2$$

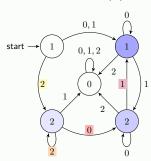
$$C(8) C(2 2) \equiv 2$$

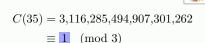
$$C(0\ 2\ 2) \equiv 2$$

THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 3:





$$35 = 1 0 2 2$$
 in base 3

$$C(2) C(2) \equiv 2$$

$$C(8) C(2 2) \equiv 2$$

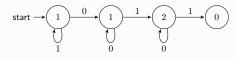
$$C(0\ 2\ 2) \equiv 2$$

$$C(35)$$
 $C(1 \ 0 \ 2 \ 2) \equiv 1$

THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

Catalan numbers C(n) modulo 4:



THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Rowland. Yassawi '15

Catalan numbers C(n) modulo 4:



THM

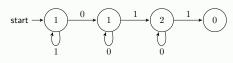
THM Eu, Liu, Yeh '08
$$C(n) \equiv \begin{cases} 1, & \text{if } n = 2^a - 1 \text{ for some } a \geqslant 0, \\ 2, & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \geqslant 0, \\ 0, & \text{otherwise,} \end{cases} \pmod{4}.$$

THM If an integer sequence A(n) is the diagonal of $F(x) \in \mathbb{Z}(x)$, Yassawi '15 then the reductions $A(n) \pmod{p^r}$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Rowland. Yassawi '15

Catalan numbers C(n) modulo 4:



THM

THM Eu, Liu, Yeh '08
$$C(n) \equiv \begin{cases} 1, & \text{if } n = 2^a - 1 \text{ for some } a \geqslant 0, \\ 2, & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \geqslant 0, \\ 0, & \text{otherwise,} \end{cases} \pmod{4}.$$

COR $C(n) \not\equiv 3 \pmod{4}$

Things quickly get more complicated

Liu-Yeh (2010) also determine the Catalan numbers modulo 16 and 64.

Theorem 5.5. Let c_n be the n-th Catalan number. First of all, $c_n \not\equiv_{16} 3, 7, 9, 11, 15$ for any n. As for the other congruences, we have

$$c_n \equiv_{16} \left\{ \begin{array}{l} 1 \\ 5 \\ 13 \\ 13 \\ \end{array} \right\} \quad if \quad d(\alpha) = 0 \ and \quad \left\{ \begin{array}{l} \beta \leq 1, \\ \beta = 2, \\ \beta \geq 3, \\ 2 \\ 10 \\ \end{array} \right\} \quad if \quad d(\alpha) = 1, \ \alpha = 1 \ and \quad \left\{ \begin{array}{l} \beta = 0 \ or \ \beta \geq 2, \\ \beta = 1, \\ \beta \geq 3, \\ \beta = 1, \\ \end{array} \right. \\ \left\{ \begin{array}{l} \beta = 0 \ or \ \beta \geq 2, \\ \beta = 1, \\ \beta = 1, \\ (\alpha = 2, \beta \geq 2) \ or \ (\alpha \geq 3, \beta \leq 1), \\ (\alpha = 2, \beta \leq 1) \ or \ (\alpha \geq 3, \beta \leq 2), \\ 12 \\ 12 \\ \end{array} \right\} \quad if \quad d(\alpha) = 2 \ and \quad \left\{ \begin{array}{l} zr(\alpha) \equiv_2 0, \\ zr(\alpha) = 1, \\ zr(\alpha) = 1, \\ \end{array} \right. \\ \left\{ \begin{array}{l} \theta \leq 1, \\ \beta = 1, \\ \alpha = 2, \beta \leq 2, \\$$

where
$$\alpha = (CF_2(n+1) - 1)/2$$
 and $\beta = \omega_2(n+1)$ (or $\beta = \min\{i \mid n_i = 0\}$).

$$\omega_p(n)=p\text{-adic valuation of }n$$

$$CF_p(n)=n\,/\,p^{\omega_p(n)}$$

$$d(n)=\text{sum of }2\text{-adic digits of }n$$

For comparison: the corresponding minimal automaton has 26 states.

 $C(n) \not\equiv 3 \pmod{4}$ EG Rowland, Yassawi '15

Eu-Liu-Yeh '08

 $C(n) \not\equiv 9 \pmod{16}$

Liu-Yeh '10

 $C(n) \not\equiv 17, 21, 26 \pmod{32}$

 $C(n) \not\equiv 10, 13, 33, 37 \pmod{64}$

EG $C(n) \not\equiv 3 \pmod{4}$

Eu-Liu-Yeh '08

 $C(n) \not\equiv 9 \pmod{16}$

Liu-Yeh '10

 $C(n) \not\equiv 17, 21, 26 \pmod{32}$

 $C(n) \not\equiv 10, 13, 33, 37 \pmod{64}$

Rowland, Yassawi '15

Yassawi '15

Let P(r) be the proportion of residues not attained by $C(n) \mod 2^r$. Poes $P(r) \to 1$ as $r \to \infty$?

EG $C(n) \not\equiv 3 \pmod{4}$

Eu-Liu-Yeh '08

 $C(n) \not\equiv 9 \pmod{16}$

Liu-Yeh '10

 $C(n) \not\equiv 17, 21, 26 \pmod{32}$

 $C(n) \not\equiv 10, 13, 33, 37 \pmod{64}$

Rowland, Yassawi '15

Yassawi '15

Let P(r) be the proportion of residues not attained by $C(n) \mod 2^r$.

Does $P(r) \to 1$ as $r \to \infty$?

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P(r)	0	.25	.25	.31	.41	.47	.54	.59	.65	.69	.73	.76	.79	.82
N(r)	0	1	2	5	13	30	69	152	332	710	1502	3133	6502	13394
A(r)	0	1	0	1	3	4	9	14	28	46	82	129	236	390

N(r)=# residues not attained mod 2^r

A(r)=# additional residues not attained mod $2^r=N(r)-2N(r-1)$

EG $C(n) \not\equiv 3 \pmod{4}$ Rowland, Yassawi '15

Fu-Liu-Yeh '08

 $C(n) \not\equiv 9 \pmod{16}$

Liu-Yeh '10

 $C(n) \not\equiv 17, 21, 26 \pmod{32}$

 $C(n) \not\equiv 10, 13, 33, 37 \pmod{64}$

Rowland. Yassawi '15 Let P(r) be the proportion of residues not attained by C(n) mod 2^r .

Does $P(r) \to 1$ as $r \to \infty$?

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P(r)	0	.25	.25	.31	.41	.47	.54	.59	.65	.69	.73	.76	.79	.82
N(r)	0	1	2	5	13	30	69	152	332	710	1502	3133	6502	13394
A(r)	0	1	0	1	3	4	9	14	28	46	82	129	236	390

N(r) = # residues not attained mod 2^r

A(r) = # additional residues not attained mod $2^r = N(r) - 2N(r-1)$

Bostan '15

CONJ $C(n) \not\equiv 3 \pmod{10}$ for all $n \geqslant 0$.

 $C(n) \not\equiv 1, 7, 9 \pmod{10}$ for sufficiently large n.

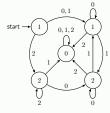
If true, the last digit of any sufficiently large odd Catalan number is always 5. (n > 255?)

- The Catalan numbers C(n) modulo 3 can be described:
 - ullet by an automaton with 4 states (plus a zero state)
 - by a linear 3-scheme with 2 states (Rowland–Zeilberger '14)

- The Catalan numbers C(n) modulo 3 can be described:
 - ullet by an automaton with 4 states (plus a zero state)
 - by a linear 3-scheme with 2 states (Rowland–Zeilberger '14)

EG mod 3

3-scheme



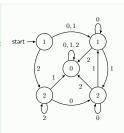
$$\begin{array}{rclcrcl} A_0(3n) & = & A_1(n) & & A_2(3n) & = & A_3(n) \\ A_0(3n+1) & = & A_1(n) & & A_2(3n+1) & = & 0 \\ A_0(3n+2) & = & A_2(n) & & A_2(3n+2) & = & A_2(n) \\ A_1(3n) & = & A_1(n) & & A_3(3n) & = & A_3(n) \\ A_1(3n+1) & = & A_3(n) & & A_3(3n+1) & = & A_1(n) \\ A_1(3n+2) & = & 0 & & A_3(3n+2) & = & 0 \end{array}$$

Initial conditions:

$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

- The Catalan numbers C(n) modulo 3 can be described:
 - ullet by an automaton with 4 states (plus a zero state)
 - by a linear 3-scheme with 2 states (Rowland–Zeilberger '14)

EG mod 3 automatic 3-scheme



$$\begin{array}{rclcrcl} A_0(3n) & = & A_1(n) & A_2(3n) & = & A_3(n) \\ A_0(3n+1) & = & A_1(n) & A_2(3n+1) & = & 0 \\ A_0(3n+2) & = & A_2(n) & A_2(3n+2) & = & A_2(n) \\ A_1(3n) & = & A_1(n) & A_3(3n) & = & A_3(n) \\ A_1(3n+1) & = & A_3(n) & A_3(3n+1) & = & A_1(n) \\ A_1(3n+2) & = & 0 & A_3(3n+2) & = & 0 \end{array}$$

Initial conditions:

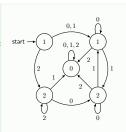
$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

EG mod 3

$$A_0(3n) = A_1(n)$$
 $A_1(3n) = A_1(n)$
 $A_0(3n+1) = A_1(n)$ $A_1(3n+1) = 2A_1(n)$
 $A_0(3n+2) = A_0(n) + A_1(n)$ $A_1(3n+2) = 0$

Initial conditions: $A_0(0) = A_1(0) = 1$

- The Catalan numbers C(n) modulo 3 can be described:
 - ullet by an automaton with 4 states (plus a zero state)
 - by a linear 3-scheme with 2 states (Rowland–Zeilberger '14)



$$\begin{array}{rclcrcl} A_0(3n) & = & A_1(n) & A_2(3n) & = & A_3(n) \\ A_0(3n+1) & = & A_1(n) & A_2(3n+1) & = & 0 \\ A_0(3n+2) & = & A_2(n) & A_2(3n+2) & = & A_2(n) \\ A_1(3n) & = & A_1(n) & A_3(3n) & = & A_3(n) \\ A_1(3n+1) & = & A_3(n) & A_3(3n+1) & = & A_1(n) \\ A_1(3n+2) & = & 0 & A_3(3n+2) & = & 0 \end{array}$$

Initial conditions:

$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

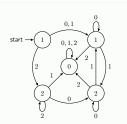
EG mod 3

linear 3-scheme

$$A_0(3n) = A_1(n)$$
 $A_1(3n) = A_1(n)$
 $A_0(3n+1) = A_1(n)$ $A_1(3n+1) = 2A_1(n)$
 $A_0(3n+2) = A_0(n) + A_1(n)$ $A_1(3n+2) = 0$

Initial conditions: $A_0(0) = A_1(0) = 1$

- The Catalan numbers C(n) modulo 3 can be described:
 - by an automaton with 4 states (plus a zero state)
 - by a linear 3-scheme with 2 states (Rowland–Zeilberger '14)



$$\begin{array}{rclrcl} A_0(3n) &=& A_1(n) & A_2(3n) &=& A_3(n) \\ A_0(3n+1) &=& A_1(n) & A_2(3n+1) &=& 0 \\ A_0(3n+2) &=& \frac{A_2(n)}{A_2(3n+2)} & A_2(3n+2) &=& A_2(n) \\ A_1(3n) &=& A_1(n) & A_3(3n) &=& A_3(n) \\ A_1(3n+1) &=& \frac{A_3(n)}{A_3(3n+1)} & A_3(3n+1) &=& A_1(n) \\ A_1(3n+2) &=& 0 & A_3(3n+2) &=& 0 \end{array}$$

Initial conditions:

$$A_0(0) = A_1(0) = 1, \quad A_2(0) = A_3(0) = 2$$

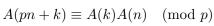
linear 3-scheme

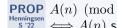
$$A_0(3n) = A_1(n)$$
 $A_1(3n) = A_1(n)$
 $A_0(3n+1) = A_1(n)$ $A_1(3n+1) = 2A_1(n)$
 $A_0(3n+2) = A_0(n) + A_1(n)$ $A_1(3n+2) = 0$

Initial conditions: $A_0(0) = A_1(0) = 1$

Few-state linear *p*-schemes

Lucas congruences:





PROP $A(n) \pmod{p}$ satisfies a single-state linear p-scheme (and A(0) = 1).

 \iff A(n) satisfies Lucas congruences modulo p.

Few-state linear *p*-schemes

Lucas congruences:

$$A(pn+k) \equiv A(k)A(n) \pmod{p}$$

PROP $A(n) \pmod{p}$ satisfies a single-state linear p-scheme (and A(0) = 1). \iff A(n) satisfies Lucas congruences modulo p.

Gessel-Lucas congruences:

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}$$

Note Gessel–Lucas congruences yield explicit 2-state linear p-schemes.

Few-state linear *p*-schemes

Lucas congruences:

$$A(pn+k) \equiv A(k)A(n) \pmod{p}$$

PROP $A(n) \pmod{p}$ satisfies a single-state linear p-scheme (and A(0) = 1). \iff A(n) satisfies Lucas congruences modulo p.

Gessel–Lucas congruences:

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}$$

Note Gessel–Lucas congruences yield explicit 2-state linear p-schemes.

Note Gessel-Lucas congruences are much more rare! For instance, for k=0, we get the **supercongruences**

$$A(pn) \equiv A(n) \pmod{p^2}$$
.

ullet Chowla, Cowles and Cowles (1980) conjectured that, for $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Chowla, Cowles and Cowles (1980) conjectured that, for $p \geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

ullet Chowla, Cowles and Cowles (1980) conjectured that, for $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88

THM For $p \geqslant 5$, the Apéry numbers satisfy **supercongruences**:

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

ullet Chowla, Cowles and Cowles (1980) conjectured that, for $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

Beukers, Coster '85, '88

THM For $p \geqslant 5$, the Apéry numbers satisfy **supercongruences**:

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

EG Simple combinatorics proves the congruence

$$\binom{2p}{p} = \sum_{k} \binom{p}{k} \binom{p}{p-k} \equiv 1+1 \pmod{p^2}.$$

ullet Chowla, Cowles and Cowles (1980) conjectured that, for $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

Beukers, Coster '85, '88

THM For $p \geqslant 5$, the Apéry numbers satisfy **supercongruences**:

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

Simple combinatorics proves the congruence

$$\binom{2p}{p} = \sum_{k} \binom{p}{k} \binom{p}{p-k} \equiv 1+1 \pmod{p^2}.$$

For $p\geqslant 5$, Wolstenholme (1862) showed that, in fact,

$$\binom{2p}{p} \equiv 2 \pmod{p^3}.$$

Supercongruences for Apéry-like numbers

Osburn-Sahu '09

CONJ All known Apéry-like numbers satisfy supercongruences like

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

 This is finally proven in all cases. For instance, for the six sporadic sequences related to $\zeta(3)$:

A(n)	
$\sum_{k} \binom{n}{k}^2 \binom{n+k}{n}^2$	Beukers, Coster '85-'88
$\sum_{k} {n \choose k}^2 {2k \choose n}^2$	Osburn–Sahu–S '16
$\sum_{k} {n \choose k}^2 {2k \choose k} {2(n-k) \choose n-k}$	Osburn–Sahu '11
$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	Amdeberhan–Tauraso '16 ($r=1$)
$\sum_{k} (-1) \ 3 \qquad (3k) (n) \frac{1}{k!^3}$	Alinquant-Osburn '25
$\sum_{k} (-1)^{k} \binom{n}{k}^{3} \binom{4n-5k}{3n}$	Osburn-Sahu-S '16
$\sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$	Gorodetsky '18

Multivariate supercongruences

The Almkvist–Zudilin numbers are the sporadic sequence

$$Z(n) = \sum_{k} (-3)^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3}.$$

EG S 2014 The Almkvist–Zudilin numbers are the diagonal Taylor coefficients of

$$\frac{1}{1 - (x_1 + x_2 + x_3 + x_4) + 27x_1x_2x_3x_4} = \sum_{\boldsymbol{n} \in \mathbb{Z}_{\geq 0}^4} Z(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}$$

S 2014

CONJ For $p \ge 5$, we have the multivariate supercongruences

$$Z(\boldsymbol{n}p^r) \equiv Z(\boldsymbol{n}p^{r-1}) \pmod{p^{3r}}.$$

Multivariate supercongruences

• The Almkvist–Zudilin numbers are the sporadic sequence

$$Z(n) = \sum_{k} (-3)^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3}.$$

EG S 2014 The Almkvist–Zudilin numbers are the diagonal Taylor coefficients of

$$\frac{1}{1 - (x_1 + x_2 + x_3 + x_4) + 27x_1x_2x_3x_4} = \sum_{\mathbf{n} \in \mathbb{Z}_{\geq 0}^4} Z(\mathbf{n}) \mathbf{x}^{\mathbf{n}}$$

S 2014

CONJ For $p \ge 5$, we have the multivariate supercongruences

$$Z(\boldsymbol{n}p^r) \equiv Z(\boldsymbol{n}p^{r-1}) \pmod{p^{3r}}.$$

Beukers. S 2018

THM Let $P, Q \in \mathbb{Z}[x]$ with Q linear in each variable.

Housen. The above Gauss congruences modulo p^r are satisfied by the coefficients of P/Q if and only if $N(P) \subseteq N(Q)$.

Collecting some thoughts...

THM S '24

The known sporadic sequences satisfy the **Gessel–Lucas congruences**

$$A(pn+k) \equiv A(k)A(n) + pnA'(k)A(n) \pmod{p^2}.$$

- Lucas congruences correspond to single-state linear p-schemes. Gessel–Lucas congruences are instances of 2-state linear p-schemes.
- It would be of interest to study few-state p-schemes systematically:
 - What kind of "generalized Lucas congruences" does one get?
 - Which sequences satisfy such congruences? (mod p, mod p^2 ?)

Partial results by Henningsen-S ('22) for certain constant term sequences.

- Are there interesting q-analogs?
 - q-Lucas congruences have been studied.
 - For k = 0, we get $A(pn) \equiv A(n) \pmod{p^2}$. q-analogs known for some sporadic sequences.

Olive '65, Désarménien '82

(Supercongruences!) S '19, Gorodetsky '19

Apéry limits and Franel's suspicions

based on joint work(s) with:

Marc Chamberland (Grinnell College)

M. Chamberland, A. Straub

Apéry limits: Experiments and proofs American Mathematical Monthly, Vol. 128, Nr. 9, 2021, p. 811-824

A. Straub. W. Zudilin

Sums of powers of binomials, their Apéry limits, and Franel's suspicions International Mathematics Research Notices, Vol. 2023, Nr. 11, 2023, p. 9861-9879

Wadim Zudilin (Radboud U., NL)

The minimal recurrence for $A^{(s)}(n) = \sum_{k=0}^n \binom{n}{k}^s$ has order $\lfloor \frac{s+1}{2} \rfloor$.

OPEN Is that recurrence of minimal order?

The minimal recurrence for $A^{(s)}(n) = \sum_{k=0}^{n} \binom{n}{k}^{s}$ has order $\lfloor \frac{s+1}{2} \rfloor$.

THM Stoll '97 $A^{(s)}(n)$ satisfies a recurrence of order $\lfloor \frac{s+1}{2} \rfloor$.

OPEN Is that recurrence of minimal order?

S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^n \binom{n}{k}^s$ solved by certain sequences $A_j^{(s)}(n)$ if $0 \leqslant 2j < s$.

The minimal recurrence for $A^{(s)}(n) = \sum_{k=0}^{n} \binom{n}{k}^{s}$ has order $\lfloor \frac{s+1}{2} \rfloor$.

THM Stoll 97 $A^{(s)}(n)$ satisfies a recurrence of order $\lfloor \frac{s+1}{2} \rfloor$.

OPEN Is that recurrence of minimal order?

S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^n \binom{n}{k}^s$ solved by certain sequences $A_j^{(s)}(n)$ if $0 \leqslant 2j < s$.

The Apéry limits are:

$$\lim_{n\to\infty}\frac{A_j^{(s)}(n)}{A^{(s)}(n)}=[t^{2j}]\ \left(\frac{\pi t}{\sin(\pi t)}\right)^s\in\pi^{2j}\mathbb{Q}_{>0}$$

The minimal recurrence for $A^{(s)}(n) = \sum_{k=0}^{n} \binom{n}{k}^s$ has order $\lfloor \frac{s+1}{2} \rfloor$.

THM Stoll 97 $A^{(s)}(n)$ satisfies a recurrence of order $\lfloor \frac{s+1}{2} \rfloor$.

OPEN Is that recurrence of minimal order?

S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^n \binom{n}{k}^s$ solved by certain sequences $A_j^{(s)}(n)$ if $0 \leqslant 2j < s$.

The Apéry limits are:

$$\lim_{n \to \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0}$$

Hence, $A_i^{(s)}(n)$ with $0 \le 2j < s$ are linearly independent, so that any telescoping recurrence has order at least $\left| \frac{s+1}{2} \right|$.

Goal

A telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 =: a(n,k)$

N, K shift operators in n and k: Na(n, k) = a(n + 1, k)

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger A = B

Goal

A telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 =: a(n,k)$

N, K shift operators in n and k: Na(n, k) = a(n + 1, k)

• Suppose we have $P(n,N)\in \mathbb{Q}[n,N]$ and $R(n,k)\in \mathbb{Q}(n,k)$ so that:

$$P(n,N)a(n,k) = (K-1)R(n,k)a(n,k)$$

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger A = B A. K. Peters, Ltd., 1st edition, 1996

Goal

A telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$

N, K shift operators in n and k: Na(n, k) = a(n + 1, k)

Suppose we have $P(n,N) \in \mathbb{Q}[n,N]$ and $R(n,k) \in \mathbb{Q}(n,k)$ so that:

$$P(n,N)a(n,k) = (K-1)R(n,k)a(n,k) = b(n,k+1) - b(n,k)$$

Goal

A telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$

N, K shift operators in n and k: Na(n, k) = a(n + 1, k)

• Suppose we have $P(n,N) \in \mathbb{Q}[n,N]$ and $R(n,k) \in \mathbb{Q}(n,k)$ so that:

$$P(n,N)a(n,k) = (K-1)R(n,k)a(n,k) = b(n,k+1) - b(n,k)$$

• Then: $P(n,N)\sum a(n,k)=0$

Assuming $\lim_{k \to +\infty} b(n, k) = 0$.

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger A = B

A. K. Peters, Ltd., 1st edition, 1996

Goal

A telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 =: a(n,k)$

N, K shift operators in n and k: Na(n, k) = a(n + 1, k)

• Suppose we have $P(n,N) \in \mathbb{Q}[n,N]$ and $R(n,k) \in \mathbb{Q}(n,k)$ so that:

$$P(n,N)a(n,k) = (K-1)R(n,k)a(n,k) = b(n,k+1) - b(n,k)$$

• Then: $P(n,N)\sum_{k\in\mathbb{Z}}a(n,k)=0$

Assuming $\lim_{k \to \pm \infty} b(n, k) = 0$.

EG

$$P(n,N) = (n+2)^3 N^2 - (2n+3)(17n^2 + 51n + 39)N + (n+1)^3$$

$$R(n,k) = \frac{4k^4(2n+3)(4n^2 - 2k^2 + 12n + 3k + 8)}{(n-k+1)^2(n-k+2)^2}$$

R(n,k) is the $\operatorname{certificate}$ of the $\operatorname{telescoping}$ recurrence operator P(n,N).

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger A = B A. K. Peters, Ltd., 1st edition, 1996

Normalized general homogeneous linear recurrence of order d:

$$u_{n+d} + p_{d-1}(n) u_{n+d-1} + \cdots + p_1(n) u_{n+1} + p_0(n) u_n = 0$$

Normalized general homogeneous linear recurrence of order d:

$$u_{n+d} + p_{d-1}(n) u_{n+d-1} + \cdots + p_1(n) u_{n+1} + p_0(n) u_n = 0$$

If $\lim_{n \to \infty} p_k(n) = c_k$, then the characteristic polynomial is:

$$\lambda^d + c_{d-1}\lambda^{d-1} + \cdots + c_1\lambda + c_0 = \prod_{k=1}^{d} (\lambda - \lambda_k)$$

Normalized general homogeneous linear recurrence of order d:

$$u_{n+d} + p_{d-1}(n) u_{n+d-1} + \cdots + p_1(n) u_{n+1} + p_0(n) u_n = 0$$

If $\lim_{n o \infty} p_k(n) = c_k$, then the characteristic polynomial is:

$$\lambda^d + c_{d-1}\lambda^{d-1} + \dots + c_1\lambda + c_0 = \prod_{k=1}^a (\lambda - \lambda_k)$$

THM Poincare 1885

Suppose the $|\lambda_k|$ are distinct. Then, for any solution u_n ,

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lambda_k$$

(P)

for some $k \in \{1, \ldots, d\}$, unless u_n is eventually zero.

Normalized general homogeneous linear recurrence of order d:

$$u_{n+d} + p_{d-1}(n) u_{n+d-1} + \cdots + p_1(n) u_{n+1} + p_0(n) u_n = 0$$

• If $\lim_{n\to\infty} p_k(n) = c_k$, then the characteristic polynomial is:

$$\lambda^d + c_{d-1}\lambda^{d-1} + \dots + c_1\lambda + c_0 = \prod_{k=1}^{a} (\lambda - \lambda_k)$$

THM Poincare 1885

Suppose the $|\lambda_k|$ are distinct. Then, for any solution u_n ,

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lambda_k$$

(P)

for some $k \in \{1, ..., d\}$, unless u_n is eventually zero.

Suppose, in addition, $p_0(n) \neq 0$ for all $n \geq 0$.

Then, for each λ_k , there exists a u_n such that (P) holds.

• Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

• $u_{-1} = 0, u_0 = 1$: Apéry numbers A(n)

 $1, 5, 73, 1445, 33001, \dots$

• Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

• $u_{-1} = 0, u_0 = 1$: Apéry numbers A(n)

 $1, 5, 73, 1445, 33001, \dots$

• $u_0 = 0, u_1 = 1$: 2nd solution B(n)

 $0, 1, \frac{117}{8}, \frac{62531}{216}, \frac{11424695}{1728}, \dots$

Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

u₋₁ = 0, u₀ = 1: Apéry numbers A(n)
 u₀ = 0, u₁ = 1: 2nd solution B(n)

 $1, 5, 73, 1445, 33001, \dots$ $0, 1, \frac{117}{8}, \frac{62531}{216}, \frac{11424695}{1728}, \dots$

$$\lim_{n \to \infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$

Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

• $u_{-1} = 0, u_0 = 1$: Apéry numbers A(n)

 $1, 5, 73, 1445, 33001, \dots$

• $u_0 = 0, u_1 = 1$: 2nd solution B(n)

$$0, 1, \frac{117}{8}, \frac{62531}{216}, \frac{11424695}{1728}, \dots$$

THM Apéry '78

$$\lim_{n \to \infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$

Characteristic polynomial $n^2 - 34n + 1$ has roots $(1 \pm \sqrt{2})^4 \approx 33.97, 0.0294$. A(n). B(n) grow like $(1+\sqrt{2})^{4n}$.

Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

• $u_{-1} = 0, u_0 = 1$: Apéry numbers A(n)• $u_0 = 0, u_1 = 1$: 2nd solution B(n)

 $1, 5, 73, 1445, 33001, \dots$ $0, 1, \frac{117}{8}, \frac{62531}{216}, \frac{11424695}{1728}, \dots$

THM Apéry '78

$$\lim_{n \to \infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$

- Characteristic polynomial $n^2 34n + 1$ has roots $(1 \pm \sqrt{2})^4 \approx 33.97, 0.0294$. A(n), B(n) grow like $(1+\sqrt{2})^{4n}$.
- By Perron's theorem, there is a (unique) solution

$$C(n) = \gamma A(n) + B(n)$$
 with $\lim_{n \to \infty} \frac{C(n+1)}{C(n)} = (1 - \sqrt{2})^4$.

Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

• $u_{-1} = 0, u_0 = 1$: Apéry numbers A(n)

 $1, 5, 73, 1445, 33001, \dots$

• $u_0 = 0, u_1 = 1$: 2nd solution B(n)

$$0, 1, \frac{117}{8}, \frac{62531}{216}, \frac{11424695}{1728}, \dots$$

THM Apéry '78

$$\lim_{n \to \infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$

- Characteristic polynomial $n^2 34n + 1$ has roots $(1 \pm \sqrt{2})^4 \approx 33.97, 0.0294$. A(n), B(n) grow like $(1+\sqrt{2})^{4n}$.
- By Perron's theorem, there is a (unique) solution

$$C(n) = \gamma A(n) + B(n) \quad \text{with} \quad \lim_{n \to \infty} \frac{C(n+1)}{C(n)} = (1 - \sqrt{2})^4.$$

$$0 = \gamma + \lim_{n \to \infty} \frac{B(n)}{A(n)}$$

Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

• $u_{-1} = 0, u_0 = 1$: Apéry numbers A(n)• $u_0 = 0, u_1 = 1$: 2nd solution B(n) $1, 5, 73, 1445, 33001, \dots$ $0, 1, \frac{117}{8}, \frac{62531}{216}, \frac{11424695}{1728}, \dots$

$$\lim_{n \to \infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$

- Characteristic polynomial $n^2-34n+1$ has roots $(1\pm\sqrt{2})^4\approx 33.97,0.0294$.
- By Perron's theorem, there is a (unique) solution

$$\begin{split} C(n) &= \gamma A(n) + B(n) & \text{ with } & \lim_{n \to \infty} \frac{C(n+1)}{C(n)} = (1-\sqrt{2})^4. \\ \downarrow & 0 &= \gamma + \lim_{n \to \infty} \frac{B(n)}{A(n)} \end{split}$$

COR
$$A(n)\zeta(3) - 6B(n)$$
 is "Perron's small solution".

This is a small linear form in 1 and $\zeta(3).$

• Apéry's recurrence has order 2 and degree 3:

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

• $u_{-1} = 0, u_0 = 1$: Apéry numbers A(n)• $u_0 = 0, u_1 = 1$: 2nd solution B(n) $1, 5, 73, 1445, 33001, \dots$ $0, 1, \frac{117}{8}, \frac{62531}{216}, \frac{11424695}{1728}, \dots$

THM Apéry '78

$$\lim_{n\to\infty}\frac{B(n)}{A(n)}=\frac{\zeta(3)}{6}$$

- Characteristic polynomial $n^2-34n+1$ has roots $(1\pm\sqrt{2})^4\approx 33.97,0.0294$.
- By Perron's theorem, there is a (unique) solution

$$C(n) = \gamma A(n) + B(n) \quad \text{with} \quad \lim_{n \to \infty} \frac{C(n+1)}{C(n)} = (1 - \sqrt{2})^4.$$

$$0 = \gamma + \lim_{n \to \infty} \frac{B(n)}{A(n)}$$

COR $A(n)\zeta(3) - 6B(n)$ is "Perron's small solution".

This is a small linear form in 1 and $\zeta(3)$.

? Tools to construct the solutions guaranteed by Perron's theorem?

Q

How to prove $\lim_{n\to\infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$?

Via explicit expressions:

$$B(n) = \frac{1}{6} \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} \left(\sum_{j=1}^{n} \frac{1}{j^{3}} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^{3} \binom{n}{m} \binom{n+m}{m}} \right)$$

How to prove
$$\lim_{n\to\infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$
?

• Via explicit expressions:

(Apéry, '78)

$$B(n) = \frac{1}{6} \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}} \right)$$

2 Via integral representations:

(Beukers, '79)

$$(-1)^n \int_0^1 \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n z^n (1-z)^n}{(1-(1-xy)z)^{n+1}} \mathrm{d}x \mathrm{d}y \mathrm{d}z = A(n)\zeta(3) - 6B(n)$$

Q

How to prove
$$\lim_{n\to\infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$
?

Via explicit expressions:

(Apéry, '78)

$$B(n) = \frac{1}{6} \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}} \right)$$

2 Via integral representations:

(Beukers, '79)

$$(-1)^n \int_0^1 \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n z^n (1-z)^n}{(1-(1-xy)z)^{n+1}} \mathrm{d}x \mathrm{d}y \mathrm{d}z = A(n)\zeta(3) - 6B(n)$$

3 Via hypergeometric series representations:

(Gutnik, '79)

$$-\frac{1}{2}\sum_{t=1}^{\infty}R_n'(t)=A(n)\zeta(3)-6B(n),\quad \text{where }R_n(t)=\left(\frac{(t-1)\cdots(t-n)}{t(t+1)\cdots(t+n)}\right)^2$$

Q

How to prove
$$\lim_{n\to\infty} \frac{B(n)}{A(n)} = \frac{\zeta(3)}{6}$$
?

Via explicit expressions:

(Apéry, '78)

$$B(n) = \frac{1}{6} \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}} \right)$$

Via integral representations:

(Beukers, '79)

$$(-1)^n \int_0^1 \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n z^n (1-z)^n}{(1-(1-xy)z)^{n+1}} \mathrm{d}x \mathrm{d}y \mathrm{d}z = A(n)\zeta(3) - 6B(n)$$

Via hypergeometric series representations:

(Gutnik, '79)

$$-\frac{1}{2} \sum_{t=1}^{\infty} R'_n(t) = A(n)\zeta(3) - 6B(n), \quad \text{where } R_n(t) = \left(\frac{(t-1)\cdots(t-n)}{t(t+1)\cdots(t+n)}\right)^2$$

Via modular forms

(Beukers '87, Zagier '03, Yang '07)

5 Via continued fractions (for recurrences of order 2)

 $A^{(s)}(n) = \sum_{k=0}^{n} \binom{n}{k}^{s} \text{ are the (generalized) Franel numbers.}$

DEF Franel 1894
$$A^{(s)}(n) = \sum_{k=0}^n \binom{n}{k}^s$$
 are the (generalized) Franel numbers.

•
$$A^{(1)}(n) = 2^n$$

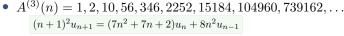
 $u_{n+1} = 2u_n$

$$A^{(s)}(n) = \sum_{k=0}^{n} \binom{n}{k}^s \text{ are the (generalized) Franel numbers.}$$

- $A^{(1)}(n) = 2^n$ $u_{n+1} = 2u_n$
- $A^{(2)}(n) = \binom{2n}{n}$ $(n+1)u_{n+1} = 2(2n+1)u_n$

$$\frac{\text{DEF}}{\text{Franel}}_{\text{1894}} \ A^{(s)}(n) = \sum_{k=0}^{n} \binom{n}{k}^{s} \text{ are the (generalized) Franel numbers.}$$

- $A^{(1)}(n) = 2^n$ $u_{n+1} = 2u_n$
- $A^{(2)}(n) = \binom{2n}{n}$ $(n+1)u_{n+1} = 2(2n+1)u_n$



(Franel, 1894)

$$A^{(s)}(n) = \sum_{k=0}^{n} {n \choose k}^{s}$$
 are the (generalized) Franel numbers.

- $A^{(1)}(n) = 2^n$ $u_{n+1} = 2u_n$
- $A^{(2)}(n) = \binom{2n}{n}$ $(n+1)u_{n+1} = 2(2n+1)u_n$

- $A^{(3)}(n)=1,2,10,56,346,2252,15184,104960,739162,\dots$ $(n+1)^2u_{n+1}=(7n^2+7n+2)u_n+8n^2u_{n-1} \tag{Franel, 1894}$
- $A^{(4)}(n) = 1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, \dots$ (Franel, 1895)

$$A^{(s)}(n) = \sum_{k=0}^{n} {n \choose k}^{s}$$
 are the (generalized) Franel numbers.

- $A^{(1)}(n) = 2^n$ $u_{n+1} = 2u_n$
- $u_{n+1} = 2u_n$ $A^{(2)}(n) = {2n \choose n}$ $(n+1)u_{n+1} = 2(2n+1)u_n$
- $A^{(3)}(n) = 1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, \dots$ $(n+1)^2 u_{n+1} = (7n^2 + 7n + 2)u_n + 8n^2 u_{n-1}$ (Franel, 1894)
- $A^{(4)}(n)=1,2,18,164,1810,21252,263844,3395016,44916498,\dots$ $(n+1)^3u_{n+1}=2(2n+1)(3n^2+3n+1)u_n+4n(16n^2-1)u_{n-1}$ (Francl, 1895)

The minimal recurrence for $A^{(s)}(n)$ has order $\lfloor \frac{s+1}{2} \rfloor$ and degree s-1. (spoiler: the degree part is not true)

CONJ The minimal recurrence for $A^{(s)}(n)$ has order $\lfloor \frac{s+1}{2} \rfloor$ and degree s-1.

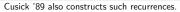
CONJ The minimal recurrence for $A^{(s)}(n)$ has order $\lfloor \frac{s+1}{2} \rfloor$ and degree s-1.

Perlstadt '86: order 3 recurrences for s = 5, 6 of degrees 6, 9computed using MACSYMA and creative telescoping

CONJ The minimal recurrence for $A^{(s)}(n)$ has order $\lfloor \frac{s+1}{2} \rfloor$ and degree s-1.

• Perlstadt '86: order 3 recurrences for s = 5, 6 of degrees 6, 9computed using MACSYMA and creative telescoping

THM $A^{(s)}(n)$ satisfies a recurrence of order $\lfloor \frac{s+1}{2} \rfloor$.



OPEN Is that recurrence of minimal order?

1895

CONJ The minimal recurrence for $A^{(s)}(n)$ has order $\lfloor \frac{s+1}{2} \rfloor$ and degree s-1.

• Perlstadt '86: order 3 recurrences for s = 5, 6 of degrees 6, 9computed using MACSYMA and creative telescoping

Bostan '21

OPEN Is that recurrence of minimal order?

Cusick '89 also constructs such recurrences.

CONJ The minimal recurrence for $A^{(s)}(n)$ has order $m = \lfloor \frac{s+1}{2} \rfloor$ and

 $\text{degree} = \begin{cases} \frac{1}{3}m(m^2 - 1) + 1, & \text{for even } s, \\ \frac{1}{2}m^3 - \frac{1}{2}m^2 + \frac{2}{3}m + \frac{(-1)^m - 1}{4}, & \text{for odd } s. \end{cases}$

If true, the degree grows like $s^3/24$.

• Verified at least for $s \leq 20$. using MinimalRecurrence from the LREtools Maple package

1895

CONJ The minimal recurrence for $A^{(s)}(n)$ has order $\lfloor \frac{s+1}{2} \rfloor$ and degree s-1.

• Perlstadt '86: order 3 recurrences for s = 5, 6 of degrees 6, 9computed using MACSYMA and creative telescoping

THM $A^{(s)}(n)$ satisfies a recurrence of order $\lfloor \frac{s+1}{2} \rfloor$.

Cusick '89 also constructs such recurrences.

OPEN Is that recurrence of minimal order?

Bostan '21

CONJ The minimal recurrence for $A^{(s)}(n)$ has order $m = \lfloor \frac{s+1}{2} \rfloor$ and

 $\text{degree} = \begin{cases} \frac{1}{3}m(m^2 - 1) + 1, & \text{for even } s, \\ \frac{1}{2}m^3 - \frac{1}{2}m^2 + \frac{2}{3}m + \frac{(-1)^m - 1}{4}, & \text{for odd } s. \end{cases}$

If true, the degree grows like $s^3/24$.

- Verified at least for $s \leq 20$. using MinimalRecurrence from the LREtools Maple package
- Goal: The minimal **telescoping** recurrence for $A^{(s)}(n)$ has order $\geq \lfloor \frac{s+1}{2} \rfloor$.

EG

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
: recurrence of order 2

(Apéry '78)

•
$$\sum_{k=0}^{n} {n \choose k}^s$$
: recurrence of order $\lfloor \frac{s+1}{2} \rfloor$

(Stoll '97)

Could there be recurrences of lower order?

...and higher degree

EG

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
: recurrence of order 2 (Apéry '78)

•
$$\sum_{k=0}^{n} \binom{n}{k}^{s}$$
: recurrence of order $\lfloor \frac{s+1}{2} \rfloor$ (Stoll '97)

Could there be recurrences of lower order?

...and higher degree

• For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek '92) an algorithm to compute order 1 (right) factors of recurrence operators.

EG

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
: recurrence of order 2

(Apéry '78)

(Stoll '97)

•
$$\sum_{k=0}^{n} {n \choose k}^{s}$$
: recurrence of order $\lfloor \frac{s+1}{2} \rfloor$

...and higher degree

Could there be recurrences of lower order?

• For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek '92) an algorithm to compute order 1 (right) factors of recurrence operators.

 There are algorithms for fixed recurrence operators for computing factors of differen(tial/ce) operators. (Beke 1894, Bronstein '94, Zhou-van Hoeij '19, ...)

EG

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
: recurrence of order 2 (Apéry '78)

•
$$\sum_{k=0}^{n} \binom{n}{k}^{s}$$
: recurrence of order $\lfloor \frac{s+1}{2} \rfloor$ (Stoll '97)

Could there be recurrences of lower order?

...and higher degree

- For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek '92) an algorithm to compute order 1 (right) factors of recurrence operators.
- There are algorithms for fixed recurrence operators for computing factors of differen(tial/ce) operators.

 (Beke 1894, Bronstein '94, Zhou-van Hoeij '19, ...)
- For Franel numbers, order 1 can be ruled out for all $s\geqslant 3$ (Yuan-Lu-Schmidt '08) using congruential properties.

EG

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
: recurrence of order 2 (Apéry '78)

•
$$\sum_{k=0}^{n} \binom{n}{k}^{s}$$
: recurrence of order $\lfloor \frac{s+1}{2} \rfloor$ (Stoll '97)

Could there be recurrences of lower order?

...and higher degree

- For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek '92) an algorithm to compute order 1 (right) factors of recurrence operators.
- There are algorithms for fixed recurrence operators for computing factors of differen(tial/ce) operators.

 (Beke 1894, Bronstein '94, Zhou-van Hoeij '19, ...)
- For Franel numbers, order 1 can be ruled out for all $s\geqslant 3$ (Yuan-Lu-Schmidt '08) using congruential properties.
- If $A(n+1)/A(n) \to \mu$ for $\mu \in \bar{\mathbb{Q}}$ of degree d, then A(n) cannot satisfy a recurrence over \mathbb{Q} of order less than d.

EG

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
: recurrence of order 2 (Apéry '78)

•
$$\sum_{k=0}^{n} {n \choose k}^s$$
: recurrence of order $\lfloor \frac{s+1}{2} \rfloor$ (Stoll '97)

Could there be recurrences of lower order?

...and higher degree

- For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek '92) an algorithm to compute order 1 (right) factors of recurrence operators.
- There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '94, Frontein '94, Chou-van Hoeij '19, ...)
- For Franel numbers, order 1 can be ruled out for all $s\geqslant 3$ (Yuan-Lu-Schmidt '08) using congruential properties.
- If $A(n+1)/A(n) \to \mu$ for $\mu \in \overline{\mathbb{Q}}$ of degree d, then A(n) cannot satisfy a recurrence over \mathbb{Q} of order less than d.

For Apéry numbers: $\mu=(1+\sqrt{2})^4$. For Franel numbers: $\mu=2^s$. Not helpful!

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\text{(fine print: for large enough } n)}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\textbf{ 1 Suppose:} \ \ P(n,N) \binom{n}{k}^s = b(n,k+1) - b(n,k) \\ \text{ for a hypergeometric term } b(n,k) = \operatorname{rat}(n,k) \binom{n}{k}^s.$$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\text{(fine print: for large enough } n)}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\textbf{ 1 Suppose:} \ \ P(n,N) \binom{n}{k-t}^s = b(n,k-t+1) - b(n,k-t) \\ \text{ for a hypergeometric term } b(n,k) = \operatorname{rat}(n,k) \binom{n}{k}^s.$$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\text{(fine print: for large enough } n)}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

- $\textbf{ Suppose:} \ \ P(n,N) \binom{n}{k-t}^s = b(n,k-t+1) b(n,k-t) \\ \text{ for a hypergeometric term } b(n,k) = \mathrm{rat}(n,k) \binom{n}{k}^s.$
- $P(n,N) \sum_{k=1}^{\beta-1} {n \choose k-t}^s = b(n,\beta-t) b(n,\alpha-t)$ b(n,t) entire for $n\gg 0$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\text{(fine print: for large enough } n)}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\textbf{ 1 Suppose:} \ \ P(n,N) \binom{n}{k-t}^s = b(n,k-t+1) - b(n,k-t) \\ \text{ for a hypergeometric term } b(n,k) = \operatorname{rat}(n,k) \binom{n}{k}^s.$$

$$2 \ P(n,N) \sum_{k=\alpha}^{\beta-1} \binom{n}{k-t}^s = b(n,\beta-t) - b(n,\alpha-t) \qquad \qquad b(n,t) \text{ entire for } n \gg 0$$

$$\alpha \ll 0 \text{ and } \beta \gg n \qquad \qquad = O(t^s) \qquad \qquad \text{since } b(n,t) = \operatorname{rat}(n,t) \binom{n}{t}^s$$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\textbf{1 Suppose:} \ \ P(n,N) \binom{n}{k-t}^s = b(n,k-t+1) - b(n,k-t) \\ \text{ for a hypergeometric term } b(n,k) = \operatorname{rat}(n,k) \binom{n}{k}^s.$$

$$2 \ P(n,N) \sum_{k=\alpha}^{\beta-1} \binom{n}{k-t}^s = b(n,\beta-t) - b(n,\alpha-t) \qquad {}_{b(n,t) \text{ entire for } n \gg 0}$$

$$lpha\ll 0$$
 and $eta\gg n$ $=O(t^s)$ since $b(n,t)=\mathrm{rat}(n,t)inom{n}{t}^s$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $A_j^{(s)}(n)$ if $0 \leqslant 2j < s$. (fine print: for large enough n)

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\textbf{1 Suppose:} \ \ P(n,N) \binom{n}{k-t}^s = b(n,k-t+1) - b(n,k-t) \\ \text{for a hypergeometric term } b(n,k) = \operatorname{rat}(n,k) \binom{n}{k}^s.$$

$$2 \ P(n,N) \sum_{k=\alpha}^{\beta-1} \binom{n}{k-t}^s = b(n,\beta-t) - b(n,\alpha-t) \qquad {}_{b(n,t) \text{ entire for } n \gg 0}$$

$$\alpha \ll 0 \text{ and } \beta \gg n \\ \hspace{1cm} = O \big(t^s \big) \\ \hspace{1cm} \text{since } b(n,t) = \operatorname{rat}(n,t) \binom{n}{t}^s$$

3
$$A^{(s)}(n,t) = \left(\frac{\pi t}{\sin(\pi t)}\right)^s \sum_{k=0}^n \binom{n}{k-t}^s$$
 and so $P(n,N)A^{(s)}(n,t) = O(t^s)$.

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \ge 0} A_{j}^{(s)}(n) t^{2j}$$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \ge 0} A_{j}^{(s)}(n) t^{2j}$$

$$\begin{array}{ll} \text{THM} \\ \text{S-Zudilin} \\ \text{21} \end{array} \lim_{n \to \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \ \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0}$$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\begin{array}{ll} \mathbf{THM} & \displaystyle \lim_{s \rightarrow \mathbf{z} \text{udillin} \atop 21} & \displaystyle \lim_{n \rightarrow \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \, \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0} \end{array}$$

Our proof is based on showing locally uniform convergence in t of

$$\lim_{n \to \infty} \frac{A^{(s)}(n,t)}{\sum\limits_{k=0}^{n} \binom{n}{k}^{s}} = \left(\frac{\pi t}{\sin(\pi t)}\right)^{s}.$$

THM S-Zudilin Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^{\circ}$ solved by $A_{j}^{(s)}(n)$ if $0 \leqslant 2j < s$. (fine print: for large enough n)

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \ge 0} A_{j}^{(s)}(n) t^{2j}$$

$$\begin{array}{ll} \text{THM} \\ & \text{S-Zudilin} \\ & \text{21} \end{array} \lim_{n \to \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \ \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0}$$

Our proof is based on showing locally uniform convergence in t of

$$\lim_{n \to \infty} \frac{A^{(s)}(n,t)}{\sum_{k=0}^{n} \binom{n}{k}^{s}} = \left(\frac{\pi t}{\sin(\pi t)}\right)^{s}.$$

"poof" For large n and $k \approx n/2$,

$$\prod_{i=1}^k \left(1 - \frac{t}{j}\right) \prod_{i=1}^{n-k} \left(1 + \frac{t}{j}\right) \approx \prod_{i=1}^{\infty} \left(1 - \frac{t}{j}\right) \left(1 + \frac{t}{j}\right) = \frac{\sin(\pi t)}{\pi t}.$$

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\begin{array}{ll} \text{THM} \\ \text{S-Zudilin} \\ \text{ } 21 \end{array} \lim_{n \to \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \ \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0}$$

In the case j = 1, this settles previous conjectures:

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\begin{array}{ll} \textbf{THM} & \displaystyle \lim_{s \rightarrow \textbf{Zudilin}} & \displaystyle \lim_{n \rightarrow \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \; \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0} \end{array}$$

- In the case i=1, this settles previous conjectures:
 - s = 3, 4 numerically observed by Cusick (1979)

 - $s \ge 3$ conjectured by Chamberland-S (2020)

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\begin{array}{ll} \text{THM} & \displaystyle \lim_{s \text{-Zudillin} \atop 21} \lim_{n \to \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \ \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0} \end{array}$$

- In the case i=1, this settles previous conjectures:
 - s = 3, 4 numerically observed by Cusick (1979)

 - s = 3 proved by Zagier (2009)
 s = 5 conjectured by Almkvist, van Straten, Zudilin (2008)
 - $s \ge 3$ conjectured by Chamberland-S (2020)

THM s-zudilin Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^{s}$ has order at least $\lfloor \frac{s+1}{2} \rfloor$.

THM S-Zudilin 21 Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ solved by $\frac{A_j^{(s)}(n)}{\binom{\text{fine print: for large enough }n)}}$

$$A^{(s)}(n,t) := \sum_{k=0}^{n} \binom{n}{k}^{s} \left[\prod_{j=1}^{k} \left(1 - \frac{t}{j} \right) \prod_{j=1}^{n-k} \left(1 + \frac{t}{j} \right) \right]^{-s} = \sum_{j \geqslant 0} A_{j}^{(s)}(n) t^{2j}$$

$$\begin{array}{ll} \text{THM} & \displaystyle \lim_{s \text{-Zudillin} \atop 21} \lim_{n \to \infty} \frac{A_j^{(s)}(n)}{A^{(s)}(n)} = [t^{2j}] \ \left(\frac{\pi t}{\sin(\pi t)}\right)^s \in \pi^{2j} \mathbb{Q}_{>0} \end{array}$$

- In the case i=1, this settles previous conjectures:
 - s = 3, 4 numerically observed by Cusick (1979)

 - s=3 proved by Zagier (2009) s=5 conjectured by Almkvist, van Straten, Zudilin (2008)
 - $s \ge 3$ conjectured by Chamberland-S (2020)

THM s-zudilin Any telescoping recurrence for $\sum_{k=0}^{n} \binom{n}{k}^s$ has order at least $\lfloor \frac{s+1}{2} \rfloor$.

 This implies Franel's conjecture on the exact order if the minimal-order recurrence is telescoping. True at least for $s \leq 30$.

Collecting some thoughts...

- Applications of Apéry limits:
 - Irrationality proofs for $\zeta(2)$ and $\zeta(3)$
 - Explicitly construct the solutions guaranteed by Perron's theorem
 - Continued fractions
 - Prove lower bounds on orders of recurrences

new!

Collecting some thoughts...

- Applications of Apéry limits:
 - Irrationality proofs for $\zeta(2)$ and $\zeta(3)$
 - Explicitly construct the solutions guaranteed by Perron's theorem
 - Continued fractions
 - Prove lower bounds on orders of recurrences

new

- Many open questions! For instance:
 - Cusick '89 and Stoll '97 construct recurrences for Franel numbers.
 Can these constructions produce telescoping recurrences?
 - What can we learn from other families of binomial sums?
 Also, it would be nice to simplify some of the technical steps in the arguments.
 - Can we (uniformly) establish the conjectural Apéry limits for CY DE's?
 - Can we explain when CT falls short? And algorithmically "fix" this issue?

Interpolated sequences and critical L-values of modular forms

based on joint work with:

R. Osburn, A. Straub

Interpolated sequences and critical L-values of modular forms Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory

Editors: J. Blümlein, P. Paule and C. Schneider; Springer, 2019, p. 327-349

Robert Osburn (University College Dublin)

L-value interpolations

Ahlgren-Ono 2000

THM For primes p > 2, the Apéry numbers for $\zeta(3)$ satisfy

$$A(\frac{p-1}{2}) \equiv a_f(p) \pmod{p^2},$$

with
$$f(\tau) = \eta(2\tau)^4 \eta(4\tau)^4 = \sum_{n \ge 1} a_f(n) q^n \in S_4(\Gamma_0(8)).$$

conjectured (and proved modulo p) by Beukers '87

L-value interpolations

THM Ahlgren-Ono 2000

THM For primes p>2, the Apéry numbers for $\zeta(3)$ satisfy

$$A(\frac{p-1}{2}) \equiv a_f(p) \pmod{p^2},$$

with
$$f(\tau) = \eta(2\tau)^4 \eta(4\tau)^4 = \sum_{n\geqslant 1} a_f(n) q^n \in S_4(\Gamma_0(8)).$$

conjectured (and proved modulo p) by Beukers '87

THM Zagier 2016

$$A(-\frac{1}{2}) = \frac{16}{\pi^2} L(f, 2)$$

- Here, $A(x) = \sum_{k=0}^{\infty} \binom{x}{k}^2 \binom{x+k}{k}^2$ is absolutely convergent for $x \in \mathbb{C}$.
- Predicted by Golyshev based on motivic considerations, the connection of the Apéry numbers with the double covering of a family of K3 surfaces, and the Tate conjecture.

D. Zagier Arithmetic and topology of differential equations Proceedings of the 2016 ECM, 2017

• Zagier found 6 sporadic integer solutions $C_*(n)$ to:

st one of $A ext{-}F$

$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}$$
 $u_{-1} = 0, u_0 = 1$

THM 1985 -2019

There exists a weight 3 newform $f_*(\tau) = \sum_{n\geqslant 1} \gamma_{n,*} q^n$, so that

$$C_*(\frac{p-1}{2}) \equiv \gamma_{p,*} \pmod{p}.$$

• Zagier found 6 sporadic integer solutions $C_*(n)$ to:

* one of $m{A} ext{-}m{F}$

$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}$$

 $u_{-1} = 0, u_0 = 1$

1985 -2019

There exists a weight 3 newform $f_*(\tau) = \sum_{n\geqslant 1} \gamma_{n,*} q^n$, so that

$$C_*(\frac{p-1}{2}) \equiv \gamma_{p,*} \pmod{p}.$$

- C, D proved by Beukers-Stienstra ('85); A follows from their work
- E proved using a result Verrill ('10); B through p-adic analysis
- F conjectured by Osburn–S and proved by Kazalicki ('19) using Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

• Zagier found 6 sporadic integer solutions $C_*(n)$ to:

* one of A-F

$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}$$

$$u_{-1} = 0, u_0 = 1$$

THM 1985 2019

There exists a weight 3 newform $f_*(\tau) = \sum_{n \geq 1} \gamma_{n,*} q^n$, so that

$$C_*(\frac{p-1}{2}) \equiv \gamma_{p,*} \pmod{p}.$$

- C, D proved by Beukers-Stienstra ('85); A follows from their work
- E proved using a result Verrill ('10); B through p-adic analysis
- F conjectured by Osburn-S and proved by Kazalicki ('19) using Atkin-Swinnerton-Dyer congruences for non-congruence cusp forms

Osburn S '19

THM For * one of A-F, except E, there is $\alpha_* \in \mathbb{Z}$ such that

$$C_*(-\frac{1}{2}) = \frac{\alpha_*}{\pi^2} L(f_*, 2).$$

• Zagier found 6 sporadic integer solutions $C_*(n)$ to:

* one of A-F

$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}$$

 $u_{-1} = 0, u_0 = 1$

THM 1985 2019

There exists a weight 3 newform $f_*(\tau) = \sum_{n \geq 1} \gamma_{n,*} q^n$, so that

$$C_*(\frac{p-1}{2}) \equiv \gamma_{p,*} \pmod{p}.$$

- C, D proved by Beukers-Stienstra ('85); A follows from their work
- E proved using a result Verrill ('10); B through p-adic analysis
- F conjectured by Osburn-S and proved by Kazalicki ('19) using Atkin-Swinnerton-Dyer congruences for non-congruence cusp forms

Osburn S '19

THM For * one of A-F, except E, there is $\alpha_* \in \mathbb{Z}$ such that

$$C_*(-\frac{1}{2}) = \frac{\alpha_*}{\pi^2} L(f_*, 2).$$

For sequence
$$E$$
, $\underset{x=-1/2}{\operatorname{res}} C_{E}(x) = \frac{6}{\pi^{2}} L(f_{E}, 1).$

B $\sum_{k=0}^{\lfloor n/3\rfloor} (-1)^k 3^{n-3k} \binom{n}{3k} \frac{(3k)!}{k!^3}$

 $* \mid C_*(n)$

A $\left| \sum_{k=0}^{n} {n \choose k}^3 \right|$

 α_*

8

12

16

6

$$\binom{k}{n}$$

$$\eta(4\tau)^6$$

 $\eta(4\tau)^6$

 $f_*(\tau)$

 N_{*}

32

16

8

CM

 $\mathbb{Q}(\sqrt{-3})$

 $\mathbb{Q}(\sqrt{-1})$

 $24 \mid \mathbb{Q}(\sqrt{-6}) \mid 6$

$$\mathbb{Q}(\sqrt{-1}) \mid 8$$

 $C_*(-\frac{1}{2}) = \frac{\alpha_*}{\pi^2} L(f_*, 2)$

$$\begin{array}{c|c} \mathbf{D} & \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{n} \\ \hline \mathbf{E} & \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} \binom{2(n-k)}{n-k} \end{array}$$

Numbers à la Apéry and their remarkable properties

 $\mathbf{C} \mid \sum_{k=0}^{n} {n \choose k}^2 {2k \choose k}$

$$\mathbf{F} \quad \bigg| \quad \sum_{k=0}^{n} (-1)^k 8^{n-k} \binom{n}{k} C_{\mathbf{A}}(k)$$

$$\eta(2\tau)^3\eta(6\tau)^3$$

 $\eta(\tau)^2 \eta(2\tau) \eta(4\tau) \eta(8\tau)^2$

 $q - 2q^2 + 3q^3 + \dots$

Q What is the proper way of defining $C(-\frac{1}{2})$?

EG a(n) = n! is interpolated by $a(x) = \Gamma(x+1) = \int_0^\infty t^x e^{-t} dt$.

What is the proper way of defining $C(-\frac{1}{2})$?

EG a(n) = n! is interpolated by $a(x) = \Gamma(x+1) = \int_0^\infty t^x e^{-t} dt$.

$$\int_0^\infty \left(a(0) - a(1)x^2 + a(2)x^4 - \ldots \right) dx = \frac{\pi}{2}a(-\frac{1}{2})$$

What is the proper way of defining $C(-\frac{1}{2})$?

EG a(n) = n! is interpolated by $a(x) = \Gamma(x+1) = \int_0^\infty t^x e^{-t} dt$.

$$\int_0^\infty \left(a(0) - a(1)x^2 + a(2)x^4 - \ldots \right) dx = \frac{\pi}{2}a(-\frac{1}{2})$$

$$\int_0^\infty \frac{1}{1+x^2S} \cdot a(0) \, \mathrm{d}x = \frac{\pi}{2} S^{-1/2} \cdot a(0)$$

(Glaisher's formal proof, simplified by O'Kinealy)

Here, S is the shift operator: $S \cdot b(n) = b(n+1)$

Interpolating sequences: Ramanujan's master theorem

$$\int_0^\infty x^{s-1} \left(a(0) - xa(1) + x^2 a(2) - \dots \right) dx = \frac{\pi}{\sin s\pi} a(-s)$$

Interpolating sequences: Ramanujan's master theorem

$$\int_0^\infty x^{s-1} \left(a(0) - xa(1) + x^2 a(2) - \dots \right) dx = \frac{\pi}{\sin s\pi} a(-s)$$

for $0 < \text{Re } s < \delta$, provided that

- a is analytic on $H(\delta) = \{z \in \mathbb{C} : \text{Re } z \geqslant -\delta\},$
- $|a(x+iy)| < Ce^{\alpha|x|+\beta|y|}$ for some $\beta < \pi$.

Interpolating sequences: Ramanujan's master theorem

$$\int_0^\infty x^{s-1} \left(a(0) - xa(1) + x^2 a(2) - \ldots \right) dx = \frac{\pi}{\sin s\pi} a(-s)$$

for $0 < \text{Re } s < \delta$, provided that

- a is analytic on $H(\delta) = \{z \in \mathbb{C} : \text{Re } z \geqslant -\delta\},$
- $|a(x+iy)| < Ce^{\alpha|x|+\beta|y|}$ for some $\beta < \pi$.

Suppose a satisfies the conditions for RMT. If

$$a(0) = 0, \quad a(1) = 0, \quad a(2) = 0, \quad \dots,$$

then a(z) = 0 identically.

However, we will see that our interpolations do not arise in this way.

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

$$(x+2)^3 A(x+2) - (2x+3)(17x^2 + 51x + 39)A(x+1) + (x+1)^3 A(x) = 0 \quad \text{for all } x \in \mathbb{Z}_{\geqslant 0}$$

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

$$(x+2)^{3}A(x+2) - (2x+3)(17x^{2} + 51x + 39)A(x+1) + (x+1)^{3}A(x) = \frac{8}{\pi^{2}}(2x+3)\sin^{2}(\pi x)$$

In particular, A(x) does not satisfy the (vertical) growth conditions of RMT.

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

$$(x+2)^3 A(x+2) - (2x+3)(17x^2 + 51x + 39)A(x+1) + (x+1)^3 A(x) = \frac{8}{\pi^2} (2x+3)\sin^2(\pi x)$$

In particular, A(x) does not satisfy the (vertical) growth conditions of RMT.

- For the $\zeta(2)$ Apéry numbers B(n), we use $B(x) = \sum_{k=0}^{\infty} \binom{x}{k}^2 \binom{x+k}{k}$.
 - However:
 - The series diverges if Re x < -1.
 - $Q(x,S_x)B(x)=0$ where $Q(x,S_x)$ is Apéry's recurrence operator.

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

diverges for $n \not\in \mathbb{Z}_{\geqslant 0}$

$$C_{\mathbf{C}}(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{2k}{k}$$

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

diverges for $n \not\in \mathbb{Z}_{\geqslant 0}$

$$C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^{2} {2k \choose k} = {}_{3}F_{2} {-n, -n, \frac{1}{2} \choose 1, 1} 4$$

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

diverges for $n \notin \mathbb{Z}_{\geqslant 0}$

EG (C)

$$C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^{2} {2k \choose k} = {}_{3}F_{2} {-n, -n, \frac{1}{2} | 4}$$

We use the interpolation $C_{\mathbf{C}}(x) = \operatorname{Re} \,_{3}F_{2}\left(\begin{array}{c} -x, -x, \frac{1}{2} \\ 1, 1 \end{array} \middle| 4 \right).$

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

diverges for $n \notin \mathbb{Z}_{\geqslant 0}$

EG (C)

$$C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^{2} {2k \choose k} = {}_{3}F_{2} {-n, -n, \frac{1}{2} | 4}$$

We use the interpolation $C_{\mathbf{C}}(x) = \operatorname{Re} \,_{3}F_{2}\left(\begin{array}{c} -x, -x, \frac{1}{2} \\ 1, 1 \end{array} \middle| 4 \right).$

$$C_{\mathbf{E}}(n) = \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} \binom{2(n-k)}{n-k}$$

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

diverges for $n \not\in \mathbb{Z}_{\geqslant 0}$

EG (C)

$$C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^{2} {2k \choose k} = {}_{3}F_{2} {-n, -n, \frac{1}{2} \choose 1, 1} 4$$

We use the interpolation $C_{\mathbf{C}}(x) = \operatorname{Re} \,_{3}F_{2}\left(\begin{array}{c} -x, -x, \frac{1}{2} \\ 1, 1 \end{array} \middle| 4 \right).$

$$C_{\mathbf{E}}(n) = \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} \binom{2(n-k)}{n-k} = \binom{2n}{n} {}_{3}F_{2} \begin{pmatrix} -n, -n, \frac{1}{2} \\ \frac{1}{2} - n, 1 \end{pmatrix} - 1$$

This has a simple pole at $n = -\frac{1}{2}$.

- What is the proper way of defining $C(-\frac{1}{2})$?
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

EG

$$C(n) = \sum_{k_1, k_2, k_3, k_4 = 0}^{n} \prod_{i=1}^{4} \binom{n}{k_i} \binom{n + k_i}{k_i}.$$

How to compute $C(-\frac{1}{2})$?

- RE: order 4, degree 15
- DE: order 7, degree 17 (2 analytic solutions)

- What is the proper way of defining $C(-\frac{1}{2})$? Q
- For Apéry numbers A(n), Zagier used $A(x) = \sum_{k=0}^{\infty} {x \choose k}^2 {x+k \choose k}^2$.

EG

$$C(n) = \sum_{k_1, k_2, k_3, k_4 = 0}^{n} \prod_{i=1}^{4} \binom{n}{k_i} \binom{n+k_i}{k_i}.$$

How to compute $C(-\frac{1}{2})$?

• RE: order 4, degree 15

• DE: order 7, degree 17 (2 analytic solutions)

McCarthy. Osburn, S 2020

THM For any odd prime p,

$$C(\frac{p-1}{2}) \equiv \gamma(p) \pmod{p^2}, \qquad \eta^{12}(2\tau) = \sum_{n \ge 1} \gamma(n)q^n \in S_6(\Gamma_0(4))$$

Q Is there a Zagier-type interpolation?

Beukers' proof of the irrationality of $\zeta(3)$

$$I_n = (-1)^n \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n}{(1-xy)^{n+1}} dxdy$$

$$J_n = \frac{1}{2} \int_0^1 \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n w^n (1-w)^n}{(1-(1-xy)w)^{n+1}} dxdydw$$

Beukers showed that

$$I_n = a(n)\zeta(2) + \tilde{a}(n), \qquad J_n = b(n)\zeta(3) + \tilde{b}(n)$$

Beukers' proof of the irrationality of $\zeta(3)$

$$I_n = (-1)^n \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n}{(1-xy)^{n+1}} dxdy$$

$$J_n = \frac{1}{2} \int_0^1 \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n w^n (1-w)^n}{(1-(1-xy)w)^{n+1}} dxdydw$$

Beukers showed that

$$I_n = a(n)\zeta(2) + \tilde{a}(n), \qquad J_n = b(n)\zeta(3) + \tilde{b}(n)$$

where $\tilde{a}(n), \tilde{b}(n) \in \mathbb{Q}$ and

$$a(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}, \qquad b(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2.$$

Beukers' proof of the irrationality of $\zeta(3)$

$$I_n = (-1)^n \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n}{(1-xy)^{n+1}} dxdy$$

$$J_n = \frac{1}{2} \int_0^1 \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n w^n (1-w)^n}{(1-(1-xy)w)^{n+1}} dxdydw$$

Beukers showed that

$$I_n = a(n)\zeta(2) + \tilde{a}(n), \qquad J_n = b(n)\zeta(3) + \tilde{b}(n)$$

where $\tilde{a}(n), \tilde{b}(n) \in \mathbb{Q}$ and

$$a(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}, \qquad b(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2.$$

• Brown realizes these as period integrals, for N=5,6, on the moduli space $\mathcal{M}_{0,N}$ of curves of genus 0 with N marked points.

Brown's cellular integrals

Period integrals on $\mathcal{M}_{0,N}$ are Q-linear combinations of multiple zeta values (MZVs). (conjectured by Goncharov-Manin, 2004)

Examples of such integrals can be written as:

$$(a_i, b_j, c_{ij} \in \mathbb{Z})$$

$$\int_{0 < t_1 < \dots < t_{N-3} < 1} \prod_{i=1}^{a_i} t_i^{a_i} (1 - t_j)^{b_j} (t_i - t_j)^{c_{ij}} dt_1 \dots dt_{N-3}$$

• Typically involve MZVs of all weights $\leq N-3$.

Brown's cellular integrals

Period integrals on $\mathcal{M}_{0.N}$ are \mathbb{Q} -linear combinations of multiple zeta values (MZVs). (conjectured by Goncharov-Manin, 2004)

Examples of such integrals can be written as:

$$(a_i, b_j, c_{ij} \in \mathbb{Z})$$

$$\int_{0 < t_1 < \dots < t_{N-3} < 1} \prod_{i=1}^{n} t_i^{a_i} (1 - t_j)^{b_j} (t_i - t_j)^{c_{ij}} dt_1 \dots dt_{N-3}$$

- Typically involve MZVs of all weights $\leq N-3$.
- Brown constructs families of integrals $I_{\sigma}(n)$, for which MZVs of submaximal weight vanish.

Here, σ are certain ("convergent") permutations in S_N .

N	5	6	7	8	9	10	11
$\#$ of σ	1	1	5	17	105	771	7028

- One of the 17 permutations for N=8 is $\sigma=(8,3,6,1,4,7,2,5)$.
- ullet Cellular integral $I_{\sigma}(n) = \int_{\Delta} f_{\sigma}^{n} \; \omega_{\sigma}$ where $\Delta: 0 < t_{2} < \ldots < t_{6} < 1$

$$f_{\sigma} = \frac{(-t_2)(t_2 - t_3)(t_3 - t_4)(t_4 - t_5)(t_5 - t_6)(t_6 - 1)}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}, \quad \omega_{\sigma} = \frac{dt_2dt_3dt_4dt_5dt_6}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}.$$

- One of the 17 permutations for N=8 is $\sigma=(8,3,6,1,4,7,2,5)$.
- Cellular integral $I_{\sigma}(n) = \int_{\Delta} f_{\sigma}^{n} \; \omega_{\sigma}$ where $\Delta: 0 < t_{2} < \ldots < t_{6} < 1$

$$f_{\sigma} = \frac{(-t_2)(t_2 - t_3)(t_3 - t_4)(t_4 - t_5)(t_5 - t_6)(t_6 - 1)}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}, \quad \omega_{\sigma} = \frac{dt_2dt_3dt_4dt_5dt_6}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}.$$

$$\begin{array}{ll} \textbf{EG} \\ \textbf{Panzer:} \\ \textbf{HyperInt} \\ & I_{\sigma}(0) = 16\zeta(5) - 8\zeta(3)\zeta(2) \\ & I_{\sigma}(1) = 33I_{\sigma}(0) - 432\zeta(3) + 316\zeta(2) - 26 \\ & I_{\sigma}(2) = 8929I_{\sigma}(0) - 117500\zeta(3) + \frac{515189}{6}\zeta(2) - \frac{331063}{48} \end{array}$$

- One of the 17 permutations for N=8 is $\sigma=(8,3,6,1,4,7,2,5)$.
- Cellular integral $I_{\sigma}(n) = \int_{\Delta} f_{\sigma}^{n} \; \omega_{\sigma}$ where $_{\Delta \,:\, 0 \,<\, t_{2} \,<\, \ldots\, <\, t_{6} \,<\, 1}$

$$f_{\sigma} = \frac{(-t_2)(t_2 - t_3)(t_3 - t_4)(t_4 - t_5)(t_5 - t_6)(t_6 - 1)}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}, \quad \omega_{\sigma} = \frac{dt_2dt_3dt_4dt_5dt_6}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}.$$

$$I_{\sigma}(0) = 16\zeta(5) - 8\zeta(3)\zeta(2)$$

$$I_{\sigma}(1) = 33I_{\sigma}(0) - 432\zeta(3) + 316\zeta(2) - 26$$

$$I_{\sigma}(2) = 8929I_{\sigma}(0) - 117500\zeta(3) + \frac{515189}{6}\zeta(2) - \frac{331063}{48}$$

• OGF of $I_{\sigma}(n)$ satisfies a Picard–Fuchs DE of order 7 (Lairez). With 2-dimensional space of analytic solutions at 0.

- One of the 17 permutations for N=8 is $\sigma=(8,3,6,1,4,7,2,5)$.
- ullet Cellular integral $I_{\sigma}(n) = \int_{\Delta} f_{\sigma}^n \; \omega_{\sigma} \; ext{where}$ $\Delta: 0 < t_2 < \ldots < t_6 < 1$

$$f_{\sigma} = \frac{(-t_2)(t_2 - t_3)(t_3 - t_4)(t_4 - t_5)(t_5 - t_6)(t_6 - 1)}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}, \quad \omega_{\sigma} = \frac{dt_2dt_3dt_4dt_5dt_6}{(t_3 - t_6)(t_6)(-t_4)(t_4 - 1)(1 - t_2)(t_2 - t_5)}.$$

$$I_{\sigma}(0) = 16\zeta(5) - 8\zeta(3)\zeta(2)$$

$$I_{\sigma}(1) = 33I_{\sigma}(0) - 432\zeta(3) + 316\zeta(2) - 26$$

$$I_{\sigma}(2) = 8929I_{\sigma}(0) - 117500\zeta(3) + \frac{515189}{6}\zeta(2) - \frac{331063}{48}$$

- OGF of $I_{\sigma}(n)$ satisfies a Picard–Fuchs DE of order 7 (Lairez). With 2-dimensional space of analytic solutions at 0.
- The leading coefficients of $I_{\sigma}(n)$ are:

 $1, 33, 8929, 4124193, 2435948001, 1657775448033, \dots$

One of Brown's cellular integrals, cont'd

- One of the 17 permutations for N=8 is $\sigma=(8,3,6,1,4,7,2,5)$.
- Cellular integral $I_{\sigma}(n)=\int_{\Delta}f_{\sigma}^{n}\;\omega_{\sigma}$ has leading coefficients $A_{\sigma}(n)$:

 $1, 33, 8929, 4124193, 2435948001, 1657775448033, \dots$

LEM McCarthy, Osburn, S 2020

$$A_{\sigma}(n) = \sum_{\substack{k_1, k_2, k_3, k_4 = 0 \\ k_1 + k_2 = k_3 + k_4}}^{n} \prod_{i=1}^{4} \binom{n}{k_i} \binom{n+k_i}{k_i}$$

One of Brown's cellular integrals, cont'd

- One of the 17 permutations for N = 8 is $\sigma = (8, 3, 6, 1, 4, 7, 2, 5)$.
- Cellular integral $I_{\sigma}(n) = \int_{\Lambda} f_{\sigma}^{n} \omega_{\sigma}$ has leading coefficients $A_{\sigma}(n)$:

 $1, 33, 8929, 4124193, 2435948001, 1657775448033, \dots$

LEM McCarthy, Osburn, S 2020

$$A_{\sigma}(n) = \sum_{\substack{k_1, k_2, k_3, k_4 = 0 \\ k_1 + k_2 = k_3 + k_4}}^{n} \prod_{i=1}^{4} \binom{n}{k_i} \binom{n+k_i}{k_i}$$

McCarthy, 2020

CONJ For each $N \ge 5$ and convergent σ_N , the leading coefficients Osburn, S $A_{\sigma_N}(n)$ satisfy $(p \geqslant 5)$

$$A_{\sigma_N}(mp^r) \equiv A_{\sigma_N}(mp^{r-1}) \pmod{p^{3r}}.$$

For N=5,6 these are the supercongruences proved by Beukers and Coster.

One of Brown's cellular integrals, cont'd

- One of the 17 permutations for N=8 is $\sigma=(8,3,6,1,4,7,2,5)$.
- Cellular integral $I_{\sigma}(n)=\int_{\Delta}f_{\sigma}^{n}\;\omega_{\sigma}$ has leading coefficients $A_{\sigma}(n)$:

 $1, 33, 8929, 4124193, 2435948001, 1657775448033, \dots$

LEM McCarthy, Osburn, S 2020

$$A_{\sigma}(n) = \sum_{\substack{k_1, k_2, k_3, k_4 = 0 \\ k_1 + k_2 = k_3 + k_4}}^{n} \prod_{i=1}^{4} \binom{n}{k_i} \binom{n+k_i}{k_i}$$

THM For any odd prime p, McCarthy,

McCarthy, Osburn, S 2020

$$A_{\sigma}\left(\frac{p-1}{2}\right) \equiv \gamma(p) \pmod{p^2}$$

where $\eta^{12}(2\tau) = \sum_{n\geq 1} \gamma(n)q^n$ is the unique newform in $S_6(\Gamma_0(4))$.

Collecting some thoughts...

Golyshev and Zagier observed that for

$$A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2, \qquad f(\tau) = \eta (2\tau)^4 \eta (4\tau)^4 = \sum_{n \ge 1} \alpha_n q^n$$

the known modular congruences have a continuous analog:

weight 4

$$A(\frac{p-1}{2}) \equiv \alpha_p \pmod{p^2},$$
 $A(-\frac{1}{2}) = \frac{16}{\pi^2} L(f, 2)$

- We proved that the same phenomenon holds for:
 - all six sporadic sequences of Zagier

weight 3

an infinite family of leading coefficients of Brown's cellular integrals

odd weight k

Proofs are computational and not satisfactorily uniform

Do all of these have the same motivic explanation?

Can Zagier's motivic approach (relying on Tate conjecture) be worked out explicitly in these cases?

• Further examples exist. What is the natural framework?

Apéry-like sequences, CM modular forms, hypergeometric series, ...

• How to characterize the analytic interpolations abstractly?

We used suitable binomial sums. But the interpolations are not unique! (Some grow like $\sin(\pi x)$ as $x \to i\infty$.)

Polynomial analogs?

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks