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π, ζ(3), ζ(5), . . . are algebraically independent over Q.CONJ

• Apéry (1978): ζ(3) is irrational

• Open: ζ(5) is irrational

• Open: ζ(3) is transcendental

• Open: ζ(3)/π3 is irrational
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Numbers à la Apéry and their remarkable properties Armin Straub
1 / 85

http://arminstraub.com/talks


Rough outline

• Introducing Apéry-like numbers
• they are integer solutions to certain three-term recurrences
• are all of them known?

• Apéry-like numbers have interesting properties
• connection to modular forms
• special p-adic properties
• multivariate extensions
• polynomial analogs (skipped today)

• A walk down memory lane: running into Apéry-like numbers
• planar random walks
• series for 1/π
• positivity of rational functions
• counting points on algebraic varieties (skipped today)
• . . .
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The Riemann zeta function

• The Riemann zeta function is the analytic continuation of

ζ(s) =

∞∑

n=1

1

ns
=

∏

p prime

1

1− p−s
.

• Its zeros and values are fundamental, yet mysterious to this day.

If ζ(s) = 0 then s ∈ {−2,−4, . . .} or Re (s) = 1
2 .

CONJ
RH

ζ(2) =
π2

6
, ζ(4) =

π4

90
, . . . , ζ(2n) =

(−1)n+1(2π)2nB2n

2(2n)!

THM
Euler
1734

The values ζ(3), ζ(5), ζ(7), . . . are all transcendental.CONJ

ζ(3) is irrational.THM
Apéry ’78
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑

k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∞∑

n=1

1

n3
is irrational.

THM
Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2( n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)) .

Then, B(n)
A(n)

→ ζ(3). But too fast for ζ(3) to be rational.

proof

“After a few days of fruitless effort the specific problem was men-
tioned to Don Zagier (Bonn), and with irritating speed he showed
that indeed the sequence satisfies the recurrence.

Alfred van der Poorten — A proof that Euler missed. . . (1979) ”
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Zagier’s search and Apéry-like numbers

• The Apéry numbers B(n) =

n∑

k=0

(
n

k

)2(n+ k

k

)
for ζ(2) satisfy

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1, (a, b, c) = (11, 3,−1).

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers

• Apart from degenerate cases, Zagier found 6 sporadic integer solutions:

* C∗(n)

A
n∑

k=0

(
n

k

)3

B
⌊n/3⌋∑

k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3

C
n∑

k=0

(
n

k

)2(2k
k

)

* C∗(n)

D
n∑

k=0

(
n

k

)2(n+ k

n

)

E
n∑

k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

F
n∑

k=0

(−1)k8n−k

(
n

k

)
CA(k)
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Almkvist–Zudilin’s search for sporadic sequences of order 3

(a, b, c) A(n)

(17, 5, 1) Apéry numbers

∑

k

(
n

k

)2(n+ k

n

)2

(12, 4, 16) Kauers–Zeilberger diagonal

∑

k

(
n

k

)2(2k
n

)2

(10, 4, 64) Domb numbers

∑

k

(
n

k

)2(2k
k

)(
2(n− k)

n− k

)

(7, 3, 81) Almkvist–Zudilin numbers

∑

k

(−1)k3n−3k

(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125)
∑

k

(−1)k
(
n

k

)3(4n− 5k

3n

)

(9, 3,−27)
∑

k,l

(
n

k

)2(n
l

)(
k

l

)(
k + l

n

)

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1
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Modularity of Apéry-like numbers

• Beukers (’87) observed that the Apéry numbers 1, 5, 73, 1145, . . .

A(n) =

n∑

k=0

(
n

k

)2(n+ k

k

)2

satisfy:

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 + O(q4)

modular form

=
∑

n⩾0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n

q − 12q2 + 66q3 + O(q4)

modular function

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT

• Context: f(τ) modular form of weight k
x(τ) modular function
y(x) such that y(x(τ)) = f(τ)

Then y(x) satisfies a linear differential equation of order k + 1.
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Apéry numbers have remarkable properties

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 +O(q4)

modular form

=
∑

n⩾0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n

q − 12q2 + 66q3 +O(q4)

modular function

q = e2πiτ

THM
Beukers

’87

A(n) ≡
ni are the p-adic digits of n

A(n0)A(n1) · · ·A(nr) (mod p)THM
Gessel ’82

A(prm) ≡ A(pr−1m) (mod p3r)THM
Coster ’88

A
(
p− 1

2

)
≡

f(τ) =
∑

n⩾1

c(n)qn = η(2τ)4η(4τ)4 ∈ S4(Γ0(8))

c(p) (mod p2)THM
Ahlgren–
Ono ’00

A
(
−1

2

)
=

16

π2
L(f, 2)THM

Zagier ’16

• These extend to all known sporadic (Apéry-like) numbers!!!??
! = proven
? = partially known
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Short random walks

based on joint work(s) with:

Jon Borwein
(U. Newcastle, AU)

Dirk Nuyens
(K.U.Leuven, BE)

James Wan
(SUTD, SG)

Wadim Zudilin
(Radboud U., NL)
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Random walks in the plane

d

n steps in the plane
(length 1, random direction) What is the distance traveled in n steps?

pn(x) probability density

Wn(s) sth moment

Q

W2(1) =
4

π

EG

• Karl Pearson famously asked for
pn(x) in 1905, coining the term
random walk.

pn(x) ≈
2x

n
e−x2/n for large n

THM
Rayleigh,
1905
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Numbers à la Apéry and their remarkable properties Armin Straub
10 / 85



Random walks in the plane

d

n steps in the plane
(length 1, random direction) What is the distance traveled in n steps?

pn(x) probability density

Wn(s) sth moment

Q

W2(1) =
4

π

EG

• Karl Pearson famously asked for
pn(x) in 1905, coining the term
random walk.

pn(x) ≈
2x

n
e−x2/n for large n

THM
Rayleigh,
1905

Numbers à la Apéry and their remarkable properties Armin Straub
10 / 85



Random walks in the plane

d

n steps in the plane
(length 1, random direction) What is the distance traveled in n steps?

pn(x) probability density

Wn(s) sth moment

Q

W2(1) =
4

π

EG

• Karl Pearson famously asked for
pn(x) in 1905, coining the term
random walk.

pn(x) ≈
2x

n
e−x2/n for large n

THM
Rayleigh,
1905
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Numbers à la Apéry and their remarkable properties Armin Straub
10 / 85



Long random walks

pn(x) ≈
2x

n
e−x2/n for large n

THM
Rayleigh,
1905

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

p7(x)

Wn(1) ≈
√
nπ/2

“The lesson of Lord Rayleigh’s solution is that in open
country the most probable place to find a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point!

Karl Pearson, 1905 ”
200 steps
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Densities of short walks
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Classical results on the densities

p2(x) =
2

π
√
4− x2

easy

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
G. J. Bennett

1905

p4(x) = ??

...

pn(x) =

∫ ∞

0
xtJ0(xt)J

n
0 (t) dt J. C. Kluyver

1906

10 20 30 40 50

-0.004

-0.003
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-0.001

0.001

0.002

0.003
n = 4, x = 3/2
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The average distance traveled in two steps

• The average distance in two steps:

W2(1) =

∫ 1

0

∫ 1

0

∣∣e2πix + e2πiy
∣∣dxdy = ?

=

∫ 1

0

∣∣1 + e2πiy
∣∣ dy

=

∫ 1

0
2 cos(πy)dy

=
4

π
≈ 1.27324

• This is the average length of a random arc on a
unit circle.

∣∣1 + e2πiy
∣∣

=
∣∣1 + (cosπy + i sinπy)2

∣∣
= 2 cos(πy)
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The moments of random walks

The sth moment Wn(s) of the density pn:

Wn(s) :=

∫ ∞

0
xspn(x) dx =

∫

[0,1]n

∣∣e2πix1 + . . .+ e2πixn
∣∣s dx

DEF

• On a desktop:

W3(1) ≈ 1.57459723755189365749

W4(1) ≈ 1.79909248

W5(1) ≈ 2.00816

• On a supercomputer: David Bailey, Lawrence Berkeley National Laboratory (256 cores)

W5(1) ≈ 2.0081618

• Hard to evaluate numerically to high precision.
Monte-Carlo integration gives approximations with an asymptotic error of

O(1/
√
N) where N is the number of sample points.

W2(1) =
4
π W3(1) = 1.57459723755189 . . . = ?
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3 1.575 3.000 6.452 15.00 36.71 93.00 241.5
4 1.799 4.000 10.12 28.00 82.65 256.0 822.3
5 2.008 5.000 14.29 45.00 152.3 545.0 2037.
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The even moments

n s = 0 s = 2 s = 4 s = 6 s = 8 s = 10 OEIS

2 1 2 6 20 70 252 A000984

3 1 3 15 93 639 4653 A002893

4 1 4 28 256 2716 31504 A002895

5 1 5 45 545 7885 127905 A169714

6 1 6 66 996 18306 384156 A169715

W3(2k) =
k∑

j=0

(
k

j

)2(2j
j

)
Apéry-like

W4(2k) =
k∑

j=0

(
k

j

)2(2j
j

)(
2(k − j)

k − j

)
Domb numbers

EG

W3(1) =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)THM
Borwein-
Nuyens-S-

Wan,
2010
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Densities of random walks
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p5(x)

p2(x) =
2

π
√
4− x2

easy

p3(x) =
2
√
3

π

x

(3 + x2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣∣
x2
(
9− x2

)2

(3 + x2)3

)
classical
with a spin

p4(x) =
2

π2

√
16− x2

x
Re 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣∣

(
16− x2

)3

108x4

)
new

BSWZ 2011

p′5(0) =

√
5

40π4
Γ( 1

15)Γ(
2
15)Γ(

4
15)Γ(

8
15) ≈ 0.32993
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Mahler measure and random walks

(Logarithmic) Mahler measure of p(x1, . . . , xn):

µ(p) :=

∫ 1

0

· · ·
∫ 1

0

log
∣∣p
(
e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn

DEF

• Wn(s) =

∫

[0,1]n

∣∣e2πit1 + . . .+ e2πitn
∣∣s dt

W ′
n(0) = µ(x1 + . . .+ xn) = µ(1 + x1 + . . .+ xn−1)

EG

µ(1 + x+ y) =
3
√
3

4π
L(χ−3, 2) = W ′

3(0)

µ(1 + x+ y + z) =
7

2

ζ(3)

π2
= W ′

4(0)

EG
Smyth,
1981

W ′
5(0)

?
=
(√

−15

2πi

)5

3!L(g15, 4) = −L′(g15,−1)
g15 = η(3τ)3η(5τ)3 + η(τ)3η(15τ)3

W ′
6(0)

?
= 8

(√
−6

2πi

)6

4!L(g6, 5) = −8L′(g6,−1)
g6 = η(τ)2η(2τ)2η(3τ)2η(6τ)2

CONJ
Rodriguez-
Villegas
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Ramanujan-type series for 1/π

4

π
= 1 +

7

4

(
1

2

)3

+
13

42

(
1.3

2.4

)3

+
19

43

(
1.3.5

2.4.6

)3

+ . . .

based on joint work with:

Mathew Rogers
(Université de Montréal,
now: data scientist)
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Ramanujan’s series for 1/π

4

π
= 1 +

7

4

(
1

2

)3

+
13

42

(
1.3

2.4

)3

+
19

43

(
1.3.5

2.4.6

)3

+ . . .

=

∞∑

n=0

(1/2)3n
n!3

(6n+ 1)
1

4n

8

π
=

∞∑

n=0

(1/2)3n
n!3

(42n+ 5)
1

26n

• Starred in High School Musical,
a 2006 Disney production

Srinivasa Ramanujan
Modular equations and approximations to π
Quart. J. Math., Vol. 45, p. 350–372, 1914
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Another one of Ramanujan’s series

1

π
=

2
√
2

9801

∞∑

n=0

(4n)!

n!4
1103 + 26390n

3964n

• Used by R. W. Gosper in 1985 to compute
17, 526, 100 digits of π
Correctness of first 3 million digits showed that the series sums to 1/π in the first place.

• First proof of all of Ramanujan’s 17 series for 1/π
by Borwein brothers

Jonathan M. Borwein and Peter B. Borwein
Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
Wiley, 1987
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Apéry-like numbers and series for 1/π

• Sato observed that series for 1
π can be built from Apéry-like numbers:

For the Domb numbers D(n) =
n∑

k=0

(
n

k

)2(2k
k

)(
2(n− k)

n− k

)
,

8√
3π

=

∞∑

n=0

D(n)
5n+ 1

26n
.

EG
Chan-

Chan-Liu
2003

• Sun offered a $520 bounty for a proof the following series:

520

π
=

∞∑

n=0

1054n+ 233

480n

(
2n

n

) n∑

k=0

(
n

k

)2(2k
n

)
(−1)k82k−n

THM
Rogers-S
2012
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A brief guide to proving series for 1/π

• Suppose we have a sequence an with modular parametrization

∞∑

n=0

an x(τ)n

modular
function

= f(τ)

modular
form

.

• Then: ∞∑

n=0

an(A+Bn)x(τ)n = Af(τ) +B
x(τ)

x′(τ)
f ′(τ)

∞∑

n=0

(1/2)3n
n!3

(42n+ 5)
1

26n
=

16

π

• For τ ∈ Q(
√
−d), x(τ) is an algebraic number.

• f ′(τ) is a quasimodular form.

• Prototypical E2(τ) satisfies τ−2E2

(
− 1

τ

)
− E2(τ) =

6

πiτ
.

FACT

• These are the main ingredients for series for 1/π. Mix and stir.
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Positivity of rational functions

1

1− (x+ y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw

based on joint work with:

Wadim Zudilin
(Radboud U., NL)
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Positivity of rational functions

• A rational function

F (x1, . . . , xd) =
∑

n1,...,nd⩾0

an1,...,nd
xn1
1 · · ·xnd

d

is positive if an1,...,nd
> 0 for all indices.

The following rational functions are positive.

S(x, y, z) =
1

1− (x+ y + z) + 3
4(xy + yz + zx)

Szegő ’33
Kaluza ’33

Askey–Gasper ’72
S ’08

A(x, y, z) =
1

1− (x+ y + z) + 4xyz

Askey–Gasper ’77
Koornwinder ’78

Ismail–Tamhankar ’79
Gillis–Reznick–Zeilberger ’83

EG

• Both functions are on the boundary of positivity.

• The diagonal coefficients of A are the Franel numbers
n∑

k=0

(
n

k

)3

.
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Positivity of rational functions

The following rational function is positive:

1

1− (x+ y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw
.

CONJ
Kauers-

Zeilberger
2008

• Would imply conjectured positivity of Lewy–Askey function

1

(1− x)(1− y) + (1− x)(1− z) + . . .+ (1− z)(1− w)
.

Non-negativity proved by a very general result of Scott–Sokal (’14)

The Kauers–Zeilberger function has diagonal coefficients

dn =
n∑

k=0

(
n

k

)2(2k
n

)2

.

PROP
S-Zudilin
2013
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Positivity of rational functions

• Consider rational functions F = 1/p(x1, . . . , xd) with p a symmetric
polynomial, linear in each variable.

Under what condition(s) is the positivity of F implied by the
positivity of its diagonal?

Q

• 1

1− (x+ y)
is positive.

• 1

1 + x+ y
has positive diagonal but is not positive.

• 1

1 + x
is not positive.

EG

F positive ⇐⇒ diagonal of F and F |xd=0 are positive?Q

F (x, y) =
1

1 + c1(x+ y) + c2xy
is positive

⇐⇒ diagonal of F and F |y=0 are positive

THM
S-Zudilin
2013
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Diagonal and constant term
representations

n∑

k=0

(
n

k

)2(n+ k

k

)2

= diag
1

(1− x− y)(1− z − w)− xyzw

= ct

[(
(x+ y)(z + 1)(x+ y + z)(y + x+ 1)

xyz

)n]

based on joint work with:

Alin Bostan
(Université Paris-Saclay)

Sergey Yurkevich
(University of Vienna)
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A simple example

(
2n

n

)
= [xn] (1 + x)2n

= ct [P n] , P (x) =
(1 + x)2

x
.

EG
constant
term

(
2n

n

)
is the diagonal of

1

1− x− y

=
∑

n,m⩾0

(
m+ n

m

)
xmyn.

=

∞∑

k=0

(x+ y)k

EG
diagonal

∑

n1,...,nd⩾0

multivariate series

a(n1, . . . , nd) xn1
1 · · ·xnd

d

diagonal

a(n, . . . , n)

Diagonals of rational functions
are P -recursive.

THM
Gessel,

Zeilberger,
Lipshitz
1981–88

Constant terms are always diagonals.HW
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Numbers à la Apéry and their remarkable properties Armin Straub
29 / 85



A simple example

(
2n

n

)
= [xn] (1 + x)2n = ct [P n] , P (x) =

(1 + x)2

x
.

EG
constant
term

(
2n

n

)
is the diagonal of

1

1− x− y

=
∑

n,m⩾0

(
m+ n

m

)
xmyn.

=

∞∑

k=0

(x+ y)k
EG

diagonal

∑

n1,...,nd⩾0

multivariate series

a(n1, . . . , nd) xn1
1 · · ·xnd

d

diagonal

a(n, . . . , n)

Diagonals of rational functions
are P -recursive.

THM
Gessel,

Zeilberger,
Lipshitz
1981–88

Constant terms are always diagonals.HW
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Ramanujan’s elliptic functions

• Berndt, Bhargava & Garvan (1995) develop Ramanujan’s theories of elliptic
functions based on the hypergeometric functions

2F1

(
1

m
, 1− 1

m
; 1;x

)
, m ∈ {2, 3, 4, 6}.

(m = 2: classical; m = 3, 4, 6: alternative bases)

Let Am(n) =

(
1
m

)
n

(
1− 1

m

)
n

n!2
where m ⩾ 2 is an integer.

1 Am(n) is a diagonal for all m ⩾ 2.

2 Am(n) is a constant term if and only if m ∈ {2, 3, 4, 6}.

LEM
Bostan, S,
Yurkevich

’23

33nA3(n) =
(3n)!

n!3
=

(
2n

n

)(
3n

n

)
= ct

[(
(1 + x)2(1 + y)3

xy

)n]EG
m = 3

53nA5(n) = 1, 20, 1350, 115500, 10972500, . . . is an integer se-
quence and diagonal but not a constant term.

EG
m = 5
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Homework

• Such classifications are generally not straightforward!

Is the following hypergeometric sequence a constant term?

A(n) =
(8n)!n!

(4n)!(3n)!(2n)!
=

(
8n

4n

)(
4n

n

)(
2n

n

)−1

A(n) = 1, 140, 60060, 29745716, 15628090140, . . . =

not a Laurent polynomial so doesn’t
count as constant term today

ct

[ (
(1 + x)8

(1− x)2x3

)n
]

(This is algebraic and therefore a diagonal.)

EG
open!

Is the following hypergeometric sequence a diagonal?

A(n) =

(
1
9

)
n

(
4
9

)
n

(
5
9

)
n

n!2
(
1
3

)
n

36nA(n) = 1, 60, 20475, 9373650, 4881796920, . . .

EG
open!
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Characterizations of diagonals

Diagonals of rational functions

• F (x) = C-finite sequences

• F (x, y) = sequences with algebraic GF (Furstenberg ’67)

EG

To see the latter, express the diagonal as
1

2πi

∫
|x|=ε

F

(
x,

z

x

)
dx

x
.

Diagonals of rational functions
= (multiple) binomial sums

THM
Bostan,
Lairez,

Salvy ’17

Diagonals of rational functions over Q (⊆ known)

= globally bounded
(i.e. cdnan ∈ Z for c, d ∈ Z and at most exponential growth)

, P -recursive sequences

CONJ
Christol

’90
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• F (x) = C-finite sequences
• F (x, y) = sequences with algebraic GF (Furstenberg ’67)
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Numbers à la Apéry and their remarkable properties Armin Straub
32 / 85



Characterizations of diagonals

Diagonals of rational functions

• F (x) = C-finite sequences
• F (x, y) = sequences with algebraic GF (Furstenberg ’67)

EG

To see the latter, express the diagonal as
1

2πi

∫
|x|=ε

F

(
x,

z

x

)
dx

x
.

Diagonals of rational functions
= (multiple) binomial sums

THM
Bostan,
Lairez,

Salvy ’17

Diagonals of rational functions over Q (⊆ known)

= globally bounded
(i.e. cdnan ∈ Z for c, d ∈ Z and at most exponential growth)

, P -recursive sequences

CONJ
Christol

’90
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Application: Integrality of P -recursive sequences

• A sequence is P -recursive / holonomic if it satisfies
a linear recurrence with polynomial coefficients.

The Apéry numbers A(n) satisfy A(0) = 1, A(1) = 5 and

(n+ 1)3A(n+ 1) = (2n+ 1)(17n2 + 17n+ 5)A(n)− n3A(n− 1).

EG

ζ(3) is irrational!

Criterion/algorithm for classifying integrality of P -recursive sequences?OPEN

Every P -recursive integer sequence of at most exponential
growth is the diagonal of a rational function.

CONJ
Christol

’90

The Apéry numbers are the diagonal of
1

(1− x− y)(1− z − w)− xyzw
.EG

S 2014
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Applications: asymptotics, congruences, geometry, . . .

The Apéry numbers are the diagonal of
1

(1− x− y)(1− z − w)− xyzw
.EG

S 2014

• Well-developed theory of multivariate asymptotics e.g., Pemantle–Wilson

• OGFs of such diagonals are algebraic modulo pr. Furstenberg, Deligne ’67, ’84

Automatically leads to congruences such as

A(n) ≡

{
1 (mod 8), if n even,

5 (mod 8), if n odd.

Chowla–Cowles–Cowles ’80
Rowland–Yassawi ’13

Rowland–Zeilberger ’14

• Univariate generating function:∑
n⩾0

A(n)tn =
17− t− z

4
√
2(1 + t+ z)3/2

3F2

(
1
2
, 1
2
, 1
2

1, 1

∣∣∣∣− 1024t

(1− t+ z)4

)
, z =

√
1− 34t+ t2.

A(n) = ct [Ln] with L =
(1 + y)(1 + z)(1 + x+ z)(1 + x+ z + yz)

xyz

EG
constant
term

• FA(t) =
∑

n⩾0

A(n)tn = ct

[
1

1− tL

]
is a period function.

The DE satisfied by FA(t) is the Picard–Fuchs DE for the family Vt : 1− tL = 0.

Generically, Vt is birationally equivalent to a K3 surface with Picard number 19. (Beukers–Peters ’84)
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A question of Zagier

• c(n) is a constant term if c(n) = ct[Pn(x)Q(x)] Rowland–Zeilberger ’14

for Laurent polynomials P,Q ∈ Q[x±1] in x = (x1, . . . , xd).

n∑

k=0

(
n

k

)2(
n+ k

k

)2

= ct

[(
(x+ y)(z + 1)(x+ y + z)(y + x+ 1)

xyz

)n]EG
Q = 1

1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
= ct

[(
(x+ 1)2

x

)n

(1− x)

]
EG

Catalan

Which integer sequences are constant terms?
And in which case can we choose Q = 1?

Q
Zagier ’16

• Constant terms are necessarily diagonals.
Q(x)

1− tx1 · · ·xdP (x)

Which diagonals are constant terms?
Which are linear combinations of constant terms?

Q

• We will answer this in the case of a single variable. (C-finite sequences!)

• For instance: Are Fibonacci numbers constant terms?
x

1− x− x2
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C-finite sequences that are constant terms

• C-finite sequences:

A0(n)
(finite support)

+

d∑

j=1

mj−1∑

r=0

cj,rn
rλn

j (characteristic roots λj)

• It is not hard to see that A(n) = poly(n)λn is a constant term if λ ∈ Q.
And so are sequences of finite support (λ = 0).

• 2n = ct [(x+ 2)n] = ct [2n]

• n22n = ct

[
(x+ 2)n

(
8

x2
+

2

x

)]
EG
λ = 2

There are no further C-finite sequences that are constant terms.
Or linear combinations of constant terms.

THM
Bostan, S,
Yurkevich

’23

• More precisely: A C-finite sequence A(n) is a Q-linear combination of r constant
terms if and only if it has at most r distinct characteristic roots, all rational.

Fibonacci numbers are not (sums of) constant terms.EG

2n + 1 is not a constant term but is a sum of two.EG
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Example: Fibonacci numbers

• Our key ingredient to answer these questions are congruences:

If A(n) is a constant term then, for all large enough primes p,

A(p) ≡ const
∈ Q

(mod p).

LEM
Bostan, S,
Yurkevich

’23

A(p) = ct[P (x)pQ(x)]

≡ ct[P (xp)Q(x)] (little Fermat)

(if p > degQ) = ct[Q(x)] ct[P (xp)] = ct[Q(x)] ct[P (x)]

proof

The Fibonacci numbers are F (n) =
φn
+ − φn

−√
5

with φ± =
1±

√
5

2
.

It follows that

F (p) ≡
{
1, if p ≡ 1, 4 mod 5,

−1, if p ≡ 2, 3 mod 5,
(mod p).

Hence, the Fibonacci numbers cannot be constant terms.

EG

Numbers à la Apéry and their remarkable properties Armin Straub
37 / 85



Example: Fibonacci numbers

• Our key ingredient to answer these questions are congruences:

If A(n) is a constant term then, for all large enough primes p,

A(p) ≡ const
∈ Q

(mod p).

LEM
Bostan, S,
Yurkevich

’23

A(p) = ct[P (x)pQ(x)]

≡ ct[P (xp)Q(x)] (little Fermat)

(if p > degQ) = ct[Q(x)] ct[P (xp)] = ct[Q(x)] ct[P (x)]

proof

The Fibonacci numbers are F (n) =
φn
+ − φn

−√
5

with φ± =
1±

√
5

2
.

It follows that

F (p) ≡
{
1, if p ≡ 1, 4 mod 5,

−1, if p ≡ 2, 3 mod 5,
(mod p).

Hence, the Fibonacci numbers cannot be constant terms.

EG
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Hypergeometric sequences

• A sequence c(n) is hypergeometric if
c(n+ 1)

c(n)
is a rational function.

These are the P -recursive sequences of order 1.

Every P -recursive integer sequence with at most exponential
growth is the diagonal of a rational function.

CONJ
Christol

’90

• Open even for hypergeometric sequences!

Is the following hypergeometric sequence a diagonal?

A(n) =

(
1
9

)
n

(
4
9

)
n

(
5
9

)
n

n!2
(
1
3

)
n

36nA(n) = 1, 60, 20475, 9373650, 4881796920, . . .

EG
open!

This hypergeometric sequence is not a constant term (or a linear
combination of constant terms).

LEM
Bostan, S,
Yurkevich

’23

Proof idea: A(p) takes different values modulo p depending on whether p ≡ ±1 (mod 9).
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Constant terms are special

• For hypergeometric sequences: (or C-finite or P -recursive)

{constant terms
(or linear combinations)

} ⊊ {diagonals} ⊆ {P -recursive, globally bounded seq’s}

• The second inclusion is strict iff Christol’s conjecture is false.

• The following is an indication that constant terms are special among
diagonals and often have significant additional arithmetic properties.

Let Am(n) =

(
1
m

)
n

(
1− 1

m

)
n

n!2
where m ⩾ 2 is an integer.

1 Am(n) is a diagonal for all m ⩾ 2.

2 Am(n) is a constant term if and only if m ∈ {2, 3, 4, 6}.

LEM
Bostan, S,
Yurkevich

’23

• The cases m ∈ {2, 3, 4, 6} correspond to the hypergeometric functions
underlying Ramanujan’s theory of elliptic functions.
(m = 2: classical case; m = 3, 4, 6: alternative bases)
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Collecting some thoughts. . .

• Constant terms are an arithmetically interesting subset of diagonals.
• We have classified them in the case of a single variable. Natural
classes of sequences to consider next:

• Hypergeometric sequences
• Algebraic sequences (diagonals in two variables)
• Algebraic hypergeometric series
• Integral factorial ratios (Bober, 2007; via Beukers–Heckman)

Is A(n) =

1, 140, 60060, 29745716, 15628090140, . . . = ct

[(
(1 + x)8

(1− x)2x3

)n]

(8n)!n!

(4n)!(3n)!(2n)!
=

(
8n

4n

)(
4n

n

)(
2n

n

)−1

a constant term?

This is algebraic (and therefore a diagonal) and hypergeometric.

EG

• How to find representations as (nice) constant terms or diagonals?
Once found, such representations can be proved using creative telescoping.

• How unique are the Laurent polynomials in a constant term?
Connections to cluster algebras, mutations of Laurent polynomials, . . .
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Gessel–Lucas congruences

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2)

A. Straub
Gessel-Lucas congruences for sporadic sequences
Monatshefte für Mathematik, Vol. 203, 2024, p. 883–898
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Lucas congruences

(
n

k

)
≡
(
n0

k0

)(
n1

k1

)(
n2

k2

)
· · · (mod p),

where ni and ki are the p-adic digits of n and k.

THM
Lucas
1878

(
136

79

)
≡
(
3

2

)(
5

4

)(
2

1

)
= 3 · 5 · 2 ≡ 2 (mod 7)

LHS = 1009220746942993946271525627285911932800

EG

• Interesting sequences like the Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑

k=0

(
n

k

)2(n+ k

k

)2

satisfy such Lucas congruences as well:

A(n) ≡ A(n0)A(n1) · · ·A(nr) (mod p)THM
Gessel ’82
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Application: Primes not dividing Apéry numbers

There are infinitely many primes p such that p does not divide
any Apéry number A(n).
Such as p = 2, 3, 7, 13, 23, 29, 43, 47, . . .

CONJ
Rowland–
Yassawi

’15

• The values of Apéry numbers A(0), A(1), . . . , A(6) modulo 7
are 1, 5, 3, 3, 3, 5, 1.

• Hence, the Lucas congruences imply that 7 does not divide any
Apéry number.

EG
p = 7

The proportion of primes not dividing any Apéry number A(n)
is e−1/2 ≈ 60.65%.

CONJ
Malik–S

’16

• Heuristically, combine Lucas congruences,
• palindromic behavior of Apéry numbers, that is

A(n) ≡ A(p− 1− n) (mod p),

• and e−1/2 = lim
p→∞

(
1− 1

p

)(p+1)/2

.
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There are infinitely many primes p such that p does not divide
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Gessel–Lucas congruences

• Lucas congruences: A(pn+ k) ≡ A(n)A(k) (mod p)

All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas
congruences modulo every prime. (Proof long and technical for 2 sequences)

THM
Malik–S

’16

• In the case of the Apéry numbers, Gessel (’82) observed that
these congruences can be extended modulo p2.

All of the 6 + 6 + 3 known sporadic sequences satisfy
Gessel–Lucas congruences modulo every odd prime:

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2)

THM
S ’24

• Here, A′(n) is the formal derivative of A(n).
These are rational numbers!
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The formal derivative of recurrence sequences

• Suppose A(n) is the unique solution for all n ⩾ 0 to

r∑

j=0

cj(n)A(n− j) = 0 with A(0) = 1 and A(j) = 0 for j < 0.

The cj(n) are polynomials with c0(n) ∈ n2Z[n] and c0(n) ̸= 0 for n > 0.

• Then the formal derivative A′(n) is the unique solution to

r∑

j=0

cj(n)A
′(n− j) +

r∑

j=0

c′j(n)A(n− j) = 0 with A′(j) = 0 for j ⩽ 0.

Let F (x) =
∑

n⩾0

A(n)xn and G(x) =
∑

n⩾1

A′(n)xn.

Then the corresponding differential equation satisfied by F (x)

is also solved by log(x)F (x) +G(x).

Note
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The formal derivative of recurrence sequences: example

• A(n) =
n∑

k=0

(
n

k

)2(
n+ k

k

)
is the unique solution with A(0) = 1 to:

(n+ 1)2A(n+ 1) = (11n2 + 11n+ 3)A(n) + n2A(n− 1)

• Then A′(n) is the unique solution with A′(0) = 0 to:

(n+ 1)2A′(n+ 1) = (11n2 + 11n+ 3)A′(n) + n2A′(n− 1)

− 2(n+ 1)A(n+ 1) + 11(2n+ 1)A(n) + 2nA(n− 1)

A′(1), A′(2), . . . = 5,
75

2
,
1855

6
,
10875

4
,
299387

12
,
943397

4
,
63801107

28
, . . .

EG

• Since the interpolation satisfies the continuous version of the recurrence :

A′(n) =
d

dx

∞∑

k=0

(
x

k

)2(
x+ k

k

) ∣∣∣∣∣∣
x=n

= 5
n∑

k=0

(
n

k

)2(
n+ k

k

)
(Hn −Hk)
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Approaches to proving Lucas congruences

• From suitable expressions as a binomial sum. Gessel ’82, McIntosh ’92

Apéry numbers:
∑

k

(
n

k

)2(
n+ k

n

)2

Sequence (η):
∑

k

(−1)k
(
n

k

)3(
4n− 5k

3n

)

• From suitable constant term expressions. Samol–van Straten ’09, Mellit–Vlasenko ’16

Suppose the origin is the only interior integral point
of the Newton polytope of P ∈ Z[x±1].

Then A(n) = ct[P (x)n] satisfies Lucas congruences.

THM
Samol, van
Straten ’09

P =
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz

(
1− 1

xy(1 + z)5

)
(1 + x)(1 + y)(1 + z)4

z3

• From suitable diagonal expressions. Rowland–Yassawi ’15

For instance, diagonals of 1/Q(x) for Q(x) ∈ Z[x] with Q(x) linear in
each variable and Q(0) = 1.

• From suitable modular parametrizations. Beukers–Tsai–Ye ’25
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Suitable constant term representations

Suppose the origin is the only interior integral point
of the Newton polytope of P ∈ Z[x±1].

Then A(n) = ct[P (x)n] satisfies Lucas congruences.

THM
Samol, van
Straten ’09

• In fact, we get the stronger Dwork congruences.
• This implies that Lucas congruences are somewhat generic.

(Gessel–Lucas congruences are not!)

Each sporadic sequence, except possibly (η), can be expressed
as ct[P (x)n] so that the result of Samol–van Straten applies.

THM
Gorodetsky

’21

(η):
(zx+ xy − yz − x− 1)(xy + yz − zx− y − 1)(yz + zx− xy − z − 1)

xyz
EG

Gorodetsky
’21

(1, 0, 0), (1, 1, 0) and their permutations are interior points.

Algorithmic tools to find (useful) constant term expressions?Q

Once found, algorithmically provable using creative telescoping.
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Lucas congruences in terms of the GF

• Given F (x) =
∞∑

n=0

A(n)xn, we write Fp(x) =

p−1∑

n=0

A(n)xn for its p-truncation.

A(n) satisfies Lucas congruences modulo p

⇐⇒ 1

F p−1(x)
modulo p is a polynomial of degree < p.

LEM

A(n) ≡ A(n0)A(n1)A(n2) · · · (mod p)

⇐⇒ F (x) ≡ Fp(x) Fp(x
p)Fp(x

p2

) · · · (mod p)

⇐⇒ F (x) ≡ Fp(x) F (xp) (mod p)

⇐⇒ Fp(x) ≡
F (x)

F (xp)
(mod p)

(by little Fermat) ≡ F (x)

F p(x)
=

1

F p−1(x)

Since the first p coefficients of . . . always match, the final congruence
is equivalent to the RHS being a polynomial of degree ⩽ p− 1.

proof
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Lucas congruences via modular forms

• Suppose F (x) =
∞∑

n=0

A(n)xn has modular parametrization:

F (x) is a modular form for some modular function x(τ).

Suppose that:

• x(τ) = q + q2Z[[q]] with q = e2πiτ is a Hauptmodul
for Γ = Γ0(N) (or Atkin–Lehner extension).

• F (x(τ)) = 1 + qZ[[q]] is a weight 2 modular form for Γ.

• F (x(τ)) has a unique zero at [τ0] of order ⩽ 1,
where [τ0] is the (unique) pole of x(τ).

Then A(n) satisfies the Lucas congruences for all primes p.

THM
Beukers–
Tsai–Ye

’25

Suppose E(τ) is a modular form for Γ with weight 2(p− 1) such that
E(τ) ≡ 1 (mod p).

Then

1

F p−1(x)
≡

E(τ)

F p−1(x)
= poly(x)

(mod p).

is a modular function with a unique pole at [τ0] of order ⩽ p− 1.

proof
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Lucas congruences via modular forms, cont’d

• Needed: weight 2(p− 1) modular form E(τ) for Γ with E(τ) ≡ 1 (mod p).

The normalized Eisenstein series

Ek(τ) = 1 +
2k

Bk

∞∑

n=1

nk−1qn

1− qn

is a modular form for Γ0(1) of even weight k ⩾ 2.

Since 1/Bp−1 ≡ 0 (mod p), we have Ep−1(τ) ≡ 1 (mod p).

EG

• If p ⩾ 5 and Γ = Γ0(N), we can select:

E(τ) := Ep−1(τ)
2

• If p ⩾ 5 and Γ is Γ0(N) extended by τ → − 1
Nτ :

E(τ) := 1
2

[
Ep−1(τ)

2 +Np−1Ep−1(Nτ)2
]
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Sporadic sequences mod pr are automatic

If an integer sequence A(n) is the diagonal of F (x) ∈ Z(x),
then the reductions A(n) (mod pr) are p-automatic.

THM
Rowland,

Yassawi ’15

Constructive proof of results by Denef and Lipshitz ’87.

Numbers à la Apéry and their remarkable properties Armin Straub
52 / 85



Sporadic sequences mod pr are automatic

If an integer sequence A(n) is the diagonal of F (x) ∈ Z(x),
then the reductions A(n) (mod pr) are p-automatic.

THM
Rowland,

Yassawi ’15

Constructive proof of results by Denef and Lipshitz ’87.

Catalan numbers C(n) modulo 3:

1start

0

1

22

0, 1

2

0, 1, 2

0

2

1

2

0

1

1

2

0

C(35) = 3,116,285,494,907,301,262

≡ 1 (mod 3)

Instead via automaton:

35 = 1 0 2 2 in base 3

C( 2 )C(2) ≡ 2

C( 2 2 )C(8) ≡ 2

C( 0 2 2 ) ≡ 2

C( 1 0 2 2 )C(35) ≡ 1

EG
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Sporadic sequences mod pr are automatic

If an integer sequence A(n) is the diagonal of F (x) ∈ Z(x),
then the reductions A(n) (mod pr) are p-automatic.

THM
Rowland,

Yassawi ’15

Constructive proof of results by Denef and Lipshitz ’87.

Catalan numbers C(n) modulo 4:

1start 1 2 0
0

1

1

0

1

0

EG
Rowland,

Yassawi ’15

C(n) ≡





1, if n = 2a − 1 for some a ⩾ 0,

2, if n = 2b + 2a − 1 for some b > a ⩾ 0,

0, otherwise,

(mod 4).

THM
Eu, Liu,
Yeh ’08

C(n) ̸≡ 3 (mod 4)COR
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Things quickly get more complicated

• Liu–Yeh (2010) also determine the Catalan numbers modulo 16 and 64.

Theorem 5.5. Let cn be the n-th Catalan number. First of all, cn 6≡16 3, 7, 9, 11, 15 for any
n. As for the other congruences, we have

cn ≡16





1
5
13



 if d(α) = 0 and





β ≤ 1,
β = 2,
β ≥ 3,

2
10

}
if d(α) = 1, α = 1 and

{
β = 0 or β ≥ 2,
β = 1,

6
14

}
if d(α) = 1, α ≥ 2 and

{
(α = 2, β ≥ 2) or (α ≥ 3, β ≤ 1),
(α = 2, β ≤ 1) or (α ≥ 3, β ≥ 2),

4
12

}
if d(α) = 2 and

{
zr(α) ≡2 0,
zr(α) = 1,

8 if d(α) = 3,
0 if d(α) ≥ 4.

where α = (CF2(n+ 1)− 1)/2 and β = ω2(n+ 1) (or β = min{i | ni = 0}).

ωp(n) = p-adic valuation of n

CFp(n) = n / pωp(n)

d(n) = sum of 2-adic digits of n

• For comparison: the corresponding minimal automaton has 26 states.
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Catalan numbers: forbidden residues

C(n) ̸≡ 3 (mod 4) Eu–Liu–Yeh ’08

C(n) ̸≡ 9 (mod 16) Liu–Yeh ’10

C(n) ̸≡ 17, 21, 26 (mod 32)

C(n) ̸≡ 10, 13, 33, 37 (mod 64)

EG
Rowland,

Yassawi ’15

Let P (r) be the proportion of residues not attained by C(n) mod 2r.

Does P (r) → 1 as r → ∞?

Q
Rowland,

Yassawi ’15

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P (r) 0 .25 .25 .31 .41 .47 .54 .59 .65 .69 .73 .76 .79 .82

N(r) 0 1 2 5 13 30 69 152 332 710 1502 3133 6502 13394

A(r) 0 1 0 1 3 4 9 14 28 46 82 129 236 390

N(r) = # residues not attained mod 2r

A(r) = # additional residues not attained mod 2r = N(r)− 2N(r − 1)

C(n) ̸≡ 3 (mod 10) for all n ⩾ 0.

C(n) ̸≡ 1, 7, 9 (mod 10) for sufficiently large n.

CONJ
Bostan
’15

If true, the last digit of any sufficiently large odd Catalan number is always 5. (n > 255?)
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Linear congruence schemes

• The Catalan numbers C(n) modulo 3 can be described:
• by an automaton with 4 states (plus a zero state)
• by a linear 3-scheme with 2 states

(Rowland–Zeilberger ’14)

1start

0

1

22

0, 1

2

0, 1, 2

0

2

1

2

0

1

1

2

0

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = A2(n)

A1(3n) = A1(n)
A1(3n+ 1) = A3(n)
A1(3n+ 2) = 0

A2(3n) = A3(n)
A2(3n+ 1) = 0
A2(3n+ 2) = A2(n)

A3(3n) = A3(n)
A3(3n+ 1) = A1(n)
A3(3n+ 2) = 0

Initial conditions:
A0(0) = A1(0) = 1, A2(0) = A3(0) = 2

EG
mod 3

automatic
3-scheme

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = A0(n) +A1(n)

A1(3n) = A1(n)
A1(3n+ 1) = 2A1(n)
A1(3n+ 2) = 0

Initial conditions: A0(0) = A1(0) = 1

EG
mod 3

linear
3-scheme
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Few-state linear p-schemes

Lucas congruences:

A(pn+ k) ≡ A(k)A(n) (mod p)

A(n) (mod p) satisfies a single-state linear p-scheme (and A(0) = 1).
⇐⇒ A(n) satisfies Lucas congruences modulo p.

PROP
Henningsen

S ’22

Gessel–Lucas congruences:

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2)

Gessel–Lucas congruences yield explicit 2-state linear p-schemes.Note

Gessel–Lucas congruences are much more rare!
For instance, for k = 0, we get the supercongruences

A(pn) ≡ A(n) (mod p2).

Note
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Supercongruences for Apéry numbers

• Chowla, Cowles and Cowles (1980) conjectured that, for p ⩾ 5,

A(p) ≡ 5 (mod p3).

• Gessel (1982) proved that A(mp) ≡ A(m) (mod p3).

For p ⩾ 5, the Apéry numbers satisfy supercongruences:

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster
’85, ’88

Simple combinatorics proves the congruence

(
2p

p

)
=
∑

k

(
p

k

)(
p

p− k

)
≡ 1 + 1 (mod p2).

For p ⩾ 5, Wolstenholme (1862) showed that, in fact,
(
2p

p

)
≡ 2 (mod p3).

EG
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Supercongruences for Apéry-like numbers

All known Apéry-like numbers satisfy supercongruences like

A(mpr) ≡ A(mpr−1) (mod p3r).

CONJ
Osburn–
Sahu ’09

• This is finally proven in all cases.
For instance, for the six sporadic sequences related to ζ(3):

A(n)
∑

k

(
n
k

)2(n+k
n

)2
Beukers, Coster ’85-’88

∑
k

(
n
k

)2(2k
n

)2
Osburn–Sahu–S ’16

∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
Osburn–Sahu ’11

∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3

Amdeberhan–Tauraso ’16 (r = 1)

Alinquant–Osburn ’25
∑

k(−1)k
(
n
k

)3(4n−5k
3n

)
Osburn–Sahu–S ’16

∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
Gorodetsky ’18
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Multivariate supercongruences

• The Almkvist–Zudilin numbers are the sporadic sequence

Z(n) =
∑

k

(−3)n−3k

(
n

3k

)(
n+ k

n

)
(3k)!

k!3
.

The Almkvist–Zudilin numbers are the diagonal Taylor coefficients of

1

1− (x1 + x2 + x3 + x4) + 27x1x2x3x4
=

∑

n∈Z⩾0
4

Z(n)xn

EG
S 2014

For p ⩾ 5, we have the multivariate supercongruences

Z(npr) ≡ Z(npr−1) (mod p3r).

CONJ
S 2014

Let P,Q ∈ Z[x] with Q linear in each variable.

The above Gauss congruences modulo pr are satisfied by the
coefficients of P/Q if and only if N(P ) ⊆ N(Q).

THM
Beukers,
Houben,
S 2018
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Collecting some thoughts. . .

The known sporadic sequences satisfy the Gessel–Lucas congruences

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2).

THM
S ’24

• Lucas congruences correspond to single-state linear p-schemes.
Gessel–Lucas congruences are instances of 2-state linear p-schemes.

• It would be of interest to study few-state p-schemes systematically:
• What kind of “generalized Lucas congruences” does one get?
• Which sequences satisfy such congruences? (mod p, mod p2?)

Partial results by Henningsen–S (’22) for certain constant term sequences.

• Are there interesting q-analogs?
• q-Lucas congruences have been studied. Olive ’65, Désarménien ’82

• For k = 0, we get A(pn) ≡ A(n) (mod p2). (Supercongruences!)

q-analogs known for some sporadic sequences. S ’19, Gorodetsky ’19
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Apéry limits and Franel’s
suspicions

M. Chamberland, A. Straub
Apéry limits: Experiments and proofs
American Mathematical Monthly, Vol. 128, Nr. 9, 2021, p. 811-824

A. Straub, W. Zudilin
Sums of powers of binomials, their Apéry limits, and Franel’s suspicions
International Mathematics Research Notices, Vol. 2023, Nr. 11, 2023, p. 9861-9879

based on joint work(s) with:

Marc Chamberland
(Grinnell College)

Wadim Zudilin
(Radboud U., NL)
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Mit der Tür ins Haus fallen. . . Falling into the house with the door. . .

The minimal recurrence for A(s)(n) =

n∑

k=0

(
n

k

)s

has order ⌊ s+1
2 ⌋.CONJ

Franel,
1895

A(s)(n) satisfies a recurrence of order ⌊ s+1
2 ⌋.THM

Stoll ’97

Is that recurrence of minimal order?OPEN

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

solved by certain sequences

A
(s)
j (n) if 0 ⩽ 2j < s.

The Apéry limits are:

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s

∈ π2jQ>0

Hence, A
(s)
j (n) with 0 ⩽ 2j < s are linearly independent, so that any

telescoping recurrence has order at least ⌊ s+1
2 ⌋.

THM
S-Zudilin

’21
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Numbers à la Apéry and their remarkable properties Armin Straub
62 / 85



Background: Creative telescoping

A telescoping recurrence for
n∑

k=0

(
n

k

)2(n+ k

k

)2

=: a(n, k)

Goal

N,K shift operators in n and k: Na(n, k) = a(n+ 1, k)

• Suppose we have P (n,N) ∈ Q[n,N ] and R(n, k) ∈ Q(n, k) so that:

P (n,N)a(n, k) = (K − 1)R(n, k)a(n, k)

= b(n, k + 1)− b(n, k)

• Then: P (n,N)
∑

k∈Z
a(n, k) = 0 Assuming lim

k→±∞
b(n, k) = 0.

P (n,N) = (n+ 2)3N2 − (2n+ 3)(17n2 + 51n+ 39)N + (n+ 1)3

R(n, k) =
4k4(2n+ 3)(4n2 − 2k2 + 12n+ 3k + 8)

(n− k + 1)2(n− k + 2)2

EG

R(n, k) is the certificate of the telescoping recurrence operator P (n,N).

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A = B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Poincaré and Perron

• Normalized general homogeneous linear recurrence of order d:

un+d + pd−1(n) un+d−1 + · · ·+ p1(n) un+1 + p0(n) un = 0

• If lim
n→∞

pk(n) = ck, then the characteristic polynomial is:

λd + cd−1 λd−1 + · · ·+ c1 λ+ c0 =

d∏

k=1

(λ− λk )

Suppose the | λk | are distinct. Then, for any solution un,

lim
n→∞

un+1

un
= λk (P)

for some k ∈ {1, . . . , d}, unless un is eventually zero.

THM
Poincaré
1885

Suppose, in addition, p0(n) ̸= 0 for all n ⩾ 0.

Then, for each λk , there exists a un such that (P) holds.

THM
Perron
1909
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• Normalized general homogeneous linear recurrence of order d:

un+d + pd−1(n) un+d−1 + · · ·+ p1(n) un+1 + p0(n) un = 0

• If lim
n→∞

pk(n) = ck, then the characteristic polynomial is:

λd + cd−1 λd−1 + · · ·+ c1 λ+ c0 =

d∏

k=1

(λ− λk )

Suppose the | λk | are distinct. Then, for any solution un,

lim
n→∞

un+1

un
= λk (P)

for some k ∈ {1, . . . , d}, unless un is eventually zero.

THM
Poincaré
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Another look at Apéry’s recurrence and limit

• Apéry’s recurrence has order 2 and degree 3:

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

• u−1 = 0, u0 = 1: Apéry numbers A(n) 1, 5, 73, 1445, 33001, . . .

• u0 = 0, u1 = 1: 2nd solution B(n) 0, 1, 117
8
, 62531

216
, 11424695

1728
, . . .

lim
n→∞

B(n)

A(n)
=

ζ(3)

6

THM
Apéry ’78

• Characteristic polynomial n2 − 34n+1 has roots (1±
√
2)4 ≈ 33.97, 0.0294.

A(n), B(n) grow like (1 +
√
2)4n.

• By Perron’s theorem, there is a (unique) solution

C(n) = γA(n) +B(n) with lim
n→∞

C(n+ 1)

C(n)
= (1−

√
2)4.

↓
0 = γ + lim

n→∞

B(n)

A(n)

A(n)ζ(3)− 6B(n) is “Perron’s small solution”.COR

This is a small linear form in 1 and ζ(3).

Tools to construct the solutions guaranteed by Perron’s theorem??
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• Apéry’s recurrence has order 2 and degree 3:

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.
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Numbers à la Apéry and their remarkable properties Armin Straub
65 / 85



Approaches to proving Apéry limits

How to prove lim
n→∞

B(n)

A(n)
=

ζ(3)

6
?

Q

1 Via explicit expressions: (Apéry, ’78)

B(n) =
1

6

n∑

k=0

(
n

k

)2(
n+ k

k

)2



n∑

j=1

1

j3
+

k∑

m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)




2 Via integral representations: (Beukers, ’79)

(−1)n
∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1
dxdydz = A(n)ζ(3)− 6B(n)

3 Via hypergeometric series representations: (Gutnik, ’79)

−1

2

∞∑

t=1

R′
n(t) = A(n)ζ(3)− 6B(n), where Rn(t) =

(
(t− 1) · · · (t− n)

t(t+ 1) · · · (t+ n)

)2

4 Via modular forms (Beukers ’87, Zagier ’03, Yang ’07)

5 Via continued fractions (for recurrences of order 2)
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2 Via integral representations: (Beukers, ’79)

(−1)n
∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1
dxdydz = A(n)ζ(3)− 6B(n)

3 Via hypergeometric series representations: (Gutnik, ’79)

−1

2

∞∑

t=1

R′
n(t) = A(n)ζ(3)− 6B(n), where Rn(t) =

(
(t− 1) · · · (t− n)

t(t+ 1) · · · (t+ n)

)2

4 Via modular forms (Beukers ’87, Zagier ’03, Yang ’07)

5 Via continued fractions (for recurrences of order 2)
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Franel numbers

A(s)(n) =
n∑

k=0

(
n

k

)s

are the (generalized) Franel numbers.
DEF
Franel
1894

• A(1)(n) = 2n

un+1 = 2un

• A(2)(n) =
(
2n
n

)

(n+ 1)un+1 = 2(2n+ 1)un

• A(3)(n) = 1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, . . .
(n+ 1)2un+1 = (7n2 + 7n+ 2)un + 8n2un−1 (Franel, 1894)

• A(4)(n) = 1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, . . .
(n+ 1)3un+1 = 2(2n+ 1)(3n2 + 3n+ 1)un + 4n(16n2 − 1)un−1 (Franel, 1895)

The minimal recurrence for A(s)(n) has order ⌊ s+1
2 ⌋

and degree s− 1. (spoiler: the degree part is not true)

CONJ
Franel,
1895
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Franel’s conjecture

The minimal recurrence for A(s)(n) has order ⌊ s+1
2 ⌋

and degree s− 1.

CONJ
Franel,
1895

• Perlstadt ’86: order 3 recurrences for s = 5, 6 of degrees 6, 9
computed using MACSYMA and creative telescoping

A(s)(n) satisfies a recurrence of order ⌊ s+1
2 ⌋.THM

Stoll ’97

Cusick ’89 also constructs such recurrences.

Is that recurrence of minimal order?OPEN

The minimal recurrence for A(s)(n) has order m = ⌊ s+1
2 ⌋ and

degree =

{
1
3m(m2 − 1) + 1, for even s,

1
3m

3 − 1
2m

2 + 2
3m+ (−1)m−1

4 , for odd s.

CONJ
Bostan
’21

If true, the degree grows like s3/24.

• Verified at least for s ⩽ 20.
using MinimalRecurrence from the LREtools Maple package

• Goal: The minimal telescoping recurrence for A(s)(n) has order ⩾ ⌊ s+1
2 ⌋.
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How to prove lower bounds for orders of recurrences?

•
n∑

k=0

(
n

k

)2(n+ k

k

)2

: recurrence of order 2 (Apéry ’78)

•
n∑

k=0

(
n

k

)s

: recurrence of order ⌊ s+1
2 ⌋ (Stoll ’97)

Could there be recurrences of lower order? . . . and higher degree

EG

• For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek ’92)

an algorithm to compute order 1 (right) factors of recurrence operators.

• There are algorithms for fixed recurrence operators (Beke 1894, Bronstein ’94,
Zhou–van Hoeij ’19, . . . )

for computing factors of differen(tial/ce) operators.

• For Franel numbers, order 1 can be ruled out for all s ⩾ 3 (Yuan–Lu–Schmidt ’08)

using congruential properties.

• If A(n+ 1)/A(n) → µ for µ ∈ Q̄ of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (McIntosh ’89)

For Apéry numbers: µ = (1 +
√
2)4.

For Franel numbers: µ = 2s. Not helpful!
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Numbers à la Apéry and their remarkable properties Armin Straub
69 / 85



How to prove lower bounds for orders of recurrences?

•
n∑

k=0

(
n

k

)2(n+ k

k

)2

: recurrence of order 2 (Apéry ’78)
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Solutions to the Franel number recurrences

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

solved by A
(s)
j (n) if 0 ⩽ 2j < s.

(fine print: for large enough n)

THM
S-Zudilin

’21

A(s)(n, t) :=
n∑

k=0

(
n

k

)s



k∏

j=1

(
1− t

j

) n−k∏

j=1

(
1 +

t

j

)

−s

=
∑

j⩾0

A
(s)
j (n) t2j

1 Suppose: P (n,N)

(
n

k

)s

= b(n, k + 1)− b(n, k)
for a hypergeometric term b(n, k) = rat(n, k)

(
n
k

)s
.

2 P (n,N)

β−1∑

k=α

(
n

k − t

)s

= O(ts)α ≪ 0 and β ≫ n

= b(n, β − t)− b(n, α− t) b(n, t) entire for n ≫ 0

since b(n, t) = rat(n, t)

(
n

t

)s

3 P (n,N)
n∑

k=0

(
n

k − t

)s

= O(ts) omitted terms are O(ts)

4 A(s)(n, t) =

(
πt

sin(πt)

)s n∑

k=0

(
n

k − t

)s

and so P (n,N)A(s)(n, t) = O(ts).

proof
outline
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Apéry limits and lower bounds

Any telescoping recurrence for
n∑

k=0
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n

k

)s

solved by A
(s)
j (n) if 0 ⩽ 2j < s.

(fine print: for large enough n)
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j

) n−k∏

j=1

(
1 +

t

j

)

−s

=
∑

j⩾0

A
(s)
j (n) t2j

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s

∈ π2jQ>0

THM
S-Zudilin

’21
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• Our proof is based on showing locally uniform convergence in t of

lim
n→∞

A(s)(n, t)
n∑

k=0

(
n

k

)s =

(
πt

sin(πt)

)s

.

For large n and k ≈ n/2,

k∏

j=1

(
1− t

j

) n−k∏

j=1

(
1 +

t

j

)
≈

∞∏

j=1

(
1− t

j

)(
1 +

t

j

)
=

sin(πt)

πt
.

“poof”
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Apéry limits and lower bounds

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

solved by A
(s)
j (n) if 0 ⩽ 2j < s.

(fine print: for large enough n)

THM
S-Zudilin

’21

A(s)(n, t) :=
n∑

k=0

(
n

k

)s



k∏

j=1

(
1− t

j

) n−k∏

j=1

(
1 +

t

j

)

−s

=
∑

j⩾0

A
(s)
j (n) t2j

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s

∈ π2jQ>0

THM
S-Zudilin

’21

• Our proof is based on showing locally uniform convergence in t of

lim
n→∞

A(s)(n, t)
n∑

k=0

(
n

k

)s =

(
πt

sin(πt)

)s

.

For large n and k ≈ n/2,

k∏

j=1

(
1− t

j

) n−k∏

j=1

(
1 +

t

j

)
≈

∞∏

j=1

(
1− t

j

)(
1 +

t

j

)
=

sin(πt)

πt
.

“poof”
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Apéry limits and lower bounds

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

solved by A
(s)
j (n) if 0 ⩽ 2j < s.

(fine print: for large enough n)

THM
S-Zudilin

’21

A(s)(n, t) :=
n∑

k=0

(
n

k

)s



k∏

j=1

(
1− t

j

) n−k∏

j=1

(
1 +

t

j

)

−s

=
∑

j⩾0

A
(s)
j (n) t2j

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s

∈ π2jQ>0

THM
S-Zudilin

’21

• In the case j = 1, this settles previous conjectures:

• s = 3, 4 numerically observed by Cusick (1979)
• s = 3 proved by Zagier (2009)
• s = 5 conjectured by Almkvist, van Straten, Zudilin (2008)
• s ⩾ 3 conjectured by Chamberland–S (2020)

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

has order at least ⌊ s+1
2 ⌋.THM

S-Zudilin
’21

• This implies Franel’s conjecture on the exact order
if the minimal-order recurrence is telescoping. True at least for s ⩽ 30.
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Collecting some thoughts. . .

• Applications of Apéry limits:
• Irrationality proofs for ζ(2) and ζ(3)
• Explicitly construct the solutions guaranteed by Perron’s theorem
• Continued fractions
• Prove lower bounds on orders of recurrences new!

• Many open questions! For instance:

• Cusick ’89 and Stoll ’97 construct recurrences for Franel numbers.
Can these constructions produce telescoping recurrences?

• What can we learn from other families of binomial sums?
Also, it would be nice to simplify some of the technical steps in the arguments.

• Can we (uniformly) establish the conjectural Apéry limits for CY DE’s?
• Can we explain when CT falls short? And algorithmically “fix” this

issue?
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Interpolated sequences and
critical L-values of modular

forms

based on joint work with:

Robert Osburn
(University College Dublin)

R. Osburn, A. Straub
Interpolated sequences and critical L-values of modular forms
Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms
in Quantum Field Theory
Editors: J. Blümlein, P. Paule and C. Schneider; Springer, 2019, p. 327-349
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L-value interpolations

For primes p > 2, the Apéry numbers for ζ(3) satisfy

A(p−1
2 ) ≡ af (p) (mod p2),

with f(τ) = η(2τ)4η(4τ)4 =
∑

n⩾1

af (n)q
n ∈ S4(Γ0(8)).

THM
Ahlgren–
Ono 2000

conjectured (and proved modulo p) by Beukers ’87

A(−1
2) =

16
π2L(f, 2)

THM
Zagier
2016

• Here, A(x) =
∞∑

k=0

(
x

k

)2(
x+ k

k

)2

is absolutely convergent for x ∈ C.

• Predicted by Golyshev based on motivic considerations,
the connection of the Apéry numbers with the double covering
of a family of K3 surfaces, and the Tate conjecture.

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017
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Numbers à la Apéry and their remarkable properties Armin Straub
74 / 85



L-value interpolations, cont’d

• Zagier found 6 sporadic integer solutions C∗(n) to: ∗ one of A-F

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 u−1 = 0, u0 = 1

There exists a weight 3 newform f∗(τ) =
∑

n⩾1 γn,∗q
n, so that

C∗(
p−1
2 ) ≡ γp,∗ (mod p).

THM
1985
-

2019

• C, D proved by Beukers–Stienstra (’85); A follows from their work
• E proved using a result Verrill (’10); B through p-adic analysis
• F conjectured by Osburn–S and proved by Kazalicki (’19) using

Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

For ∗ one of A-F , except E, there is α∗ ∈ Z such that

C∗(− 1
2 ) =

α∗

π2
L(f∗, 2).

For sequence E, res
x=−1/2

CE(x) =
6

π2
L(fE , 1).

THM
Osburn S

’19
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L-value interpolations, cont’d

* C∗(n) f∗(τ) N∗ CM α∗

A
n∑

k=0

(
n

k

)3 η(4τ)5η(8τ)5

η(2τ)2η(16τ)2
32 Q(

√
−2) 8

B
⌊n/3⌋∑

k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3
η(4τ)6 16 Q(

√
−1) 8

C
n∑

k=0

(
n

k

)2(2k
k

)
η(2τ)3η(6τ)3 12 Q(

√
−3) 12

D
n∑

k=0

(
n

k

)2(n+ k

n

)
η(4τ)6 16 Q(

√
−1) 16

E
n∑

k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
η(τ)2η(2τ)η(4τ)η(8τ)2 8 Q(

√
−2) 6

F
n∑

k=0

(−1)k8n−k

(
n

k

)
CA(k) q − 2q2 + 3q3 + . . . 24 Q(

√
−6) 6

C∗(−1
2) =

α∗
π2

L(f∗, 2)
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Interpolating sequences

What is the proper way of defining C(−1
2)?

Q

a(n) = n! is interpolated by a(x) = Γ(x+ 1) =

∫ ∞

0
txe−t dt.

EG

∫ ∞

0

(
a(0)− a(1)x2 + a(2)x4 − . . .

)
dx =

π

2
a(−1

2)
THM
Glaisher
1874

∫ ∞

0

1

1 + x2S
· a(0) dx =

π

2
S−1/2 · a(0)

“poof”

(Glaisher’s formal proof, simplified by O’Kinealy)

Here, S is the shift operator: S · b(n) = b(n+ 1)

Numbers à la Apéry and their remarkable properties Armin Straub
77 / 85



Interpolating sequences

What is the proper way of defining C(−1
2)?

Q

a(n) = n! is interpolated by a(x) = Γ(x+ 1) =

∫ ∞

0
txe−t dt.

EG

∫ ∞

0

(
a(0)− a(1)x2 + a(2)x4 − . . .

)
dx =

π

2
a(−1

2)
THM
Glaisher
1874

∫ ∞

0

1

1 + x2S
· a(0) dx =

π

2
S−1/2 · a(0)

“poof”

(Glaisher’s formal proof, simplified by O’Kinealy)

Here, S is the shift operator: S · b(n) = b(n+ 1)
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Interpolating sequences: Ramanujan’s master theorem

∫ ∞

0
xs−1

(
a(0)− xa(1) + x2a(2)− . . .

)
dx =

π

sin sπ
a(−s)

for 0 < Re s < δ, provided that
• a is analytic on H(δ) = {z ∈ C : Re z ⩾ −δ},
• |a(x+ iy)| < Ceα|x|+β|y| for some β < π.

THM
Ramanujan

Hardy

Suppose a satisfies the conditions for RMT. If

a(0) = 0, a(1) = 0, a(2) = 0, . . . ,

then a(z) = 0 identically.

COR
Carlson
1914

• However, we will see that our interpolations do not arise in this way.
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Interpolating sequences

What is the proper way of defining C(−1
2)?

Q

• For Apéry numbers A(n), Zagier used A(x) =

∞∑

k=0

(
x

k

)2(
x+ k

k

)2

.
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2)?

Q

• For Apéry numbers A(n), Zagier used A(x) =

∞∑

k=0

(
x

k

)2(
x+ k

k

)2

.

(x+ 2)3A(x+ 2)− (2x+ 3)(17x2 + 51x+ 39)A(x+ 1)

+ (x+ 1)3A(x) = 0 for all x ∈ Z⩾0

In particular, A(x) does not satisfy the (vertical) growth conditions of RMT.

EG
Zagier
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+ (x+ 1)3A(x) =
8

π2
(2x+ 3) sin2(πx)

In particular, A(x) does not satisfy the (vertical) growth conditions of RMT.

EG
Zagier

• For the ζ(2) Apéry numbers B(n), we use B(x) =

∞∑

k=0

(
x

k

)2(
x+ k

k

)
.

However:
• The series diverges if Re x < −1.
• Q(x, Sx)B(x) = 0 where Q(x, Sx) is Apéry’s recurrence operator.
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Interpolating sequences

What is the proper way of defining C(−1
2)?

Q

• For Apéry numbers A(n), Zagier used A(x) =

∞∑

k=0

(
x

k

)2(
x+ k

k

)2

.

CC(n) =

n∑

k=0

(
n

k

)2(
2k

k

)
diverges for n ̸∈ Z⩾0

= 3F2

(−n,−n, 1
2

1, 1

∣∣∣∣4
)

We use the interpolation CC(x) = Re 3F2

(−x,−x, 1
2

1, 1

∣∣∣∣4
)
.

EG
(C)

CE(n) =

n∑

k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

=

(
2n

n

)
3F2

(
−n,−n, 1

2
1
2 − n, 1

∣∣∣∣∣−1

)

This has a simple pole at n = − 1
2 .

EG
(E)
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Interpolating sequences

What is the proper way of defining C(−1
2)?

Q

• For Apéry numbers A(n), Zagier used A(x) =

∞∑

k=0

(
x

k

)2(
x+ k

k

)2

.

C(n) =

n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(
n

ki

)(
n+ ki
ki

)
.

How to compute C(−1
2)?

EG

• RE: order 4, degree 15
• DE: order 7, degree 17

(2 analytic solutions)

For any odd prime p,

C(p−1
2 ) ≡ γ(p) (mod p2), η12(2τ) =

∑

n⩾1

γ(n)qn ∈ S6(Γ0(4))

THM
McCarthy,
Osburn, S

2020

Is there a Zagier-type interpolation?Q
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Beukers’ proof of the irrationality of ζ(3)

In = (−1)n
∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1
dxdy

Jn =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1− xy)w)n+1
dxdydw

• Beukers showed that

In = a(n)ζ(2) + ã(n), Jn = b(n)ζ(3) + b̃(n)

where ã(n), b̃(n) ∈ Q and

a(n) =
n∑

k=0

(
n

k

)2(n+ k

k

)
, b(n) =

n∑

k=0

(
n

k

)2(n+ k

k

)2

.

• Brown realizes these as period integrals, for N = 5, 6, on the moduli
space M0,N of curves of genus 0 with N marked points.
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Numbers à la Apéry and their remarkable properties Armin Straub
80 / 85



Beukers’ proof of the irrationality of ζ(3)

In = (−1)n
∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1
dxdy

Jn =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1− xy)w)n+1
dxdydw

• Beukers showed that
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Brown’s cellular integrals

Period integrals on M0,N are Q-linear combinations of multiple
zeta values (MZVs). (conjectured by Goncharov–Manin, 2004)

THM
Brown
2009

• Examples of such integrals can be written as: (ai, bj , cij ∈ Z)

∫

0<t1<...<tN−3<1

∏
taii (1− tj)

bj (ti − tj)
cijdt1 . . . dtN−3

• Typically involve MZVs of all weights ⩽ N − 3.

• Brown constructs families of integrals Iσ(n), for which MZVs of
submaximal weight vanish.
Here, σ are certain (“convergent”) permutations in SN .

N 5 6 7 8 9 10 11

# of σ 1 1 5 17 105 771 7028
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submaximal weight vanish.
Here, σ are certain (“convergent”) permutations in SN .

N 5 6 7 8 9 10 11

# of σ 1 1 5 17 105 771 7028

Numbers à la Apéry and their remarkable properties Armin Straub
81 / 85



One of Brown’s cellular integrals

• One of the 17 permutations for N = 8 is σ = (8, 3, 6, 1, 4, 7, 2, 5).

• Cellular integral Iσ(n) =
∫
∆ fn

σ ωσ where ∆ : 0 < t2 < . . . < t6 < 1

fσ =
(−t2)(t2 − t3)(t3 − t4)(t4 − t5)(t5 − t6)(t6 − 1)

(t3 − t6)(t6)(−t4)(t4 − 1)(1− t2)(t2 − t5)
, ωσ =

dt2dt3dt4dt5dt6
(t3 − t6)(t6)(−t4)(t4 − 1)(1− t2)(t2 − t5)

.

Iσ(0) = 16ζ(5)− 8ζ(3)ζ(2)

Iσ(1) = 33Iσ(0)− 432ζ(3) + 316ζ(2)− 26

Iσ(2) = 8929Iσ(0)− 117500ζ(3) + 515189
6 ζ(2)− 331063

48

EG
Panzer:
HyperInt

• OGF of Iσ(n) satisfies a Picard–Fuchs DE of order 7 (Lairez).
With 2-dimensional space of analytic solutions at 0.

• The leading coefficients of Iσ(n) are:

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .
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One of Brown’s cellular integrals, cont’d

• One of the 17 permutations for N = 8 is σ = (8, 3, 6, 1, 4, 7, 2, 5).
• Cellular integral Iσ(n) =

∫
∆ fn

σ ωσ has leading coefficients Aσ(n):

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .

Aσ(n) =

n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(
n

ki

)(
n+ ki
ki

)LEM
McCarthy,
Osburn, S

2020
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k1+k2=k3+k4

4∏

i=1

(
n

ki

)(
n+ ki
ki

)LEM
McCarthy,
Osburn, S

2020

For each N ⩾ 5 and convergent σN , the leading coefficients
AσN (n) satisfy (p ⩾ 5)

AσN (mpr) ≡ AσN (mpr−1) (mod p3r).

CONJ
McCarthy,
Osburn, S

2020

For N = 5, 6 these are the supercongruences proved by Beukers and Coster.

Numbers à la Apéry and their remarkable properties Armin Straub
83 / 85



One of Brown’s cellular integrals, cont’d

• One of the 17 permutations for N = 8 is σ = (8, 3, 6, 1, 4, 7, 2, 5).
• Cellular integral Iσ(n) =

∫
∆ fn

σ ωσ has leading coefficients Aσ(n):

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .

Aσ(n) =

n∑

k1,k2,k3,k4=0
k1+k2=k3+k4
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(
n

ki

)(
n+ ki
ki

)LEM
McCarthy,
Osburn, S

2020

For any odd prime p,

Aσ

(p− 1

2

)
≡ γ(p) (mod p2)

where η12(2τ) =
∑

n⩾1

γ(n)qn is the unique newform in S6(Γ0(4)).

THM
McCarthy,
Osburn, S

2020
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Collecting some thoughts. . .

• Golyshev and Zagier observed that for

A(n) =
n∑

k=0

(
n

k

)2(
n+ k

k

)2

, f(τ) = η(2τ)4η(4τ)4 =
∑

n⩾1

αnq
n

the known modular congruences have a continuous analog: weight 4

A(p−1
2 ) ≡ αp (mod p2), A(− 1

2 ) =
16
π2L(f, 2)

• We proved that the same phenomenon holds for:
• all six sporadic sequences of Zagier weight 3

• an infinite family of leading coefficients of Brown’s cellular integrals
odd weight k

• Proofs are computational and not satisfactorily uniform
Do all of these have the same motivic explanation?

Can Zagier’s motivic approach (relying on Tate conjecture) be worked out explicitly in these cases?

• Further examples exist. What is the natural framework?
Apéry-like sequences, CM modular forms, hypergeometric series, . . .

• How to characterize the analytic interpolations abstractly?
We used suitable binomial sums. But the interpolations are not unique! (Some grow like sin(πx) as x → i∞.)

• Polynomial analogs?
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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