Numbers a la Apéry and their
remarkable properties
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CONJ 7,¢(3),¢(5), ... are algebraically independent over Q.
® Apéry (1978): ¢(3) is irrational
® Open: ((5) is irrational
® Open: ((3) is transcendental
e Open: ((3)/n is irrational

Slides available at:
http://arminstraub.com/talks

*

ROGER “APERY
1916 & [99%

1

8 927 64",

LIPS SRR e T 6

q

Numbers a la Apéry and their remarkable properties

Armin Straub

1/85


http://arminstraub.com/talks

Rough outline

® Introducing Apéry-like numbers

® they are integer solutions to certain three-term recurrences
® are all of them known?

® Apéry-like numbers have interesting properties
® connection to modular forms
® special p-adic properties
® multivariate extensions
® polynomial analogs (skipped today)
® A walk down memory lane: running into Apéry-like numbers
® planar random walks
® series for 1 /7
positivity of rational functions
counting points on algebraic varieties (skipped today)
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The Riemann zeta function

® The Riemann zeta function is the analytic continuation of

== 1 i
n=1

—8 *
P prime p

® |ts zeros and values are fundamental, yet mysterious to this day.

CONJ |f ((s) = 0 then s € {—2,—4,...} or Re(s) = 3.
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The Riemann zeta function

® The Riemann zeta function is the analytic continuation of

— 1 1
((«@—;E— H 1_ps

P prime

® |ts zeros and values are fundamental, yet mysterious to this day.

CONJ |f ((s) = 0 then s € {—2,—4,...} or Re(s) = 3.

T _ _ _ (=1)"*1(2m)2 By,
C2)=—, (d=—, ..., ((2n)= 2]

1734

CONJ The values ((3),¢(5),((7),... are all transcendental.
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The Riemann zeta function

® The Riemann zeta function is the analytic continuation of

— 1 1
C(S)—;;— H 1_ps

P prime

® |ts zeros and values are fundamental, yet mysterious to this day.

CONJ |f ((s) = 0 then s € {—2,—4,...} or Re(s) = 3.

THM 9 4 -1 n+1 2 Qan
e g(g):%, C(4)=g—0’ C(zn):( )2(;717;!) :

CONJ The values ((3),¢(5),((7),... are all transcendental.

;';2::,',\;'8 ¢(3) is irrational.
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Apéry numbers and the irrationality of ((3)

® The Apéry numbers 1,5,73,1445,. ..

S0 C1)

satisfy k=0
(n 4+ 1D3up1 = (20 + 1)(A7T0* 4+ 170 + 5)up, — nu, 1.
THM

o0
1 o q ]
Apéry'78 ((3) = Zﬁ is irrational.
n=1
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Apéry numbers and the irrationality of ((3)

® The Apéry numbers 1,5,73,1445,. ..

LR

(n 4+ 1D3up1 = (20 + 1)(A7T0* 4+ 170 + 5)up, — nu, 1.

THM > . ]
Apéry'18 (3 Z is irrational.

proof The same recurrence is satisfied by the “near”—integers

=56 (1) G S mtm)

Then, ﬁgzg — ((3). But too fast for {(3) to be rational. O
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Apéry numbers and the irrationality of ((3)

® The Apéry numbers 1,5,73,1445,. ..

LR

(n 4+ 1D3up1 = (20 + 1)(A7T0* 4+ 170 + 5)up, — nu, 1.

THM > . ]
Apéry'18 (3 Z is irrational.

proof The same recurrence is satisfied by the “near”—integers

=56 (1) G S mtm)

Then, ﬁézg — ((3). But too fast for {(3) to be rational. O

After a few days of fruitless effort the specific problem was men-
tioned to Don Zagier (Bonn), and with irritating speed he showed
that indeed the sequence satisfies the recurrence.

Alfred van der Poorten — A proof that Euler missed. .. (1979)
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Zagier’s search and Apéry-like numbers

® The Apéry numbers B(n) = < > (n+ k) for ((2) satisfy
k=0
(n+1)*u,11 = (an® + an + b)u, — cn’u, 1, (a,b,c) = (11,3,-1).

BCE Are there other tuples (a, b, ¢) for which the solution defined by
u_1 =0, ug =1 is integral?
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Zagier’s search and Apéry-like numbers

® The Apéry numbers B(n) = < > (n+ k) for ((2) satisfy

k=0

(n+1)*u,11 = (an® + an + b)u, — cn’u, 1, (a,b,c) = (11,3,-1).

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers

u_1 =0, ug =1 is integral?

® Apart from degenerate cases, Zagier found 6 sporadic integer solutions:

* | Ci(n) * | Ci(n)
) o £/

| Sore@ £ SO
IPIRNY F e (fea
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Almkvist—Zudilin’s search for sporadic sequences of order 3

Apéry numbers

Kauers—Zeilberger diagonal

Domb numbers

Almkvist=Zudilin numbers

(a,b,¢) | A(n) (0+ Dt = 20+ )an? + an + B — ey
e %(Z{(”ij

w419 | () (2)

a3 (F) (oY)

mas | e () (")

a2 | o0 () (75"

on=m (OO
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Modularity of Apéry-like numbers

® Beukers ('87) observed that the Apéry numbers 1,5,73,1145,...

BT

satisfy:

7 12 12 n
s s (e
12(27)n'2(37

7 ;0 \n2@r)n@r) )
modular form modular function

14 5q + 13¢% + 23¢° + O(q*) a—12¢% + 66¢° + O(¢*)
Numbers a la Apéry and their remarkable properties Armin Straub
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Modularity of Apéry-like numbers

® Beukers ('87) observed that the Apéry numbers 1,5,73,1145,...

RO

satisfy:
7 12 12 n
n'(2r Z A(n ( (T)n**(67)
5 12 27- 12 T
o 2 (ary ) )
modular form modular function
1+ 5q + 13¢% + 23¢°% + O(q*) q — 12¢% 4 664> + O(q*)

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

e Context: f(r) modular form of weight &
2(7) modular function

y(x) such that y(z(7)) = f(1)
Then y(z) satisfies a linear differential equation of order k + 1.
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Apéry numbers have remarkable properties

THM HGIHG) s vy (0oL

'87 5 1209 \pn12(37
77( )2 (37)
modular form modular function
14 5q + 13¢* + 23¢> + O(q*) q — 12¢% + 664> + O(q*) q =¥
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Apéry numbers have remarkable properties

THM 7(9 12 n
Beukers TI(— A (M
87 5 12027 37
() ;0 Jn2@r))
modular form modular function
1+ 5q + 13¢% 4 23¢° + O(¢*) q—12¢* + 66¢° + O(q*)
THM _
Gessel '82 A(Tl) = A(nO)A(nl) e A(nT) (mOdp)
n; are the p-adic digits of n
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Apéry numbers have remarkable properties

THM 7(2 12 n
Beukers "75(— Z A (#)
'87
() (2r)n26r) )
modular form modular function
1+ 5¢ +13¢% 4+ 23¢> + O(¢?) q — 12¢% + 664> + O(q*)
i A(n) = A(no)A(n1) - A(n,)  (modp)
n; are the p-adic digits of n
THM _
Coster '88 A(me) = A(pr lm) (mOd p37")
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Apéry numbers have remarkable properties

THM

Beukers
'87

THM
Gessel '82

THM
Coster '88

THM

Ahlgren—
Ono '00

7 12 n
(2 e ( * (1)1 (67)
5 12 27- 12 T
77( ;0 @)
modular form modular function
14 5q + 13¢2 + 23¢3 + O(qh) q—12¢* + 66¢° + O(q*)

A(n) = A(no)A(n1) --- A(ny)  (modp)

n; are the p-adic digits of n

A(p'm) = A(p""'m)  (modp’")

=1l
A(p—) =c(p) (modp?)
= clmg” =n(2r)*n(dr)" € Si(To(®))
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Apéry numbers have remarkable properties

Beokan 777(— 3" A (M) !

87 775( = 12 27-) 12(37’) I

modular form modular function
1+ 5¢+13¢” + 23¢> + O(¢") q - 12¢° + 66¢° + O(q")
oo 82 A(n) = A(no)A(m) -~ A(n,)  (modp)
n; are the p-adic digits of n
Coter 0 A(p'm) = A" "'m)  (modp™")
THM -1
Ahlgren— A(pT) = C(p) (mOdpQ)
Ono '00
fr) =" en)g" = n2r)*n(dr)* € Si(Lo(8))

THM 1 16
Zagier '16 A<—§> = ﬁL(‘ﬂ 2)

® These extend to all known sporadic (Apéry-like) numbers!!17?

= proven
7 = partially known
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Short random walks

based on joint work(s) with:

Jon Borwein Dirk Nuyens James Wan Wadim Zudilin
(U. Newcastle, AU) (K.U.Leuven, BE) (SUTD, SG) (Radboud U., NL)

Numbers a la Apéry and their remarkable properties Armin Straub 9/85




Random walks in the plane

n steps in the plane

(length 1, random direction)

Q What is the distance traveled in n steps?

pn(x)  probability density
Why(s)  sth moment
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Random walks in the plane

n steps in the plane

(length 1, random direction)

Q What is the distance traveled in n steps?

pn(x)  probability density
Why(s)  sth moment

EG 4
Wa(1) = =
2(1) -
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Random walks in the plane

n steps in the plane

(length 1, random direction)

pn(x)  probability density
Why(s)  sth moment

EG 4
Wa(1) = =
2(1) -

e Karl Pearson famously asked for
pn(x) in 1905, coining the term
random walk.

Q What is the distance traveled in n steps?

e

\\
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Random walks in the plane

n steps in the plane

(length 1, random direction)

Q What is the distance traveled in n steps?

pn(x)  probability density
Why(s)  sth moment

EG Wa(1) 4
2T
e Karl Pearson famously asked for !
pn(x) in 1905, coining the term =
random walk. /'f
THM 2
Raly;;igh, pn(x) ~ %efﬁ/n for large n

Numbers a la Apéry and their remarkable properties Armin Straub 10




Long random walks

THM 20z 2
Rayleigh, pn(.’l)) ~ —eix /n

for large n
1905 n

030
025

020

W (1) ~ y/rr /2

005 pr (‘T)
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Long random walks

THM 2x 2
Rayleigh, ~ et /n
veig pn () —e for large n

W (1) ~ y/rr /2
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Long random walks

THM 2x 2
Rayleigh, ~ S/
veig pn () —e for large n

W (1) ~ y/rr /2

The lesson of Lord Rayleigh’s solution is that in open 200 steps
country the most probable place to find a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point!
Karl Pearson, 1905
Armin Straub 11/ 85
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Densities of short walks

b2 b3 P4

05
07
08
06 04
06 05
03
04
04
03 02
02
02 o1
01
05 10 15 20 ' 05 10 15 20 25 30 ! 1 2 3 4
035|
03| 030)
030)
030) 025|
025|
025| o
020)
020)
015|
o1 015|
o0 010 010)
005, 005, 005,
' 1 2 3 4 5 ! 1 2 3 4 5 0 ' 1 2 3 4 5 3 7
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Densities of short walks

b2 b3 P4

05
07
08
06 04
06 05
03
04
04
03 02
02
02 01
01
05 10 15 20 i 05 10 15 20 25 30 ' 1 2 3 4

Numbers a la Apéry and their remarkable properties Armin Straub

12 / 85



Classical results on the densities

easy

p3(x) = Re <\7{§ K (\/($ i 11)2;3 — a:))) G. J.lléo%nnett

pn () :/ xtJo(xt)Jy () dt J. C. Kluyver
0 1906

Numbers a la Apéry and their remarkable properties Armin Straub
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Classical results on the densities

2
SR — eas
) = e Y
B vz \/(:13—1—1)3(3—9:)
p3(z) = Re <7r2 K 162 G. J.lléo%nnett
pn () :/ xtJo(xt)Jy () dt J. C. Kluyver
0 1906

n=4,z=23/2

Numbers a la Apéry and their remarkable properties Armin Straub 13 / 85
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The average distance traveled in two steps

® The average distance in two steps:

1 1
wa(t) = [ [ e | duay — 2
0 JO

Numbers a la Apéry and their remarkable properties Armin Straub 14 /.85
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The average distance traveled in two steps

® The average distance in two steps:
1,1 . .
Wa(1) = / / €2 4 2| dady = ?
0 Jo

1
= [ emay
0
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The average distance traveled in two steps

® The average distance in two steps:

’1 + 62m'y|
= |1+ (cosmy + isinﬂy)2|
= 2 cos(7y)

1 1
Wa(1) = / / |2 4 ™| dady = 7
0 0

1
= [ emay
0

1
:/ 2 cos(my)dy
0
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The average distance traveled in two steps

® The average distance in two steps:

1 1
Wa(1) = / / |2 4 ™| dady = 7
0 0

’1 + 62m'y|
= |1+ (cosmy + isinﬂy)2|
= 2 cos(my)

1
= [ emay
0

1
2 cos(my)dy

~ 1.27324

3 S—
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The average distance traveled in two steps

® The average distance in two steps:

’1+e2”y| :/1‘1+62my}dy
= |1+(cos7ry+isin7ry)2| 01

2 cos(my)dy

= 2 cos(my)

~ 1.27324

I
3 S—

® This is the average length of a random arc on a
unit circle.

1 1
Wa(1) = / / |2 4 ™| dady = 7
0 0
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

Wn(s) = / .’Espn(l‘) dx = / ‘627”‘951 4+ egm‘xn‘sdm
0 [0,1]"
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

Wn(s) = / xspn(l‘) dx = / ‘627”‘951 4+ egm‘xn‘sdm
0 [0,1]"

® On a desktop:

=
=
2

1.57459723755189365749
1.79909248
Ws(1) ~ 2.00816

N
=
2
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

Wn(s) = / xspn(l‘) dx = / ‘627”‘951 4+ eQWixn‘sdm
0 [0,1]"

® On a desktop:
W5(1) =~ 1.57459723755189365749
Wi(l) ~ 1.79909248
W5(1) ~ 2.00816

° On a su percom puter: David Bailey, Lawrence Berkeley National Laboratory (256 cores)

Ws5(1) 2.0081618

%
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

Wn(s) = / xspn(l‘) dx = / ‘627”‘351 4+ €2m‘xn‘s de
0 [0,1]"

® On a desktop:

=
=
2

1.57459723755189365749
1.79909248
Ws(1) ~ 2.00816

N
=
2

° On a su percomputer: David Bailey, Lawrence Berkeley National Laboratory (256 cores)

W5(1) ~ 2.0081618

® Hard to evaluate numerically to high precision.
Monte-Carlo integration gives approximations with an asymptotic error of
O(1/v N) where N is the number of sample points.
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

Wn(s) = / xspn(l‘) dx = / ‘627”‘351 4+ €2m‘xn‘s de
0 [0,1]"

s = s = s=3 s=4 s = s = s =

1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 37.25
1.575 | 3.000 | 6.452 | 15.00 36.71 | 93.00 | 241.5
1.799 | 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3
2.008 | 5.000 | 14.29 | 45.00 | 152.3 | 545.0 | 2037.
2194 | 6.000 | 1891 | 66.00 | 248.8 | 996.0 | 4186.

D UL W N3
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

Wn(s) = / xspn(l‘) dx = / ‘627”‘351 4+ €2m‘xn‘s de
0 [0,1]"

n| s= s = s=3 s=4 s = s = s =

2 1.273 2.000 3.395 6.000 10.87 | 20.00 37.25

3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5

4 1.799 | 4.000 | 10.12 28.00 82.65 | 256.0 822.3

5 2.008 5.000 | 14.29 | 45.00 152.3 545.0 2037.

6 2.194 | 6.000 | 18.91 66.00 248.8 996.0 | 4186.
Wa(1) = 4
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

o
Wi (s) = / z°pp(x)de = / |2 4 2T dep
0 [0,1]"
n| s= s = s=3 s=4 s = s = s =
2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5
4 1.799 4.000 | 10.12 28.00 82.65 | 256.0 822.3
5 2.008 5.000 | 14.29 45.00 152.3 545.0 2037.
6 2.194 6.000 | 18.91 66.00 248.8 996.0 4186.
Wh(1) = % W5(1) = 1.57459723755189... =7
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The moments of random walks

DEF The sth moment W, (s) of the density p;,:

Wn(s) = / xspn(l‘) dx = / ‘627rz‘m1 4+ €2m‘zn‘s de
0 [0,1]"

n| s= 5§ = s = s=4 s = s = s =

2 1.273 | 2.000 | 3.395 | 6.000 10.87 | 20.00 37.25

3 1.575 | 3.000 | 6.452 | 15.00 36.71 93.00 | 241.5

4 1.799\| 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3

5 2.008\ 5.000 | 14.29 | 45.00 152.3 | 545.0 | 2037.

6 2.194 |\ 6.000 | 18.91 66.00 | 248.8 | 996.0 | 4186.
Wh(1) = % W5(1) = 1.57459723755189... =7
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The even moments

w
Il
S
V)
Il
()
w

2 =8| s=10 OEIS
2 6| 20 70 252 A000984
3 15 93| 639 | 4653  A002893
4 28 | 256 | 2716 | 31504  A002895
5
6

45 545 | 7885 | 127905 A169714
66 996 | 18306 | 384156 A169715

EG 94
]> Apéry-like

2‘7> <2(:__jj)) Domb numbers
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The even moments

n‘s:0‘522‘5:4‘5:6‘528‘5210 OEIS
2 1 2 6 20 70 252 A000984
3 1 3 15 93 639 4653 A002893
4 1 4 28 256 | 2716 | 31504 A002895
5 1 5 45 545 | 7885 | 127905 A169714
6 1 6 66 996 | 18306 | 384156 A169715
EG k 2 .
k 2
Wa2k) = 3 ( ) ( J > Apéry-like
= Y J
7=0
k ) . .
k 2 2(k —
Wy(2k) = Z ( ) ( ‘7> < ( J)) Domb numbers
pr ¥ J k—j

THM

Borwein- 3 21/3 1 27 22/3 2
Nuyens-S- Wa(l) = 771—‘6 — 771—‘6 —
i =55 (3) + 15 (5)

Numbers a la Apéry and their remarkable properties Armin Straub
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Densities of random walks

B85 8 8

p2() p3(x) pa(x) 2/ ps(@)
(1) = — s
) = €as
p2 e Y
2
PAVER 1,2 2% (9 — 2?) .
=Y | |
n) = o B ( U 3y with o
() = 2 VIG—a? (555 |(16- 2?)° .
) = — S e new
P4 w2 T e 5% 108z* BSWZ 2011
V5
£0) = —— T(£)N(E)T(F£)T() ~ 0.32993

Numbers a la Apéry and their remarkable properties

Armin Straub

17 / 85



Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(zq,. ..

s Tn):

1 1
u(p) == / . / log !p (627Tit1, e 627Tit”) | dtidts . ..dt,
0 0

o Wals) = / |27t 1y e2mite |
[0’1]71
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,2,):
1 1
u(p) == / . / log !p (627Tit1, .. .,627Tit”) | dtidts . ..dt,
0 0
W)= [ et
[0’1]71

EG W) 0)=plz1+...+x,)=p(l+z1+...+Tp_1)
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,2,):

1 1
:/ / log ‘p (eZﬂ'itl,...762mt")’dt1dt2...dtn
0 0

. Wn(s):/ €2t 4 et d
[0,1]»

EG W) 0)=plz1+...+x,)=p(l+z1+...+Tp_1)

EG 0
Smyth, p(l+z+y) = 3\[ L(x_s,2) = W3(0) ri

7¢(3
u(l—i—x—i—y—i—z):i%
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,2,):

1 1 _
:/ / log‘p(e%’tl,...,e
0 0

. Wn@:/ 2Tt 44 e2mita]® g
[0,1]"

i) | dtydty ... dty,

=6 Wh(0)=p(z1+...+2z) =p(l+z1+ ...+ Tp_1)
EG 3[
"los1 pd+a+y) =""L(x-32) = W(0)
7((3
u<1+x+y+z):5% — W(0)
CONJ R
BT W5(0) = (\/2;) 3! L(g15,4) = —L'(g15, —1)
915 = 1(37)*n(57)* + n(7)*n(157)* ‘

'~

W5(0) = 8(

S(E) 41 L(ge, 5) = —8L' (g5, —1)

| g6 = n(r)n(2rn(37)%(67)?

Armin Straub
18 / 85
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Ramanujan-type series for 1/7

4L T, B L3N 19 135\
T 4\ 2 42\ 2.4 43\ 2.4.6

based on joint work with:

o

Mathew Rogers
(Université de Montréal,
now: data scientist)

Numbers a la Apéry and their remarkable properties Armin Straub 19 / 85
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Ramanujan’s series for 1/7

SEIFS

Cy T 1B 13N 19 (135N
a 4\ 2 42 \ 24 43 \ 2.4.6

1
= n(6n+1)4—n

| co
|
[]e
—
—
S |~
: [\
N—
Iw
—
i
[\
_|_
t
S~—

® Starred in High School Musical,
a 2006 Disney production

Srinivasa Ramanujan
Modular equations and approximations to 7
Quart. J. Math., Vol. 45, p. 350-372, 1914
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Ramanujan’s series for 1/7

4L T N, BN
T 4\ 2 42 \ 2.4

1
= n(6n+1)4—n

® Starred in High School Musical,
a 2006 Disney production

Srinivasa Ramanujan
Modular equations and approximations to 7
Quart. J. Math., Vol. 45, p. 350-372, 1914

19 (135 3+
43\ 246

Numbers a la Apéry and their remarkable properties
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Another one of Ramanujan’s series

1 2v2 i (4n)! 1103 4 26390n
T 9801 n!4 3964

® Used by R. W. Gosper in 1985 to compute
17,526, 100 digits of =

Correctness of first 3 million digits showed that the series sums to 1/7 in the first place.

Numbers a la Apéry and their remarkable properties
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Another one of Ramanujan’s series

1 2v2 i (4n)! 1103 4 26390n

7 9801 nl4 3964n

® Used by R. W. Gosper in 1985 to compute
17,526, 100 digits of =

Correctness of first 3 million digits showed that the series sums to 1/7 in the first place.

¢ First proof of all of Ramanujan’s 17 series for 1/7

by Borwein brothers

Jonathan M. Borwein and Peter B. Borwein
Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity

Wiley, 1987

Numbers a la Apéry and their remarkable properties Armin Straub 2185




Apéry-like numbers and series for 1/7

® Sato observed that series for % can be built from Apéry-like numbers:

EG n 2 —
Chan For the Domb numbers D(n) = Z (Z) (2:> (2(: :)>
2003 k=0
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Apéry-like numbers and series for 1/7

® Sato observed that series for % can be built from Apéry-like numbers:

EG n ) )
Cﬁah:nLlu For the Domb numbers D(TL) - Z <Z> (215:) (25’7 ]f))y
k=0

2003

8 = on+1
— =N "Dm)22=.
/3 > D) o6n

n=0

® Sun offered a $520 bounty for a proof the following series:

iV 520_2105471—1—233 i n\? (2k (1)
o 480n n k) \n

n=0 k=0

Numbers a la Apéry and their remarkable properties Armin Straub



A brief guide to proving series for 1/7

® Suppose we have a sequence a,, with modular parametrization

Zan 7_ = f(T) .

n=0 modular modular
function orm
® Then: o
S an(A+ Ba)a(r)" = Af(r) + BE p/(r)
n=0 z (T)
Z (17/ i (42n+5)26n = %
n=0

Numbers a la Apéry and their remarkable properties Armin Straub
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A brief guide to proving series for 1/7

® Suppose we have a sequence a,, with modular parametrization

Zan 7_ = f(T) :
| I—|
n=0 modular modular
function form
® Then: o
> an(A+ Bujalr)” = Af(r) + BED f/r)
n=0
Z (17/ i (42n+5)26n = %

n=

FACT e Forrt c Q(v/—d), () is an algebraic number.

e f/(7) is a quasimodular form.
6

* Prototypical Ex(7) satisfies 7 2E( — 1) — Ex(7) = pr
™lT

® These are the main ingredients for series for 1/m. Mix and stir.

Numbers a la Apéry and their remarkable properties Armin Straub
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Positivity of rational functions

1
l—(x4+y+z+w)+2yzw + zzw + zyw + xyz) + deyzw

based on joint work with:

Wadim Zudilin
(Radboud U., NL)

Numbers a la Apéry and their remarkable properties Armin Straub 2 /85
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Positivity of rational functions

® A rational function

— ni nd
F(xlu s 7xd) - § Anq,..ngTy” " Ty
ni,...,nqg=0

is positive if a,, ., > 0 for all indices.

EG The following rational functions are positive.

Szegd '33
1 g

S T,Y,2) = _ Kaluza :33
( Y ) 1— (w—&—y—l—z)—l—%(ly-i-yz—&-zw) Askey—GaspeSry72

1 Askey—Gasper '77
Koornwinder '78

- 1—(z z dxyz Ismail-Tamhankar '79
( Ty ) + 4 Gillis-Reznick—Zeilberger '83

Az, y, 2)

® Both functions are on the boundary of positivity.
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Positivity of rational functions

® A rational function

F(x1,...,2q) = Z am,---,ndfc?l T

ni,...,ng=0

is positive if a,, ., > 0 for all indices.

EG The following rational functions are positive.

S(@,y,2) :
,1,2) = g
P T T @ty T o)+ Say+yz + 2a)

1
T l—(z4y+2) +dayz

Az, y, 2)

® Both functions are on the boundary of positivity.

n 3
® The diagonal coefficients of A are the Franel numbers Z <n>

nq

Szegd '

Kaluza '
Askey—Gasper '
5"

Askey—Gasper '
Koornwinder '
Ismail-Tamhankar '
Gillis—Reznick—Zeilberger '

k
k=0

Numbers a la Apéry and their remarkable properties
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Positivity of rational functions

CONJ The following rational function is positive:
Kauers-
Zeilberger

2008 1

1—(z+y+2z+w)+2yzw + 22w + zyw + 2y2) + dryzw’

® Would imply conjectured positivity of Lewy—Askey function

1
l-2)1-y)+1-2)1—-2)+...+(1—-2)1—-w)’

Non-negativity proved by a very general result of Scott-Sokal ('14)
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Positivity of rational functions

CONJ The following rational function is positive:
Kauers-
Zeilberger

2008 1

1—(z+y+2z+w)+2yzw + 22w + zyw + 2y2) + dryzw’

® Would imply conjectured positivity of Lewy—Askey function

1
l-2)1-y)+1-2)1—-2)+...+(1—-2)1—-w)’

Non-negativity proved by a very general result of Scott-Sokal ('14)

PROP The Kauers—Zeilberger function has diagonal coefficients

S-Zudilin
n 2 2
n 2k
dy, = E .
k=0

2013
Numbers a la Apéry and their remarkable properties Armin Straub 26




Positivity of rational functions

¢ Consider rational functions F' = 1/p(x1,...,x4) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?

EG . o

————— IS positive.

1-(z+y) P
1

R h .. . | . Hive.
Trety as positive diagonal but is not positive
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Positivity of rational functions

¢ Consider rational functions F' = 1/p(x1,...,x4) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?

EG . ..
————— is positive.

T—(@+y P
1 e _ .

e ——h nal n _
Ty 19 positive diagonal but is not positive

1 . ..
IS not positive.
x
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Positivity of rational functions

¢ Consider rational functions F' = 1/p(x1,...,x4) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?

EG . ..
————— is positive.

T—(@+y P
1 e _ .

e ——h nal n _
Ty 19 positive diagonal but is not positive

1 . ..
IS not positive.
x

Q F positive <= diagonal of F' and F|,,— are positive?
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Positivity of rational functions

¢ Consider rational functions F' = 1/p(x1,...,x4) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?

EG . ..
————— is positive.

T—(@+y P
1 e _ .

e ——h nal n _
Ty 19 positive diagonal but is not positive

1 . ..
IS not positive.
x

Q F positive <= diagonal of F' and F|,,— are positive?

THM 1 . .
S-Zudilin F(z,y) = is positive
2013 1+ci(z+y) + cxy

<= diagonal of F' and F|,—¢ are positive
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Diagonal and constant term
representations

- () (3 = :
= diag
= \k k l-z-y)(1—-2z—w)—zyzw

=ct |:<(x+y)(z+1)(x+y+z)(y+x+1)>n]

TYZ

based on joint work with:

Alin Bostan Sergey Yurkevich
(Université Paris-Saclay)  (University of Vienna)

Numbers a la Apéry and their remarkable properties Armin Straub 28 /85
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A simple example

EG 2
constant ( n) = [In] (1 +I)2n

term n

Numbers a la Apéry and their remarkable properties Armin Straub 29/ 85
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A simple example

EG 2n 14+ 2 2
constant = [In] (1 —+ I)Qn =ct [Pn] , P(SC) = u
term n T
Numbers a la Apéry and their remarkable properties Armin Straub
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A simple example

EG
constant (271) = [In] (1 —+ I)Qn =ct [Pn] ;

term n

EG

) 2
diagonal ( n> is the diagonal of ——
- l—z—y

n uri
7nd) xll...xd

Z a(ny,...

N1,e., g =

0
‘ multivariate series ‘

(1+x)2'

P(z) = .

a(n,...,n)

Numbers a la Apéry and their remarkable properties
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A simple example

EG -
et (2n> —b Q)™ =etP],  Pa)= LT
term n -

e _ ) ~
iagona is the diagonal of =Y (@+y*
n l-z—-y =
(m+ n) S
= x
m
n,m=0
Z a(ni,...,ng) af*---xl? a(n,...,n)

N1,...,nqg 20
‘ multivariate series ‘ diagonal

Numbers a la Apéry and their remarkable properties Armin Straub
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A simple example

EG (2 1+ x)?
constant ( 'ﬂ) = [In] (1 —+ ;1;)2”‘ =ct [Pn] , P(SC) = ﬂ

term n T

EG oo

) 2n 1
diagonal is the di | of — k

(n) is the diagonal o [py— Z(m+y)
Z a(ni,...,ng) af*---xl?
N1,e., g =

0
‘ multivariate series ‘

THM Diagonals of rational functions
zeberser. are P-recursive.
1981-88

HW Constant terms are always diagonals.

Numbers a la Apéry and their remarkable properties Armin Straub 29 /85




Ramanujan’s elliptic functions

® Berndt, Bhargava & Garvan (1995) develop Ramanujan’s theories of elliptic
functions based on the hypergeometric functions

1 1
o F) (,1—;1;1‘), m € {2,3,4,6}.
m m

(m = 2: classical; m = 3,4, 6: alternative bases)

LEM (L) ( — L)
3‘3?&2’3.5 Let Ap(n) = ~"~—5—""" where m > 2 is an integer.
n:
Numbers a la Apéry and their remarkable properties Armin Straub
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Ramanujan’s elliptic functions

® Berndt, Bhargava & Garvan (1995) develop Ramanujan’s theories of elliptic
functions based on the hypergeometric functions

1 1
o F) (,1—;1;1‘), m € {2,3,4,6}.
m m

(m = 2: classical; m = 3,4, 6: alternative bases)

LEM (L) ( — L)
3‘3?&2’3.3 Let Ap(n) = ~"~—5—""" where m > 2 is an integer.
n:
® A,.(n) is a diagonal for all m > 2.
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Ramanujan’s elliptic functions

® Berndt, Bhargava & Garvan (1995) develop Ramanujan’s theories of elliptic
functions based on the hypergeometric functions

1 1
o F (,1—;1;1‘), m € {2,3,4,6}.
m

m

(m = 2: classical; m = 3,4, 6: alternative bases)

LEM 1) (1- 1
Bostan, S, Let Am(n) (m)n( m)

Yorkevich 3 where m > 2 is an integer.
n:

® A,.(n) is a diagonal for all m > 2.
® A, (n) is a constant term if and only if m € {2,3,4,6}.
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Ramanujan’s elliptic functions

® Berndt, Bhargava & Garvan (1995) develop Ramanujan’s theories of elliptic
functions based on the hypergeometric functions

1 1
o F (,1—;1;1‘), m € {2,3,4,6}.
m m

(m = 2: classical; m = 3,4, 6: alternative bases)

Lew (3),(1-3),
3‘3?123.5 Let Ay (n) = =21 where m > 2 is an integer.
n:
® A,.(n) is a diagonal for all m > 2.
® A, (n) is a constant term if and only if m € {2,3,4,6}.
EG

- 82 () (2)-+ (22222

EG_ 53" 45(n) = 1,20,1350, 115500, 10972500, ..

. Is an integer se-
quence and diagonal but not a constant term.

Numbers a la Apéry and their remarkable properties
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Homework

® Such classifications are generally not straightforward!

EG s the following hypergeometric sequence a constant term?

A(n) = m - (iD (4711) (2:>_1

1 +z)8 \"
A(n) = 1,140, 60060, 29745716, 15628090140, . .. = ct —_
(1 —x)2z3

(This is algebraic and therefore a diagonal.)

not a Laurent polynomial so doesn't
count as constant term today

Numbers a la Apéry and their remarkable properties Armin Straub
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Homework

® Such classifications are generally not straightforward!

EG s the following hypergeometric sequence a constant term?

A(n) = m - (iZ) (4121) (2:>_1

1 +z)8 \"
A(n) = 1,140, 60060, 29745716, 15628090140, . .. = ct —_
(1 —x)2z3

not a Laurent polynomial so doesn't
count as constant term today

(This is algebraic and therefore a diagonal.)

EG s the following hypergeometric sequence a diagonal?

A(n) = M

nt?(3).,

357 A(n) = 1,60, 20475, 9373650, 4881796920, . . .

Numbers a la Apéry and their remarkable properties Armin Straub 31 /85
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Characterizations of diagonals

EG Diagonals of rational functions

* F(x) = (C-finite sequences

Numbers a la Apéry and their remarkable properties Armin Straub 32 /85
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Characterizations of diagonals

EG Diagonals of rational functions

* F(x) = (C-finite sequences
o F(x,y) = sequences with algebraic GF

(Furstenberg '67)

To see the latter, express the diagonal as —

1 z\ dz
Flz,— ) —.
2mi J|z|=e £ T
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Characterizations of diagonals

EG Diagonals of rational functions

* F(x) = (C-finite sequences
o F(x,y) = sequences with algebraic GF  (Furstenberg '67)

. 1 z\ dz
To see the latter, express the diagonal as — / F (ac, —) —
27i J|z|=e

x x

THM Diagonals of rational functions

Bostan,

ez = (multiple) binomial sums

Numbers a la Apéry and their remarkable properties Armin Straub 3285
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Characterizations of diagonals

EG Diagonals of rational functions
* F(x) = (C-finite sequences
o F(x,y) = sequences with algebraic GF  (Furstenberg '67)

. 1 z\ dz
To see the latter, express the diagonal as —/ F (ac —) —
27i J|z|=e

)
x x

THM Diagonals of rational functions

Bostan, . . . »
ez = (multiple) binomial sums £
CONJ Diagonals of rational functions over Q (C known)
Christol .

90 = globally bounded, P-recursive sequences

(i.e. cd"ay € Z for ¢,d € Z and at most exponential growth)

Numbers a la Apéry and their remarkable properties Armin Straub
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Application: Integrality of P-recursive sequences

® A sequence is P-recursive / holonomic if it satisfies
a linear recurrence with polynomial coefficients.

EG The Apéry numbers A(n) satisfy A(0) =1, A(1) =5 and

(n+1)3A(n+1) = (2n + 1)(17n* + 17n + 5)A(n) — n3A(n — 1).

¢(3) is irrational!

OPEN Criterion/algorithm for classifying integrality of P-recursive sequences?

Numbers a la Apéry and their remarkable properties Armin Straub 33/ 85
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Application: Integrality of P-recursive sequences

® A sequence is P-recursive / holonomic if it satisfies
a linear recurrence with polynomial coefficients.

EG The Apéry numbers A(n) satisfy A(0) =1, A(1) =5 and

(n+1)3A(n+1) = (2n + 1)(17n* + 17n + 5)A(n) — n3A(n — 1).

¢(3) is irrational!

OPEN Criterion/algorithm for classifying integrality of P-recursive sequences?

CONJ Every P-recursive integer sequence of at most exponential
Christol . . g 0
‘o growth is the diagonal of a rational function.

EG

2 . 1
52014 1he Apéry numbers are the diagonal of

l—z—-y)(1—2—w)—zyzw
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Applications: asymptotics, congruences, geometry, ...

EG

p . 1
s2014 1he Apéry numbers are the diagonal of

l—z—-y)(1—2—w)—zyzw’

® Well-developed theory of multivariate asymptotics e.g., Pemantle-Wilson

® OGFs of such diagonals are algebraic modulo p”. Furstenberg, Deligne '67, '84
Automatically leads to congruences such as

1 (mod8), if n even, Chowla—Cowles—Cowles '80

A(n) = . Rowland-Yassawi '13

5 (mod8), ifn odd. Rowland-Zeilberger '14
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Applications: asymptotics, congruences, geometry, ...

1
l—z—-y)(1—2—w)—zyzw’

SFQUGM The Apéry numbers are the diagonal of

® Well-developed theory of multivariate asymptotics e.g., Pemantle-Wilson

® OGFs of such diagonals are algebraic modulo p”. Furstenberg, Deligne '67, '84
Automatically leads to congruences such as

1 (mod8), if n even, Chowla—Cowles—Cowles '80

A(n) = . Rowland-Yassawi '13

5 (mod8), ifn odd. Rowland-Zeilberger '14

® Univariate generating function:

t—z 33
A(n)t" 7F 12
,;) () AL+t +2)3/2° 2( 1,1

1024¢
—Oifél) . 2=+/1—34t+ 2.
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Applications: asymptotics, congruences, geometry, ...

EG

p . 1
s2014 1he Apéry numbers are the diagonal of

l—z—-y)(1—2—w)—zyzw’

® Well-developed theory of multivariate asymptotics e.g., Pemantle-Wilson

® OGFs of such diagonals are algebraic modulo p”. Furstenberg, Deligne '67, '84
Automatically leads to congruences such as

1 (mod8), if n even, Chowla—Cowles—Cowles '80

A(n) = . Rowland-Yassawi '13

5 (mod8), ifn odd. Rowland-Zeilberger '14

® Univariate generating function:

—t—z 111 1024t
Ayt = ———"7%  p(2®a| o E ) = 134t + 2
,;) ) 4[( +t+z)3/23 2( 11 (17t+z)4)’ : *
EG . 1+y9)1+2)1+z+2)1+z+2z+yz
EG ) et with £ - LEDAH A ket (14wt st ye)
term Yz
® Falt ZA —et| L |isa period function.
>0 1—tL
The DE satisfied by F4(t) is the Picard—Fuchs DE for the family V; : 1 —¢tL = 0.
Generically, V4 is birationally equivalent to a K3 surface with Picard number 19. (Beukers—Peters '84)
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A question of Zagier

® ¢(n) is a constant term if ¢(n) = ct[P"(x)Q(x)] Rowland-Zeilberger 14
for Laurent polynomials P,Q € Q[mil] inx=(z1,...,2a4).
EG n 2 2 . n
o Z(n) (n+k) _CtK(x+y)(z+1)(:L+y+z)(y+x+1)) }
= k k TYZz

) C)- () (=) o
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A question of Zagier

® ¢(n) is a constant term if ¢(n) = ct[P"(x)Q(x)] Rowland-Zeilberger 14

for Laurent polynomials P,Q € Q[z*'] in & = (x1,...,za).

S CIe RICEE )

TYz
k=0 Y

) C)- () (=) o

Q  Which integer sequences are constant terms?

Zagier '16
And in which case can we choose Q = 17
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A question of Zagier

® ¢(n) is a constant term if ¢(n) = ct[P"(x)Q(x)] Rowland-Zeilberger 14

for Laurent polynomials P,Q € Q[z*'] in & = (x1,...,za).

B 501 -n[(eeenny,

TYz
k=0 Yy

) C)- () (=) o

Q  Which integer sequences are constant terms?

Zagier '16

And in which case can we choose Q = 17
® (Constant terms are necessarily diagonals.

Q Which diagonals are constant terms?

Which are linear combinations of constant terms?

Q(x)

11—tz xqP(x)
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A question of Zagier

® ¢(n) is a constant term if ¢(n) = ct[P"(x)Q(x)]
for Laurent polynomials P,Q € Q[mil] inx=(z1,...,2a4).

Rowland—Zeilberger '14

QE:Gl Z (n)2(n+k)2 o {((:L'+y)(z+1)(m+y+z)(y+x+1))"}

k k

TYz
k=0 Y

) C)- () (=) o

Q  Which integer sequences are constant terms?

Zagier '16
And in which case can we choose Q = 17

® (Constant terms are necessarily diagonals.

Q Which diagonals are constant terms?
Which are linear combinations of constant terms?

® We will answer this in the case of a single variable.
® For instance: Are Fibonacci numbers constant terms?

(C-finite sequences!)
T

1—2— 22
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C-finite sequences that are constant terms

e (-finite sequences:
m;—1

-|— E E Cj, rTL (characteristic roots ;)

(flnltesupport j=1 r=0
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C-finite sequences that are constant terms

e (-finite sequences:
d mji—1

-|— E E Cj, rTL (characteristic roots ;)

(flnltesupport j=1 r=0

® |t is not hard to see that A(n) = poly(n)A" is a constant term if A € Q.

And so are sequences of finite support (A = 0).

EG e 2" =ct(z+2)"] = ct[2"]
o n22" =t [(x +2)" (52 + i)]
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C-finite sequences that are constant terms

e (-finite sequences:

m;—1

-|— E E Cj, TTL (characteristic roots ;)

j=1 r=0

® |t is not hard to see that A(n) = poly(n)A" is a constant term if A € Q.
And so are sequences of finite support (A = 0).

EG
Py

(flnlte support

* 2" =ct[(z+2)"] = ct[2"]

o n22n — {(1’ + o) (82 + 2)]
X X
THM

THM There are no further C-finite sequences that are constant terms

Yurkevich

ki Qr linear combinations of constant terms.

® More precisely: A C-finite sequence A(n) is a Q-linear combination of r constant
terms if and only if it has at most 7 distinct characteristic roots, all rational
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C-finite sequences that are constant terms

e (-finite sequences:

m;—1

-|— E E Cj, TTL (characteristic roots ;)

j=1 r=0

® |t is not hard to see that A(n) = poly(n)A" is a constant term if A € Q.
And so are sequences of finite support (A = 0).

EG
Py

(flnlte support

* 2" =ct[(z+2)"] = ct[2"]

o n22n — {(1’ + o) (82 + 2)]
X X
THM

THM There are no further C-finite sequences that are constant terms
ostan, S,
Yurkevich

ki Qr linear combinations of constant terms.

® More precisely: A C-finite sequence A(n) is a Q-linear combination of r constant
terms if and only if it has at most 7 distinct characteristic roots, all rational

EG Fibonacci numbers are not (sums of) constant terms.

EG 2"+ 1 is not a constant term but is a sum of two.
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Example: Fibonacci numbers

® QOur key ingredient to answer these questions are congruences:

LEM If A(n) is a constant term then, for all large enough primes p,
Yurkevich

23 A(p) = const (mod p).

proof
A(p) = ct[P(z)"Q(x)]

]
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Example: Fibonacci numbers

® QOur key ingredient to answer these questions are congruences:

LEM If A(n) is a constant term then, for all large enough primes p,
Yurkevich

23 A(p) = const (mod p).

proof
A(p) = ct[P(z)"Q(x)]

= ct[P(z?)Q(x)] (little Fermat)

]
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Example: Fibonacci numbers

® QOur key ingredient to answer these questions are congruences:

LEM If A(n) is a constant term then, for all large enough primes p,
Yurkevich

23 A(p) = const (mod p).
proof
A(p) = ct[P(z)"Q(z)]
= ct[P(z?)Q(x)] (little Fermat)
(ifp>deg@) = ct[Q(z)] ct[P(a”)] = ct[Q(z)] ct[P()]

]
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Example: Fibonacci numbers

® QOur key ingredient to answer these questions are congruences:

LEM If A(n) is a constant term then, for all large enough primes p,
Yurkevich

23 A(p) = const (mod p).
proof
A(p) = ct[P(z)"Q(z)]
= ct[P(z?)Q(x)] (little Fermat)
(ifp>deg@) = ct[Q(z)] ct[P(a”)] = ct[Q(z)] ct[P()]

]

EG _
The Fibonacci numbers are F(n) = .
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Example: Fibonacci numbers

® QOur key ingredient to answer these questions are congruences:

LEM If A(n) is a constant term then, for all large enough primes p,
Yurkevich

2 A(p) = const (mod p).
proof
A(p) = ct[P(2)"Q(w)]
= ct[P(z”)Q(z)] (little Fermat)
(fp>degQ) = ct[Qz)]ct[P(x")] = ct[Q(z)] ct[P(z)]

O

EG n_ . n
The Fibonacci numbers are F(n) = % with oy = L\/S

2
It follows that

1, if p=1,4mod 5,
F(p) = d p).
() {—1, if p=2,3 mod 5, (mod p)

Hence, the Fibonacci numbers cannot be constant terms.
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Hypergeometric sequences

is a rational function.

(n+1)
)

® A sequence c¢(n) is hypergeometric if ¢
cln

These are the P-recursive sequences of order 1.
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Hypergeometric sequences

is a rational function.

(n+1)
)

. . . C
® A sequence c¢(n) is hypergeometric if
c(n
These are the P-recursive sequences of order 1.
CONJ Every P-recursive integer sequence with at most exponential

Christol . . g 0
‘90 growth is the diagonal of a rational function.

® Open even for hypergeometric sequences!
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Hypergeometric sequences

is a rational function.

(n+1)
)

® A sequence c¢(n) is hypergeometric if ¢
cln

These are the P-recursive sequences of order 1.

CONJ Every P-recursive integer sequence with at most exponential
Christol . . g 5
00 growth is the diagonal of a rational function.

® Open even for hypergeometric sequences!

EG s the following hypergeometric sequence a diagonal?

A(n) = M

nt? (3),,

35" A(n) = 1,60, 20475, 9373650, 4881796920, . . .
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Hypergeometric sequences

is a rational function.

(n+1)
)

® A sequence c¢(n) is hypergeometric if ¢
cln

These are the P-recursive sequences of order 1.

CONJ Every P-recursive integer sequence with at most exponential
Christol . . g 5
00 growth is the diagonal of a rational function.

® Open even for hypergeometric sequences!

EG s the following hypergeometric sequence a diagonal?

A(n) = M

nt? (3),,

3" A(n) = 1, 60, 20475, 9373650, 4881796920, . . .

LEM This hypergeometric sequence is not a constant term (or a linear

Bostan, S,

e combination of constant terms).

Proof idea: A(p) takes different values modulo p depending on whether p = £1 (mod 9).
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Constant terms are special

® For hypergeometric sequences: (or C-finite or P-recursive)

constant terms} C {diagonals} C { P-recursive, globally bounded seq's}
(or linear combinations)

® The second inclusion is strict iff Christol's conjecture is false.
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Constant terms are special

® For hypergeometric sequences: (or C-finite or P-recursive)

{constant terms} C {diagonals} C {P-recursive, globally bounded seq's}

(or linear combinations)

® The second inclusion is strict iff Christol's conjecture is false.

® The following is an indication that constant terms are special among
diagonals and often have significant additional arithmetic properties.

LEM 1) (-1
B a - BRO-2),

Vurkevich = where m > 2 is an integer.
n:

© A, (n) is a diagonal for all m > 2.
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Constant terms are special

® For hypergeometric sequences: (or C-finite or P-recursive)

{constant terms} C {diagonals} C {P-recursive, globally bounded seq's}

(or linear combinations)

® The second inclusion is strict iff Christol's conjecture is false.

® The following is an indication that constant terms are special among
diagonals and often have significant additional arithmetic properties.

LEM 1) (-1
B a - BRO-2),

Vurkevich = where m > 2 is an integer.
n:

© A, (n) is a diagonal for all m > 2.
® A (n) is a constant term if and only if m € {2,3,4,6}.

® The cases m € {2,3,4,6} correspond to the hypergeometric functions
underlying Ramanujan’s theory of elliptic functions.
(m = 2: classical case; m = 3,4, 6: alternative bases)
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Collecting some thoughts. ..

e Constant terms are an arithmetically interesting subset of diagonals.
® We have classified them in the case of a single variable. Natural
classes of sequences to consider next:
® Hypergeometric sequences
® Algebraic sequences (diagonals in two variables)
® Algebraic hypergeometric series

o Integral factorial ratios (Bober, 2007; via Beukers—Heckman)
EG 8n)In! 8n\ /4n\ /2n\ !
Is A(n) = __ Bl a constant term?
(4n)!(3n)!(2n)! dn/\ n n
8 n
1,140, 60060, 20745716, 15628090140, . . . = ct EaraE
(1—z)2a3

This is algebraic (and therefore a diagonal) and hypergeometric.
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Collecting some thoughts. ..

e Constant terms are an arithmetically interesting subset of diagonals.
® We have classified them in the case of a single variable. Natural
classes of sequences to consider next:
® Hypergeometric sequences
® Algebraic sequences (diagonals in two variables)
® Algebraic hypergeometric series

o Integral factorial ratios (Bober, 2007; via Beukers—Heckman)
EG 8n)In! 8n\ /4n\ /2n\ !
Is A(n) = __ Bl a constant term?
(4n)!(3n)!(2n)! dn/\ n n
8 n
1,140, 60060, 20745716, 15628090140, . . . = ct EaraE
(1—z)2a3

This is algebraic (and therefore a diagonal) and hypergeometric.

® How to find representations as (nice) constant terms or diagonals?
Once found, such representations can be proved using creative telescoping.
® How unique are the Laurent polynomials in a constant term?
Connections to cluster algebras, mutations of Laurent polynomials, ...
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Gessel-Lucas congruences

Alpn + k) = A(k)A(n) + pnA'(k)A(n)  (mod p?)

A. Straub

Gessel-Lucas congruences for sporadic sequences
Monatshefte fiir Mathematik, Vol. 203, 2024, p. 883-898

Numbers a la Apéry and their remarkable properties Armin Straub



Lucas congruences

THM n ng\ [n1\ [no
Lucas = oo
w  ()=@)0)E) - e

where n; and k; are the p-adic digits of n and k.

MG RO R

LHS = 1009220746942993946271525627285911932800
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Lucas congruences

THM n ng\ [n1\ [no
Lucas = oo
w ()= ) () - e

where n; and k; are the p-adic digits of n and k.

MG RO R

LHS = 1009220746942993946271525627285911932800

® |nteresting sequences like the Apéry numbers 1,5,73,1445, . ..
2\ n+k\?
A =
w=2() (")

satisfy such Lucas congruences as well:

AL A(n) = A(no)A(m) --- A(n,)  (modp)
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Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-

vassawi any Apéry number A(n).
¥ Suchasp=2,3,7,13,23,29,43,47, . ..
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Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-

vassawi any Apéry number A(n).
° Suchasp=23,7,13,23,29,43,47, . ..

E ® The values of Apéry numbers A(0), A(1),..., A(6) modulo 7
are 1,5,3,3,3,5, 1.
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Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-
vassawi any Apéry number A(n).
¥ Suchasp=2,3,7,13,23,29,43,47, . ..
3 ® The values of Apéry numbers A(0), A(1),..., A(6) modulo 7
’ are 1,5,3,3,3,5, 1.

® Hence, the Lucas congruences imply that 7 does not divide any
Apéry number.
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Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide

Rowland-

vassawi any Apéry number A(n).
° Suchasp=23,7,13,23,29,43,47, . ..

E ® The values of Apéry numbers A(0), A(1),..., A(6) modulo 7
are 1,5,3,3,3,5, 1.

® Hence, the Lucas congruences imply that 7 does not divide any
Apéry number.

CONJ The proportion of primes not dividing any Apéry number A(n)

Malik-S |

16 is e /2 ~ 60.65%.
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Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-

vassawi any Apéry number A(n).
°  Suchasp=23,7,13,23,29,43,47, . ..
E ® The values of Apéry numbers A(0), A(1),..., A(6) modulo 7
are 1,5,3,3,3,5,1.

® Hence, the Lucas congruences imply that 7 does not divide any
Apéry number.

S.O.L\_'g The proportion of primes not dividing any Apéry number A(n)

16 is e /2 ~ 60.65%.

® Heuristically, combine Lucas congruences,
® palindromic behavior of Apéry numbers, that is
An)=A(p—-1—-n) (modp),
1\ (P+1/2
® and ¢ '/? = lim (1 — ) .

pP—r 00 p
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Gessel-Lucas congruences

® Lucas congruences: A(pn + k) = A(n)A(k)  (modp)

THM All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas
Malik-S -
:?llﬁ congruences modulo €very prime.  (Proof long and technical for 2 sequences)
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Gessel-Lucas congruences

® Lucas congruences: A(pn + k) = A(n)A(k)  (modp)

THM All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas
Malik-S -
:?llﬁ congruences modulo €very prime.  (Proof long and technical for 2 sequences)

® In the case of the Apéry numbers, Gessel ('82) observed that
these congruences can be extended modulo p2.

THM All of the 6 + 6 + 3 known sporadic sequences satisfy
5" Gessel-Lucas congruences modulo every odd prime:

A(pn + k) = A(k)A(n) + pnA’(k)A(n)  (mod p?)

® Here, A’(n) is the formal derivative of A(n).
These are rational numbers!
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The formal derivative of recurrence sequences

® Suppose A(n) is the unique solution for all n > 0 to
> ¢i(n)A(m—j)=0  with A(0) =1and A(j) =0 for j < 0.
§=0

The c;(n) are polynomials with co(n) € n?Z[n] and co(n) # 0 for n > 0.
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The formal derivative of recurrence sequences

® Suppose A(n) is the unique solution for all n > 0 to

> ¢i(n)A(m—j)=0  with A(0) =1and A(j) =0 for j < 0.
§j=0

The c;(n) are polynomials with co(n) € n?Z[n] and co(n) # 0 for n > 0.
® Then the formal derivative A’(n) is the unique solution to

ch VA (n — y+Zc —j)=0  with A(j) =0 for j <0
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The formal derivative of recurrence sequences

® Suppose A(n) is the unique solution for all n > 0 to

r

> ¢i(n)A(m—j)=0  with A(0) =1and A(j) =0 for j < 0.
§j=0

The c;(n) are polynomials with co(n) € n?Z[n] and co(n) # 0 for n > 0.
® Then the formal derivative A’(n) is the unique solution to

ch VA (n — y+Zc —j)=0  with A(j) =0 for j <0

Note |et F(z) = Z A(n)z" and G(z) = Z Al(n)z".

n=0 n>1

Then the corresponding differential equation satisfied by F(z)
is also solved by log(z)F(z) + G(x).
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The formal derivative of recurrence sequences: example

n 2
° An) =Y (:) (n_]:k) is the unique solution with A(0) =1 to:
k=0

(n+1)?A(n+1) = (11n® + 11n + 3)A(n) + n®A(n — 1)
® Then A'(n) is the unique solution with A’(0) = 0 to:
(n+1)2A'(n+ 1) = (11n? + 11n + 3)A'(n) + n?A’'(n — 1)
—2(n+1)AMn+1)+11(2n+ 1)A(n) + 2nA(n — 1)
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The formal derivative of recurrence sequences: example

k k
k=0

n 2
° An) =Y (n) (n+k) is the unique solution with A(0) =1 to:
(n+1)2A(n +1) = (11n® + 11n + 3)A(n) + n®A(n — 1)
® Then A'(n) is the unique solution with A’(0) = 0 to:
(n+1)24A'(n+1) = (11n® + 11n + 3)A'(n) + n?A'(n — 1)
—2(n+1)A(n+1)+112n+ 1)A(n) + 2nA(n — 1)

EG 75 1855 10875 299387 943397 63801107

A/(l)vA/(2)7 = 57 5 ) ) ’ ) g 000

27 6 4 12 4 28
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The formal derivative of recurrence sequences: example

n 2
° An) =Y (Z) (n_]:k) is the unique solution with A(0) =1 to:
k=0

(n+1)?A(n+1) = (11n® + 11n + 3)A(n) + n®A(n — 1)
® Then A'(n) is the unique solution with A’(0) = 0 to:
(n+1)2A'(n+ 1) = (11n? + 11n + 3)A'(n) + n?A’'(n — 1)
—2(n+1)A(Mn+1)+11(2n+ 1)A(n) + 2nA(n — 1)

EG 1 1 2 4 11
A1), A2),... =5, E’ 8557 0875’ 993877 9 33977 6380 ()77
2 6 4 12 4 28

® Since the interpolation satisfies the continuous version of the recurrence :
o\ [z +k
k k r=n
n 2
n n+k
Hn — Hy,
(k) ("5
k=0

An) = di

||M8

I
ot
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Approaches to proving Lucas congruences

® From suitable expressions as a binomial sum.

Gessel '82, Mclntosh '92

2
Apéry numbers: > (Z) (

k

n+k
n

)

Sequence (n): ) (-1) (
k

n

k

) (")
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Approaches to proving Lucas congruences

® From suitable expressions as a binomial sum. Gessel '82, Mclntosh 92

2 2 2
Apéry numbers: " (Z) ("Zk> Sequence (n): Z(_l)k(Z) (4n3;5k)
k

k

® From suitable constant term expressions.  samol-van Straten 09, Mellit-Viasenko '16

THM Suppose the origin is the only interior integral point

Staten'® of the Newton polytope of P € Z[z*!].

Then A(n) = ct[P(x)"] satisfies Lucas congruences.

p_ @ttty +a)y+z+1) L1 A+a)(1+y)A+2)*
Yz zy(l+ 2)° 23
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Approaches to proving Lucas congruences

® From suitable expressions as a binomial sum. Gessel '82, Mclntosh 92

2 2 3
Apéry numbers: > (Z) (n;:k) Sequence (7): Z(—l)k(z> (4n3;5k)
k

k

® From suitable constant term expressions.  samol-van Straten 09, Mellit-Viasenko '16

THM Suppose the origin is the only interior integral point

Staten'® of the Newton polytope of P € Z[z*!].

Then A(n) = ct[P(x)"] satisfies Lucas congruences.

p_ @ttty +a)y+z+1) L1 A+a)(1+y)A+2)*
TYz zy(1+ 2)° 7
® From suitable diagonal expressions. Rowland-Yassawi '15

For instance, diagonals of 1/Q(x) for Q(x) € Z[x] with Q(x) linear in
each variable and Q(0) = 1.
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Approaches to proving Lucas congruences

® From suitable expressions as a binomial sum. Gessel '82, Mclntosh 92

2 2 3
Apéry numbers: }° (Z) ("2k> Sequence (n): Z(—l)k@) (4n3;5k)
k

k

® From suitable constant term expressions.  samol-van Straten 09, Mellit-Viasenko '16

THM Suppose the origin is the only interior integral point

Staten'® of the Newton polytope of P € Z[z*!].

Then A(n) = ct[P(x)"] satisfies Lucas congruences.

p_ @ttty +)y+z+1) L1 A+a)(1+y)A+2)*
Yz zy(l + 2)° 28
® From suitable diagonal expressions. Rowland-Yassawi '15

For instance, diagonals of 1/Q(x) for Q(x) € Z[x] with Q(x) linear in
each variable and Q(0) = 1.

® From suitable modular parametrizations. Beukers-Tsai-Ye '25
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Suitable constant term representations

Samol, van

swaten 09 Of the Newton polytope of P € Z[zT1].

Then A(n) = ct[P(x)"] satisfies Lucas congruences.

THM Suppose the origin is the only interior integral point

® |n fact, we get the stronger Dwork congruences.

® This implies that Lucas congruences are somewhat generic.
(Gessel-Lucas congruences are not!)
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Suitable constant term representations

THM Suppose the origin is the only interior integral point

Staten 05 of the Newton polytope of P € Z[xE].

Then A(n) = ct[P(x)"] satisfies Lucas congruences.

® |n fact, we get the stronger Dwork congruences.
® This implies that Lucas congruences are somewhat generic.
(Gessel-Lucas congruences are not!)

THM Each sporadic sequence, except possibly (1)), can be expressed

Gorodetsk .
21 as ct[P(x)"] so that the result of Samol-van Straten applies. 1

EG ( ) (ze+zy—yz—z—N)(ay+yz—ze—y—D(yz+ 2z —xy—2z—1)

Gorodetsky
21

Tyz
(1,0,0), (1,1,0) and their permutations are interior points.

Q Algorithmic tools to find (useful) constant term expressions?

Once found, algorithmically provable using creative telescoping.
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Lucas congruences in terms of the GF

p—1

® Given F(z ZA , we write F)( ZA )a™ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p

<= i) modulo p is a polynomial of degree < p.
el A(n) = A(ng)A(n1)A(ng) - - - (mod p)
=  F@)=F@ E@E)F@E")-- (modp)
[
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Lucas congruences in terms of the GF

p—1

® Given F(z ZA , we write F)( ZA )a™ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p

<= i) modulo p is a polynomial of degree < p.
proof A(n) = A(ng)A(n1)A(ng) - - - (mod p)
=  F@)=F@ E@E)F@E")- (modp)
— F(z) = Fy(z) F(aP) (mod p)

O
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Lucas congruences in terms of the GF

p—1

® Given F(z ZA , we write F)( ZA )a™ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p

<= FP—;l(x) modulo p is a polynomial of degree < p.
el A(n) = A(ng)A(n1)A(ng) - - - (mod p)
F(z) = F,(x) F,(a?)F,(a?") - -- (mod p)
— F(z) = Fy(z) F(aP) (mod p)
= Fo(z) = If((;l’)) (mod p)

O
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Lucas congruences in terms of the GF

p—1

® Given F(z ZA , we write F)( ZA )a™ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p

— Fp%(x) modulo p is a polynomial of degree < p.
R A(n) = A(no)A(ny) A(nz) - (mod p)
F(z) = Fy(3) Fy(a?)Fp(a?) - - (mod p)
=  F(z)=F(2) F(a") (mod p)
= BE=g (mod p)
_ F(x)

(by little Fermat)

O
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Lucas congruences in terms of the GF

p—1

® Given F(z ZA , we write F)( ZA )a™ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p

— Fp%(x) modulo p is a polynomial of degree < p.
R A(n) = A(no)A(ny) A(nz) - (mod p)
F(z) = Fy(3) Fy(a?)Fp(a?) - - (mod p)
=  F(z)=F(2) F(a") (mod p)
=  EE= (mod p)
F(z) 1

(by little Fermat)

O
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Lucas congruences in terms of the GF

p—1

® Given F(z ZA , we write F)( ZA )a™ for its p-truncation.

LEM A(n) satisfies Lucas congruences modulo p

<= i) modulo p is a polynomial of degree < p.
proct A(n) = A(no) A(n1)Alng) - (mod p)
F(z) = Fy(3) Fy(a?)Fp(a?) - - (mod p)
—  F(o)=Fya) F@) (mod p)
=  EE= (mod p)
F(x) 1

(by little Fermat)

Since the first p coefficients of ... always match, the final congruence
is equivalent to the RHS being a polynomial of degree < p — 1. O
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Lucas congruences via modular forms

* Suppose F(z) = Y  A(n)a" has modular parametrization:
n=0
F(z) is a modular form for some modular function z(7).

THM Suppose that:

I?’resl;li(f:fse_ * 2(7) = q+ ¢*Z][g]] with ¢ = €*™7 is a Hauptmodul
# for I' = T'g(IV) (or Atkin—Lehner extension).
e F(z(7)) =1+ qZ][q]] is a weight 2 modular form for T.
® F(x(7)) has a unique zero at [rp] of order < 1,
where [70] is the (unique) pole of z(7).

Then A(n) satisfies the Lucas congruences for all primes p.

Numbers a la Apéry and their remarkable properties Armin Straub
50 / 85




Lucas congruences via modular forms

* Suppose F(z) = Y  A(n)a" has modular parametrization:
n=0
F(z) is a modular form for some modular function z(7).

THM Suppose that:

Beukers—

Tsai-Ye  ® z(7) = q+ ¢*Z[[g]] with ¢ = e*™"" is a Hauptmodul
# for I' = T'g(IV) (or Atkin—Lehner extension).

e F(z(7)) =1+ qZ][q]] is a weight 2 modular form for T.

® F(x(7)) has a unique zero at [rp] of order < 1,
where [70] is the (unique) pole of z(7).

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose E(7) is a modular form for I with weight 2(p — 1) such that

E(r) =1 (mod p).

O
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Lucas congruences via modular forms

* Suppose F(z) = Y  A(n)a" has modular parametrization:
n=0
F(z) is a modular form for some modular function z(7).

THM Suppose that:

Beukers—

Tsai-Ye  ® z(7) = q+ ¢*Z[[g]] with ¢ = e*™"" is a Hauptmodul
# for I' = T'g(IV) (or Atkin—Lehner extension).

e F(z(7)) =1+ qZ][q]] is a weight 2 modular form for T.

® F(x(7)) has a unique zero at [rp] of order < 1,
where [70] is the (unique) pole of z(7).

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose E(7) is a modular form for I with weight 2(p — 1) such that
E(r) =1 (mod p). Then

1
Z=TE) = (mod p).

O
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Lucas congruences via modular forms

* Suppose F(z) = Y  A(n)a" has modular parametrization:
n=0
F(z) is a modular form for some modular function z(7).

THM Suppose that:

Beukers—

Tsai-Ye  ® z(7) = q+ ¢*Z[[g]] with ¢ = e*™"" is a Hauptmodul
# for I' = T'g(IV) (or Atkin—Lehner extension).

e F(z(7)) =1+ qZ][q]] is a weight 2 modular form for T.

® F(x(7)) has a unique zero at [rp] of order < 1,
where [70] is the (unique) pole of z(7).

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose E(7) is a modular form for I with weight 2(p — 1) such that

E(r) =1 (mod p). Then

1 _ _E() -
Fr-1(x) — Fr-1(z) (mod p).

is a modular function with a unique pole at [rg] of order < p — 1.

O
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Lucas congruences via modular forms

* Suppose F(z) = Y  A(n)a" has modular parametrization:
n=0
F(z) is a modular form for some modular function z(7).

THM Suppose that:

Beukers—

Tsai-Ye  ® z(7) = q+ ¢*Z[[g]] with ¢ = e*™"" is a Hauptmodul
# for I' = T'g(IV) (or Atkin—Lehner extension).

e F(z(7)) =1+ qZ][q]] is a weight 2 modular form for T.

® F(x(7)) has a unique zero at [rp] of order < 1,
where [70] is the (unique) pole of z(7).

Then A(n) satisfies the Lucas congruences for all primes p.

proof Suppose E(7) is a modular form for I with weight 2(p — 1) such that

E(r) =1 (mod p). Then

1 E(7)

1) = Fr1() = poly(z) (mod p).

is a modular function with a unique pole at [rg] of order < p — 1.

O
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Lucas congruences via modular forms, cont’d

® Needed: weight 2(p — 1) modular form E(7) for I' with E(7) =1 (mod p).

EG The normalized Eisenstein series

2%k > nkfl n
Ek(r):lJrB—kZ 1_;
n=1

is a modular form for T'g(1) of even weight k > 2.

Since 1/B,_1 =0 (mod p), we have E,_1(7) =1 (mod p).
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Lucas congruences via modular forms, cont’d

® Needed: weight 2(p — 1) modular form E(7) for I' with E(7) =1 (mod p).

EG The normalized Eisenstein series
2% & nkflqn
Eip(t) =1+ —

is a modular form for I'y(1) of even weight k& > 2

Since 1/B,_1 =0 (mod p), we have E,_1(7) =1

® Ifp>=5and ' =T((V), we can select:
E(r) := Ep1(7)?

Armin Straub
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Lucas congruences via modular forms, cont’d

® Needed: weight 2(p — 1) modular form E(7) for I' with E(7) =1 (mod p).

EG The normalized Eisenstein series
2% & nkflqn
Eip(t) =1+ —

is a modular form for I'y(1) of even weight k& > 2

Since 1/B,_1 =0 (mod p), we have E,_1(7) =1

® Ifp>=5and ' =T((V), we can select:

E(r) == Ep1(7)?
° Ifp>5and I'is I'y(N) extended by 7 — — 5=
E(r):= 3 [Ey_1(1)*>+ NP71E,_1(NT1)?]

Armin Straub
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Sporadic sequences mod p" are automatic

THM If an integer sequence A(n) is the diagonal of F(x) € Z(x),

Rowland,

vassawi ‘15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.
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Sporadic sequences mod p" are automatic

THM If an integer sequence A(n) is the diagonal of F(z) € Z(x),
vassawi 15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 3:

C/(35) = 3,116,285,494,907,301,262
=1 (mod 3)

Instead via automaton:

35=10 2 2 in base 3
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Sporadic sequences mod p" are automatic

THM If an integer sequence A(n) is the diagonal of F(z) € Z(x),
vassawi 15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 3:

C/(35) = 3,116,285,494,907,301,262
=1 (mod 3)

Instead via automaton:

35=10 2 2 in base 3

ce) c@) =B
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THM If an integer sequence A(n) is the diagonal of F(z) € Z(x),
vassawi 15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 3:

C/(35) = 3,116,285,494,907,301,262
=1 (mod 3)

Instead via automaton:

35=10 2 2 in base 3
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Sporadic sequences mod p" are automatic

THM If an integer sequence A(n) is the diagonal of F(x) € Z(x),
vassawi 15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 3:

C/(35) = 3,116,285,494,907,301,262
=1 (mod 3)

Instead via automaton:

35=10 2 2 in base 3

@ c@) =g
c(@®) C(22)=2
cl022)=2
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Sporadic sequences mod p" are automatic

THM If an integer sequence A(n) is the diagonal of F(x) € Z(x),
vassawi 15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 3:

C/(35) = 3,116,285,494,907,301,262
=1 (mod 3)

Instead via automaton:

35=10 2 2 in base 3

c© c@) =B
c®) c(22)=2
CHE2)=B
ce  c(@o22)=H
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Sporadic sequences mod p" are automatic

THM If an integer sequence A(n) is the diagonal of F(x) € Z(x),

Rowland,

vassawi ‘15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 4:

Rowland,

Yassawi '15

1 0 0

Numbers a la Apéry and their remarkable properties




Sporadic sequences mod p” are automatic

THM If an integer sequence A(n) is the diagonal of F(z) € Z(x),
vassawi ‘15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 4:

Rowland,

Yassawi '15

1 0 0

THM

Eu, Liu,

1, ifn=2%—1 forsomea >0,
Yeh '08 C’(n) = 27
0,

if n=2042%_1 for some b >a >0,
otherwise,
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Sporadic sequences mod p” are automatic

THM If an integer sequence A(n) is the diagonal of F(z) € Z(x),
vassawi ‘15 then the reductions A(n) (mod p”) are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

EG Catalan numbers C(n) modulo 4:

Rowland,

Yassawi '15

1 0 0

THM

Eu, Liu, , ifn=2%—1 for some a > 0,

, otherwise,

1
Yeh'08 O(n) =42 ifn=20+29—1forsomeb>a>0, (mod 4).
0

COR (C(n) # 3 (mod 4)
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Things quickly get more complicated

® Liu-Yeh (2010) also determine the Catalan numbers modulo 16 and 64.

Theorem 5.5. Let ¢, be the n-th Catalan number. First of all, ¢, #16 3,7,9,11,15 for any
n. As for the other congruences, we have

B <
if d(a) =0 and 8=
8=

if dla)=1,a=1and

—

~
$
Il
>
—
S N S S R

r N ’ (a:i‘/'ﬁzZ) or (a>3,8<1),
1 } if dla)=1,a>2 and (@=2.8<1) or(a>34>2)
p -~ zr(a) =50,
1 } if dla) =2 and { 2r(a) = 1,
if d(a) =3,
if d(a) > 4.
where a = (CFy(n+1) —1)/2 and 8 = wa(n + 1) (or f = min{i | n; = 0}).

wp(n) = p-adic valuation of n
CFpy(n) =n/p™
d(n) = sum of 2-adic digits of n

® For comparison: the corresponding minimal automaton has 26 states.
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Catalan numbers: forbidden residues

EG C(n) £ 3 (mod 4) Eu-Liu-Yeh '08
= ) £ 9 (mod 16) M
C(n) # 17,21,26 (mod 32)
C(n) # 10,13,33,37 (mod 64)
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Catalan numbers: forbidden residues

EG C(n) £ 3 (mod 4) Eu-Liu-Yeh '08
= ) £ 9 (mod 16) M
C(n) # 17,21,26 (mod 32)
C(n) # 10,13,33,37 (mod 64)

Q let P(r) be the proportion of residues not attained by C'(n) mod 2".
Yassawi '15 Does P(,r) — 1 asr — oo?
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Catalan numbers: forbidden residues

EG C(n) #3 (mod 4)

= G(n) £ 9 (mod 16)
C(n) # 17,21,26 (mod 32)
C(n) #10,13,33,37 (mod 64)

Rowland,

Yassawi '15 Does P(,r) — 1 asr — oo?

Eu-Liu-Yeh '08

Liu=Yeh '10

Let P(r) be the proportion of residues not attained by C'(n) mod 2".

r]1] 2] 3] 4] 5] 6] 7] 8] 9] 10] 11] 12] 13 14
P(r)|0 .25 .25|.31|.41|.47|.54| 59| 65| 69| .73| .76| .79 .82
N(r)|0| 1| 2| 5| 13| 30| 69| 152|332 | 710 | 1502 | 3133 | 6502 | 13394
A(r) |0 1] 0] 1| 3| 4| 9| 14| 28| 46 82| 129| 236 390

N(r) = # residues not attained mod 2"
A(r) = # additional residues not attained mod 2" = N(r) — 2N (r — 1)
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Catalan numbers: forbidden residues

EG C(n) £ 3 (mod 4) Eu-Liu-Yeh '08
= ) £ 9 (mod 16) M
C(n) # 17,21,26 (mod 32)
C(n) # 10,13,33,37 (mod 64)

Q let P(r) be the proportion of residues not attained by C'(n) mod 2".
Yassawi '15 Does P(,r) — 1 asr — oo?

r]1] 2] 3] 4] 5] 6] 7] 8] 9] 10] 11] 12] 13 14
P(r)|0 .25 .25|.31|.41|.47|.54| 59| 65| 69| .73| .76| .79 .82
N(r)|0| 1| 2| 5| 13| 30| 69| 152|332 | 710 | 1502 | 3133 | 6502 | 13394
A(r) |0 1] 0] 1| 3| 4| 9| 14| 28| 46 82| 129| 236 390

N(r) = # residues not attained mod 2"
A(r) = # additional residues not attained mod 2" = N(r) — 2N (r — 1)

CONJ C(n) #3 (mod 10)  for all n > 0.

Bostan
B C(n) #£1,7,9 (mod 10)  for sufficiently large n.

If true, the last digit of any sufficiently large odd Catalan number is always 5. (n > 2557)
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Linear congruence schemes

® The Catalan numbers C'(n) modulo 3 can be described:
® by an automaton with 4 states (plus a zero state)
® by a linear 3-scheme with 2 states
(Rowland—Zeilberger '14)
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Linear congruence schemes

® The Catalan numbers C'(n) modulo 3 can be described:
® by an automaton with 4 states (plus a zero state)
® by a linear 3-scheme with 2 states
(Rowland—Zeilberger '14)

j5=1 Ao(3n) = Ai(n) A:Bn) = As(n)
?:;2:;::: A0(3TL —+ 2) = A2 (TL) A2 (37’L + 2) = A2 (n)
A1 (3’71) = Al(n) A3(3n) =S A3 (n)

Ai(3n+2) = 0 As(Bn+2) = 0

Initial conditions:
Ao(0) = A1(0) =1,  As(0) = A3(0) = 2
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Linear congruence schemes

® The Catalan numbers C'(n) modulo 3 can be described:
® by an automaton with 4 states (plus a zero state)

® by a linear 3-scheme with 2 states

(Rowland—Zeilberger '14)

EG

A;(n) As(3n)
A2 (TI) A2 (37’L + 2)
A;(n) As(3n)
As(n)  As(3n+1)
0 Ag (37’L + 2)

A1(3n)

mod 3 Ap(3n) =
echeme Ao(3n+2) =
‘ A (3n) =
Ai(3n+2) =
5 Initial conditions:
Ap(0) = A1(0) =1,
sy AoBn) = A
" A1) = Ayn)
sameme Ao(3n+2) = Ag(n)+ Ay(n)

Initial conditions: Ap(0) = A1(0) =

A3(0) = A3(0) = 2
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Linear congruence schemes

® The Catalan numbers C'(n) modulo 3 can be described:
® by an automaton with 4 states (plus a zero state)

® by a linear 3-scheme with 2 states

(Rowland—Zeilberger '14)

EG

A;(n) As(3n)
A;(n) As(3n)
As(n)  As(3n+1)
0 Ag (37’L + 2)

A1(3n)

mod 3 AO(?’n) =

precimnd Ao(3n+2) =

‘ Ai(3n) =
Ai(3n+2) =

5 Initial conditions:

A9(0) = A1(0) = 1,

s ABn) = A

U ABn+l) = Ay(n)

s Ag(3n+2) = Ag(n)+ 4i(n)

Initial conditions: Ap(0) = A1(0) =

A3(0) = A3(0) = 2
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Linear congruence schemes

® The Catalan numbers C'(n) modulo 3 can be described:
® by an automaton with 4 states (plus a zero state)

® by a linear 3-scheme with 2 states

(Rowland—Zeilberger '14)

EG

A;(n) As(3n)
A;(n) As(3n)
As(n)  As(3n+1)
0 Ag (37’L + 2)

A1(3n)

mod 3 AO(?’n) =

precimnd Ao(3n+2) =

‘ Ai(3n) =
Ai(3n+2) =

5 Initial conditions:

A9(0) = A1(0) = 1,

s ABn) = A

U ABn+l) = Ay(n)

s Ag(3n+2) = Ag(n)+ 4i(n)

Initial conditions: Ap(0) = A1(0) =

A3(0) = A3(0) = 2
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Few-state linear p-schemes

Lucas congruences:
A(pn + k) = A(k)A(n)  (mod p)

PROP A(n) (mod p) satisfies a single-state linear p-scheme (and A(0) = 1).

Henningsen

s22 <= A(n) satisfies Lucas congruences modulo p.
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Few-state linear p-schemes

Lucas congruences:
A(pn + k) = A(k)A(n)  (mod p)

PROP A(n) (mod p) satisfies a single-state linear p-scheme (and A(0) = 1).

Henningsen

s22 <= A(n) satisfies Lucas congruences modulo p.

Gessel-Lucas congruences:
A(pn + k) = A(k)A(n) + pnA'(k)A(n)  (mod p?)

Note Gessel-Lucas congruences yield explicit 2-state linear p-schemes.

Numbers a la Apéry and their remarkable properties Armin Straub
56 / 85




Few-state linear p-schemes

Lucas congruences:

A(pn+ k) = A(k)A(n) (mod p)

PROP A(n) (mod p) satisfies a single-state linear p-scheme (and A(0) = 1).

Henningsen

s22 <= A(n) satisfies Lucas congruences modulo p.

Gessel-Lucas congruences:
A(pn + k) = A(k)A(n) + pnA'(k)A(n)  (mod p?)
Note Gessel-Lucas congruences yield explicit 2-state linear p-schemes.

Note Gessel-Lucas congruences are much more rare!
For instance, for £ = 0, we get the supercongruences

A(pn) = A(n)  (modp?).
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Supercongruences for Apéry numbers

® Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp)=5  (modp?).
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Supercongruences for Apéry numbers

® Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp)=5  (modp?).
® Gessel (1982) proved that A(mp) = A(m)  (modp?).
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Supercongruences for Apéry numbers

® Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp)=5  (modp?).
® Gessel (1982) proved that A(mp) = A(m)  (mod p?).

THM For p > 5, the Apéry numbers satisfy supercongruences:
Beukers,
Coster

'85, '88 A(mp™) = A(mp"™)  (modp®").
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Supercongruences for Apéry numbers

® Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp)=5  (modp?).
® Gessel (1982) proved that A(mp) = A(m)  (mod p?).

THM For p > 5, the Apéry numbers satisfy supercongruences:
Beukers,
Coster

'85, '88 A(mp™) = A(mp"™)  (modp®").

EG Simple combinatorics proves the congruence

(?) :zk: (i) (ﬁk) =1+1 (modp?).
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Supercongruences for Apéry numbers

® Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp)=5  (modp?).
® Gessel (1982) proved that A(mp) = A(m)  (mod p?).

THM For p > 5, the Apéry numbers satisfy supercongruences:
Beukers,
Coster

'85, '88 A(mp™) = A(mp"™)  (modp®").

EG Simple combinatorics proves the congruence

(?) :zk: (i) (ﬁk) =1+1 (modp?).

For p > 5, Wolstenholme (1862) showed that, in fact,

(2p> —2  (modp?).

p
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Supercongruences for Apéry-like numbers

CONJ All known Apéry-like numbers satisfy supercongruences like
Osburn— <5 A
Sahu 09

A(mp") = A(mp™™")  (modp™).

® This is finally proven in all cases.
For instance, for the six sporadic sequences related to ((3):

A(n)

S (07 () Beukers, Coster '85-'88
2ok (:)2(2:)2 Osburn-Sahu-S '16
Dk (2)2(2:) (2(,?::)) Osburn—Sahu '11

Amdeberhan—Tauraso '16 (r = 1)
Alinquant—Osburn '25

(= 1)Fnk (1) (k) GR)

S (—1)E (1) (4n5ky Osburn-Sahu-S '16
IIONBIGIS Gorodetsky '18
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Multivariate supercongruences

® The Almkvist—Zudilin numbers are the sporadic sequence

oo G 1) B

k

EG The Almkvist—=Zudilin numbers are the diagonal Taylor coefficients of

s 2014
1
= Z Z(n)x™

1-— (1‘1 + 29 + 3 + 564) + 27Tx129232T4 nEZayt

CONJ For p > 5, we have the multivariate supercongruences
S 2014

Z(np") = Z(mp™™")  (modp™).
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Multivariate supercongruences

® The Almkvist—Zudilin numbers are the sporadic sequence
n + k:> (3k)!

Z(n)ZZ(—fi)"‘Sk(;;)( n ) kB

k

EG The Almkvist—=Zudilin numbers are the diagonal Taylor coefficients of

S 2014
1
= Z(n)x™
1-— (1‘1 + 29 + 3 + 564) + 27Tx129232T4 Z (
neZsopt
CONJ For p > 5, we have the multivariate supercongruences
S 2014

Z(np") = Z(mp™™")  (modp™).

;TI‘:M Let P,Q € Z[x] with @ linear in each variable.
The above Gauss congruences modulo p” are satisfied by the

Houben,

S 2018
coefficients of P/Q if and only if N(P) C N(Q).

Armin Straub
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Collecting some thoughts. ..

THM The known sporadic sequences satisfy the Gessel-Lucas congruences
S 24

A(pn + k) = A(k)A(n) + pnA’(k)A(n) (mod p?).

® | ucas congruences correspond to single-state linear p-schemes.
Gessel-Lucas congruences are instances of 2-state linear p-schemes.
® |t would be of interest to study few-state p-schemes systematically:

® What kind of “generalized Lucas congruences’ does one get?
® Which sequences satisfy such congruences? (mod p, mod p??)

Partial results by Henningsen—S ('22) for certain constant term sequences.

® Are there interesting g-analogs?

® g-Lucas congruences have been studied. Olive '65, Désarménien '82
® For k =0, we get A(pn) = A(n) (modpz). (Supercongruences!)
g-analogs known for some sporadic sequences. S '19, Gorodetsky '19
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Apéry limits and Franel’s

suspicions

based on joint work(s) with:

M. Chamberland, A. Straub
Apéry limits: Experiments and proofs
American Mathematical Monthly, Vol. 128, Nr. 9, 2021, p. 811-824

A. Straub, W. Zudilin
Sums of powers of binomials, their Apéry limits, and Franel's suspicions
International Mathematics Research Notices, Vol. 2023, Nr. 11, 2023, p. 9861-9879

Marc Chamberland
(Grinnell College)

Wadim Zudilin
(Radboud U., NL)
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Mit del’ Tiil’ irIS HaUS fa"en. .. Falling into the house with the door. ..

CONJ L
Franel, The minimal recurrence for A®)(n) =" ( ) has order |51 ].
1895 -

dllald A (n) satisfies a recurrence of order [ = ].

OPEN s that recurrence of minimal order?
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Mit der Tijr irIS HaUS fa"en. .. Falling into the house with the door. ..

CONJ "
Franel, The minimal recurrence for A®)(n) =" ( ) has order |51 ].
—

1895

dllald A (n) satisfies a recurrence of order [ = ].

OPEN s that recurrence of minimal order?

n

THM . n\* .
s-zudilin Any telescoping recurrence for Z (k) solved by certain sequences

21 () ~ , —
A (n) if0< 25 <s. k=0
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Mit der Tijr irIS HaUS fa"en. .. Falling into the house with the door. ..

CONJ . " s
Franel,  The minimal recurrence for A®)(n) =3 (") has order [*£1].
1895 = \k 2

dllald A (n) satisfies a recurrence of order [ = ].

OPEN s that recurrence of minimal order?

n

THM . n\* .
s-zudilin Any telescoping recurrence for Z (k> solved by certain sequences

26y ' -
A} (n) if 0< 2 <s. k=0
The Apéry limits are:

A (n) _ N
: J 425 2j
A Z ey ] (sin(wt)) € Q>0
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Mit der Tiil’ irIS HaUS fa"en. .. Falling into the house with the door. ..

CONJ

1895

THM  A()(n) satisfies a recurrence of order |

Stoll '97

OPEN

THM
S-Zudilin
21

n El
Franel, The minimal recurrence for A®)(n) =" (:) has order |51 ].
k=0

SJerJ_

Is that recurrence of minimal order?

n

Any telescoping recurrence for Z (Z) solved by certain sequences
AYm)if0<2j <s. k=0

The Apéry limits are:

AW _ s _
lim —Z W:[ﬁﬂ]( mt ) € 1 Qx0

n—oo A(s)(n) Sin(ﬂ't)

Hence, A;s)(n) with 0 < 25 < s are linearly independent, so that any

telescoping recurrence has order at least |23 ].

Armin Straub

Numbers a la Apéry and their remarkable properties
péry prop 62 / 85




Background: Creative telescoping

Goal "\ fn+k\2
A tel i f
elescoping recurrence ror kZ_O <k> ( i >

=:a(n, k)

N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Creative telescoping

Goal "\ fn+k\2
A tel i f
elescoping recurrence ror kz_o <k> ( i >

=:a(n, k)
N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)
® Suppose we have P(n,N) € Q[n, N] and R(n, k) € Q(n, k) so that:
P(n,N)a(n,k) = (K — 1)R(n, k)a(n, k)

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Creative telescoping

Goal "\ fn+k\2
A tel i f
elescoping recurrence ror kz_o <k> ( i >

=:a(n, k)
N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)
® Suppose we have P(n,N) € Q[n, N] and R(n, k) € Q(n, k) so that:
P(n,N)a(n,k) = (K —1)R(n,k)a(n, k) = bn,k+1)—bn,k)

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Creative telescoping

Goal "\ fn+k\2
A tel i f
elescoping recurrence ror kz_o <k> ( i >

=:a(n, k)

N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)

® Suppose we have P(n,N) € Q[n, N] and R(n, k) € Q(n, k) so that:

P(n,N)a(n,k) = (K —1)R(n,k)a(n, k) = bn,k+1)—bn,k)
® Then: P(n,N) Z a(n,k) =0 Assuming Jim b(n, k) = 0.
keZ

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Creative telescoping

k k

Goal i 2 N2
A telescoping recurrence for Z <n> (n + >
k=0

=:a(n, k)

N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)

® Suppose we have P(n,N) € Q[n, N] and R(n, k) € Q(n, k) so that:

P(n,N)a(n,k) = (K —1)R(n,k)a(n, k) = bn,k+1)—bn,k)
® Then: P(n,N) Z a(n,k) =0 Assuming Jim b(n, k) = 0.
keZ

EC P, N) = (n+2)3N? — (2n + 3)(17n2 + 51n + 39)N + (n + 1)3

_ 4K*(2n + 3)(4n? — 2k% 4 12n + 3k + 8)
N (n—k+1)2(n—k+2)2

R(n, k) is the certificate of the telescoping recurrence operator P(n, N).

R(n, k)

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:

Untd + Pa—1(n) Unyag—1+ -+ p1(n) Uns1 + po(n) u, =0
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:
Untd + Pd—1(n) Unya—1 + -+ p1(n) Ungp1 + po(n) up =0
® If lim pr(n) = ¢k, then the characteristic polynomial is:
n— o0 d

Mt coa XM+ e A+ e ZH(A— Ak )
k=1
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:

Untd + Pd—1(N) Untda—1+ -+ P1(n) Uns1 + po(n) u, =0

® If lim pr(n) = ¢k, then the characteristic polynomial is:
n—o0 d

Mt g M4 a e =[O0 M)
k=1

THM 5\ ppose the | Ay | are distinct. Then, for any solution ,,,

Poincaré
1885
. unJr 1
lim = X (P)
n—oo Uy

for some k € {1,...,d}, unless u,, is eventually zero.
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:
Untd + Pd—1(n) Unta—1 ++ p1(n) Upt1+ po(n) up =0
® If lim pr(n) = ¢k, then the characteristic polynomial is:
n—oo d

Mt coa XM+ e A+ e ZH(A— Ak )
k=1

THM

Poincaré
1885

Suppose the | A\x | are distinct. Then, for any solution w,,

lim 2t =y, (P)

n—0o0 Uy

for some k € {1,...,d}, unless u,, is eventually zero.

THM Suppose, in addition, pg(n) # 0 for all n > 0.

Perron

1900 Then, for each )\ , there exists a u,, such that (P) holds.
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5, 73,1445, 33001, . ..
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73, 1445, 33001, .
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 82531 1142469 ...
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73, 1445, 33001, .

® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 82531 1142469 ...
THM B(n 3

Apéry '78 hm 7( ) =] C( )

n—oo A(n) 6
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73, 1445, 33001, .

® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 82531 1142469 ...
THM B(n 3

Apéry '78 hm 7( ) =] C( )

n—oo A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.
A(n), B(n) grow like (1 4 v/2)*.
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73, 1445, 33001, .

® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 82531 1142469 ...
THM B(n 3

Apéry '78 hm 7( ) =] C( )

n—oo A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.
A(n), B(n) grow like (1 4 v/2)*.

=(1-Vv2)"

® By Perron's theorem, there is a (unique) solution

" L Cnt1)
Cln) =7A(n) + B(n) with  lim =z
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73,1445, 33001, . ..
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 62531 11424695
THM B(n 3
Apéry '78 hm 7( ) =] C( )

n—o0 A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.

, i . i A(n), B(n) grow like (1 4 v/2)*.
® By Perron's theorem, there is a (unique) solution

C(n) =7A(n) + B(n) with  lim_ C(g(:)” — (1-2)",
0=+ lim
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73,1445, 33001, . ..
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 62531 11424695
THM B(n 3
Apéry '78 hm 7( ) =] L( )

n—o0 A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.
i . i A(n), B(n) grow like (1 4 v/2)*.
® By Perron's theorem, there is a (unique) solution

C(n) =7A(n) + B(n) with  lim_ C(g(:)” — (1-2)",
B(n)

COR A(n)((3) —6B(n) is "Perron’s small solution” .

This is a small linear form in 1 and ¢(3).
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73,1445, 33001, . ..
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 62531 11424695
THM B(n 3
Apéry '78 hm 7( ) =] L( )

n—o0 A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.
i . i A(n), B(n) grow like (1 4 v/2)*.
® By Perron's theorem, there is a (unique) solution

C(n) =7A(n) + B(n) with  lim_ C(g(:)” — (1-2)",
B(n)

COR A(n)((3) —6B(n) is "Perron’s small solution” .

This is a small linear form in 1 and ¢(3).

?  Tools to construct the solutions guaranteed by Perron’s theorem?
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Approaches to proving Apéry limits

B(n 3
How to prove lim B = @?
n—oo A(n) 6
© Via explicit expressions: (Apéry, '78)
I /n\2n+k\ [« 1 u —1)m-1
B(TL) =z < > ( ) =T n\ (n+m
i) Ve ) \ 57 B e
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Approaches to proving Apéry limits

How t lim S\ _
ow to proVe nl_{[;()m = T

© Via explicit expressions: (Apéry, '78)

IR ANGON |

@ Via integral representations: (Beukers, '79)

cay [ [ = Gy = amics) - 6800
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Approaches to proving Apéry limits

B 3
How to prove lim B = @?
n—oo A(n) 6
© Via explicit expressions: (Apéry,

w-iS () <>(zzm)

@ Via integral representations: (Beukers,

/ / / A=) A=y A= D" s — Am)C(3) — 6B(n)

17 (1 —zy)z)ntt

© Via hypergeometric series representations: (Gutnik,

oo _ . _n 2
_% ; R (t) = A(n)C(3) — 6B(n), where Rn(f) = (%)

78)

'79)

79)
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Approaches to proving Apéry limits

How t lim S\ _
ow to proVe nl_{[;()m = T

© Via explicit expressions: (Apéry, '78)
n n k
1 < ) (rz+k)2 1 (—=1)m-1
a 3 + n n-+m
S 25 2w
@ Via integral representations: (Beukers, '79)
n _ rL (1 _ U)n ”(1 _ Z)"' o
/ / / 1 — 1 ~ ) dzdydz = A(n)((3) — 6B(n)
© Via hypergeometric series representations: (Gutnik, '79)

oo _ . _n 2
_% ; R (t) = A(n)C(3) — 6B(n), where Rn(f) = (%)

® Via modular forms (Beukers '87, Zagier '03, Yang '07)
© Via continued fractions (for recurrences of order 2)
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Franel numbers

DEF LR _
Franel  A®) (ny Z are the (generalized) Franel numbers.
1804
k=0
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Franel numbers

DEF LR
ranel (S) = " i
A (n) kz_o <k) are the (generalized) Franel numbers.

o AN (p) =2n

Upt1 = 2Up

Numbers a la Apéry and their remarkable properties
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Franel numbers

DEF LR
ranel (S) = " i
A (n) kz_o <k) are the (generalized) Franel numbers.

° A(l)(n) — 9n
Un+1 = 2up,
° A(Z) (n) = (27?)
(n+ Duptr =220 + u,

Numbers a la Apéry and their remarkable properties Armin Straub

67 / 85



Franel numbers

Fana AO(m) =3 (™) are th lized) Franel numb
Franel A kZ_()( ) are the (generalized) Franel numbers.

o AN (p) =2n

Upt1 = 2Up

e A®)(n) = (2")

n
(n+ Duptr =220 + u,

° A(3)(n) =1,2,10,56, 346, 2252, 15184, 104960, 739162, . . .
(n 4 1) %upy1 = (Tn? + Tn + 2)uy, + 8n’up, 1 (Franel, 1894)
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Franel numbers

DEF LR
ranel (S) i
Franel | A kZ_()( ) are the (generalized) Franel numbers.
o AN (p) =2n
Un41 = 2uy,
[ ] A(Z) (n) = (27?)

(n+ 1)unt1 =2(2n + L)uy,

o A®)(n) =1,2,10,56,346, 2252, 15184, 104960, 739162, . . .
(n 4 1) %upy1 = (Tn? + Tn + 2)uy, + 8n’up, 1 (Franel, 1894)
o AW(p)=1,2,18,164,1810,21252, 263844, 3395016, 44916498, . . .
(n+ 1)3upyy = 2(2n + 1)(3n2 + 3n + 1)u, + 4n(16n2 — 1)u,_y (Franel, 1895)
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Franel numbers

DEF LR
ranel (S) i
Franel | A kz_:o< ) are the (generalized) Franel numbers.
o AN (p) =2n
Un41 = 2uy,
« A = (%)

(n+ 1)unt1 =2(2n + L)uy,

o ABG) (n) =1,2,10, 56, 346, 2252, 15184, 104960, 739162, . . .
(n 4 1) %upy1 = (Tn? + Tn + 2)uy, + 8n’up, 1 (Franel, 1894)
o AW (n) =1,2,18,164,1810, 21252, 263844, 3395016, 44916498, . . .

n+ 1)U, = 2(2n + 1)(3n2 4+ 3n + Du, + 4n(16n% — D)u,_ (Franel, 1895)
+

CONJ The minimal recurrence for A®) (n) has order L%lj

Franel,

1895  and degree s — 1. (spoiler: the degree part is not true)
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | = |

Franel,

1895 and degree s — 1.
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | = |

Franel,

1895  gnd s— 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | &L |

Franel,

1895 gnd s— 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping

dllal A (n) satisfies a recurrence of order [ = ].

Cusick '89 also constructs such recurrences.

OPEN Is that recurrence of minimal order?

Numbers a la Apéry and their remarkable properties Armin Straub 68 /85




Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | = |

Franel,

1895 and degree 5 — 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping

dllal A (n) satisfies a recurrence of order [ = ].

Cusick '89 also constructs such recurrences.

OPEN Is that recurrence of minimal order?

CONJ The minimal recurrence for A*)(n) has order m = | 42| and

Bostan
2L 1 2

sm(m? —1)+1, for even s,

degree =

=

tm® — Im?+ Zm + 7(_1);_1, for odd s.

If true, the degree grows like s3/24.

® Verified at least for s < 20.

using MinimalRecurrence from the LREtools Maple package
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | = |

Franel,

1895  gnd s— 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping

THM  A()(n) satisfies a recurrence of order | ££1 .
Stoll 97 2
Cusick '89 also constructs such recurrences.

OPEN Is that recurrence of minimal order?

CONJ The minimal recurrence for A*)(n) has order m = | 42| and

Bostan
21
im(m? —1) +1, for even s,
degree = (—1ym_1
%m3 — %mQ + %m + 57—, forodds.

If true, the degree grows like s3/24.

® Verified at least for s < 20.

using MinimalRecurrence from the LREtools Maple package

® Goal: The minimal telescoping recurrence for A*)(n) has order > | =t ].
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5]




How to prove lower bounds for orders of recurrences?

EG " \? (n+ k>

[ ] . B D
> (k> ( N ) . recurrence of order 2 (Apéry '78)
k=0
n - s

Yy (k) : recurrence of order [ | (Stoll '97)
k=0

Could there be recurrences of lower order? ... and higher degree
Numbers a la Apéry and their remarkable properties Armin Straub

69 / 85




How to prove lower bounds for orders of recurrences?

EG = ()2 (n+k\?
° Z (Z) (nk ) : recurrence of order 2 (Apéry '78)
k=0
n - s
o Z( ) : recurrence of order [ | (Stoll '97)
k
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)

an algorithm to compute order 1 (right) factors of recurrence operators.
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How to prove lower bounds for orders of recurrences?

EG = ()2 (n+k\?
° Z (Z) (nk ) : recurrence of order 2 (Apéry '78)
k=0
n - s
o Z( ) : recurrence of order [ | (Stoll '97)
k
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)

an algorithm to compute order 1 (right) factors of recurrence operators.

® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '04,

for computing factors of differen(tial/ce) operators. Zhou~van Hoeij 15, ..)
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How to prove lower bounds for orders of recurrences?

EG = ()2 (n+k\?
° Z (Z) (nk ) : recurrence of order 2 (Apéry '78)
k=0
n - s
o Z( ) : recurrence of order [ | (Stoll '97)
k
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)

an algorithm to compute order 1 (right) factors of recurrence operators.

® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '04,
. . . Zhou-van Hoeij '19, ...
for computing factors of differen(tial/ce) operators. ourvan Hoel )
® For Franel numbers, order 1 can be ruled out for all s >3 (Yuan-Lu-Schmidt '08)
using congruential properties.
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How to prove lower bounds for orders of recurrences?

EG n i\ 2 fn ot k2
[ ] 0 Ja
> (k) ( N ) . recurrence of order 2 (Apéry '78)
k=0
n - s 1
Yy (k) . recurrence of order |1 | (Stoll '97)
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)
an algorithm to compute order 1 (right) factors of recurrence operators.
® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '94,
for computing factors of differen(tial/ce) operators. Zhou~van Hoeij 15, ..)
® For Franel numbers, order 1 can be ruled out for all s >3 (Yuan-Lu-Schmidt '08)

using congruential properties.

If A(n+1)/A(n) — u for u € Q of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (Mclntosh '89)
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How to prove lower bounds for orders of recurrences?

EG n i\ 2 fn ot k2
[ ] 0 Ja
> (k) ( N ) . recurrence of order 2 (Apéry '78)
k=0
n - s 1
Yy (k) . recurrence of order |1 | (Stoll '97)
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)
an algorithm to compute order 1 (right) factors of recurrence operators.
® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '94,
for computing factors of differen(tial/ce) operators. Zhou~van Hoeij 15, ..)
® For Franel numbers, order 1 can be ruled out for all s >3 (Yuan-Lu-Schmidt '08)

using congruential properties.
If A(n+1)/A(n) — u for u € Q of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (Mclntosh '89)

For Apéry numbers: p = (1 +/2)%.
For Franel numbers: 1 = 25. Not helpful!
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Solutions to the Franel number recurrences

THM . "L /n\° @ s, B
s-zudiin Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
4l k=0 (fine print: for large enough n)

—S

AW (n,t) = ;:o (Z)S ﬁ (1 _ ;) nl:[f (1 4 ;) =3 A m) 2

j=1 j=0
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Solutions to the Franel number recurrences

THM SN
s-zudiin Any telescoping recurrence for <Z) solved by A;s)(n) if0<2j<s.

4l k=0 (fine print: for large enough n)

n n s k ¢ n—k ¢ - )
A (n,t) = ( ) H(l—é)H<1+7> = AP (n)t¥
’ - : J
im0 /i 17 A J 30
f S
E:?u:.)e © Suppose: P(n,N) (Z) =b(n,k+1)—b(n,k)
for a hypergeometric term b(n, k) = rat(n, k) (})".

L]
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n s k — -
s n s j
A (n,t) = (k) H(l—f) H( ) =5 AV ) ¥
k=0 j=1 j=1 7>0

f S
E:?u:.)e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".

L]
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Solutions to the Franel number recurrences

THM n
s-zudiin Any telescoping recurrence for Z <k) solved by A;s)(n) if0<2j<s.
2 k=0 (fine print: for large enough n)
n n s k — - )
A(S)(n7t) = (k) H (1 — 7) H ( ) — Z AES)(H) 27
k=0 j=1 j=1 j=0
f S
E:?u:.)e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
=t for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, 6 - t) - b(n, a — t) b(n, t) entire for n >0

k=a

L]
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n n s k — - )
A9, 1) := (k) I1 (1 - f) I1 ( ) =Y A7) ¥
k=0 j=1 j=1 §>0
f S
E:?u:.)e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, 6 - t) - b(n, a — t) b(n, t) entire for n >0

k=a

a<0and B>n = O(t) since b(n.t) = rat(n, t) (’:)

L]
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n n s k — - )
A9, 1) := (k) I1 (1 - f) I1 ( ) =Y A7) ¥
k=0 j=1 j=1 §>0
f S
E:?u:.)e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, 6 - t) - b(n, a — t) b(n, t) entire for n >0

k=a

a<0and B>n = O(t) since b(n.t) = rat(n, t) (’:)

n s
Z ( ) (ts) omitted terms are O(t*)
k=0

L]
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n n s k — - )
A9, 1) := (k) I1 (1 - f) I1 ( ) =Y A7) ¥
k=0 j=1 j=1 §>0
f S
E:?u:.)e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, 6 - t) - b(n, a — t) b(n, t) entire for n >0

k=a

a<0and B>n = O(t) since b(n.t) = rat(n, t) (’:)

n s
Z ( ) (ts) omitted terms are O(t*)

=0
t s n S
0 A¥(nt) = [ — " and so P(n, N)A®) (n,t) = O(t*).
sin(7rt) = k—t

L]
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Apéry limits and lower bounds

THM . n n S () .
s-zudilin  Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
21

k=0

(fine print: for large enough n)
—s

AG) (n, 1) == 1:0 (Z)S f[l (1 _ ;) nl:[k (1 4 ;) =3 A m) 2

Jj=1 J=0
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Apéry limits and lower bounds

THM n

5 n
s-zudilin  Any telescoping recurrence for (
21

k=0

A (n,t) == ,:0 (Z) ]f[l (1 ) s) ek (1 . 5) s i

j=1
THM (s)
S-Zudilin iy 4,"(n)

12 Tt B 2
21 n—oo AG)(n) ] (m(m)) €m0

Numbers a la Apéry and their remarkable properties

k) solved by A% (n) if 0 < 2j < s.

(fine print: for large enough n)

ST AP m) ¥

Jj=0
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Apéry limits and lower bounds

THM . n n S () .
s-zudilin  Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
21
k=0

(fine print: for large enough n)

AG) (n, 1) == 1:0 (Z)S f[l (1 _ ;) nl:[k (1 4 ;) h =3 A m) 2

Jj=1

THM (s)
S-Zudilin iy 4,"(n)

12 Tt B 2
21 n—oo AG)(n) ] (m(m)) €m0

® Qur proof is based on showing locally uniform convergence in ¢ of

Jj=0

A g)é:;) - (sinzjrt)>s'

k=0 k
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Apéry limits and lower bounds

THM . "L /n\° @, |
s-zudilin  Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
21
k=0

(fine print: for large enough n)

n

AG) (n, 1) == > (Z) {: (1 - 5) T_hk (1 + ;)] R =3 A9

Jj=1 j=0
THM

(s)
S-Zudilin iy 4,"(n)

12 Tt B 2
21 n—oo AG)(n) ] (sin(m‘)) €m0

® Qur proof is based on showing locally uniform convergence in ¢ of

. A (n,t) ( wt >S
lim —; == | = .
n— oo Z <n> 51n(ﬂ't)

k=0

k

“poof” For large n and k ~ n/2,

k n—k =) g
t) ( t) ( t) ( t) sin(7t)
|| l== II 1+~ zll l== 1+~ = .
iy ( J) J e J J mt
Numbers a la Apéry and their remarkable properties
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Apéry limits and lower bounds

THM . n n S () .
s-zudilin  Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
21

k=0

(fine print: for large enough n)

—S

AG) (n, 1) == 1:0 (Z)S f[l (1 _ ;) nl:[k (1 4 ;) =3 A m) 2

Jj=1 j=0
JZT"I?'/"I‘ lim AES)(n) = [t¥] mt ) € Q50
21 n—oo AG)(n) sin(mt) >

® |n the case j = 1, this settles previous conjectures:
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Apéry limits and lower bounds

THM . n n S () .
s-zudiin Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
4l k=0 (fine print: for large enough n)

—S

= $ 0 [10-DT -] g e

k=0 j=1 >0
THM o ' LN
S-Zudilin iy _J ] =[] [ — € 19Qs
21 n—oo A(s) (n) sln(m‘)

® |n the case j = 1, this settles previous conjectures:

= 3, 4 numerically observed by Cusick (1979)

= 3 proved by Zagier (2009)

= 5 conjectured by Almkvist, van Straten, Zudilin (2008)
> 3 conjectured by Chamberland-S (2020)

S
S
S
S
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Apéry limits and lower bounds

THM . "L /n\° @, |
s-zudilin  Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
21

k=0

(fine print: for large enough n)

—S

AW (n,t) = ;:o (Z)S f[l (1 _ ;) nl:[k (1 4 ;) =3 A m) 2

Jj=1 j=0
JZT"I?'/"I‘ lim AES)(n) = [t¥] mt ) € Q50
21 n—oo AG)(n) sin(mt) >

® In the case j = 1, this settles previous conjectures:

® s = 3,4 numerically observed by Cusick (1979)
® s = 3 proved by Zagier (2009)
® s =5 conjectured by Almkvist, van Straten, Zudilin (2008)
® s > 3 conjectured by Chamberland-S (2020)
THM . " /n\°
s-zudiin Any telescoping recurrence for > < ) has order at least |5t ].
21 o \F
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Apéry limits and lower bounds

THM . "L /n\° @, |
s-zudilin  Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
21

(fine print: for large enough n)

—S

Aty =S (Z)S 11 (1 _ 5) T <1+ ;) =3 A m) 2

k=0 j=1 =1 >0
THM A ' s ]
S-Zudilin iy _J ] =t (= g € 19Qs

21 n—oo A(s) (n) sm(m‘)

® In the case j = 1, this settles previous conjectures:

® s = 3,4 numerically observed by Cusick (1979)
® s = 3 proved by Zagier (2009)
® s =5 conjectured by Almkvist, van Straten, Zudilin (2008)
® s > 3 conjectured by Chamberland-S (2020)
THM " /n\°
i H s+1
S-Zudiln Any telescoping recurrence for <k) has order at least | *3=].

k=0

® This implies Franel's conjecture on the exact order
if the minimal-order recurrence is telescoping. True at least for s < 30.
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Collecting some thoughts. ..

® Applications of Apéry limits:
® |rrationality proofs for ((2) and ((3)
® Explicitly construct the solutions guaranteed by Perron's theorem
® Continued fractions
® Prove lower bounds on orders of recurrences new!
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Collecting some thoughts. ..

® Applications of Apéry limits:
® |rrationality proofs for ((2) and ((3)
® Explicitly construct the solutions guaranteed by Perron's theorem
® Continued fractions
® Prove lower bounds on orders of recurrences new!

® Many open questions! For instance:

® Cusick '89 and Stoll '97 construct recurrences for Franel numbers.
Can these constructions produce telescoping recurrences?
® What can we learn from other families of binomial sums?
Also, it would be nice to simplify some of the technical steps in the arguments.
® Can we (uniformly) establish the conjectural Apéry limits for CY DE's?
® Can we explain when CT falls short? And algorithmically “fix" this
issue?

Numbers a la Apéry and their remarkable properties Armin Straub



Interpolated sequences and

critical L-values of modular
forms

based on joint work with:

R. Osburn, A. Straub

Interpolated sequences and critical L-values of modular forms

Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms
in Quantum Field Theory Robert Osburn
Editors: J. Bliimlein, P. Paule and C. Schneider; Springer, 2019, p. 327-349 (University College Dublin)
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L-value interpolations

THM For primes p > 2, the Apéry numbers for ((3) satisfy

Ahlgren—
Ono 2000 1 9
A=) =ap(p) (modp?),
with f(7) = n(21)'n(47)* =) a(n)g" € Sa(To(8)).
n=1
conjectured (and proved modulo p) by Beukers '87
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L-value interpolations

THM For primes p > 2, the Apéry numbers for ((3) satisfy
gren—

Ono 2000 1 9
A=) =ap(p) (modp?),
with f(7) = n(21)'n(47)* =) a(n)g" € Sa(To(8)).
n=1
conjectured (and proved modulo p) by Beukers '87

THM

Zagier A(—%) = %L(f, 2)

2016

o) 2 2
° _ T z+k\" .
Here, A(z) kZ:O (k) ( i is absolutely convergent for z € C.
® Predicted by Golyshev based on motivic considerations,
the connection of the Apéry numbers with the double covering
of a family of K3 surfaces, and the Tate conjecture.

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017

Numbers a la Apéry and their remarkable properties
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L-value interpolations, cont’d

® Zagier found 6 sporadic integer solutions C(n) to: * one of A-F

(n+ 1)2u,,,+1 = (an2 +an + b)u, — en?un_1 u_q =0,up =1

THM There exists a weight 3 newform f.(7) = -, Vn,«q" so that
1985 zZ

e Ci(P5H) = Yp  (modp).
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L-value interpolations, cont’d

® Zagier found 6 sporadic integer solutions C(n) to: * one of A-F

(n+ 1)2u,,,+1 = (an2 +an + b)u, — en?un_1 u_q =0,up =1

THM There exists a weight 3 newform f.(7) = -, Vn,«q" so that
1985 zZ

e Ci(P5H) = Yp  (modp).

® C, D proved by Beukers—Stienstra ('85); A follows from their work

® F proved using a result Verrill ('10); B through p-adic analysis

® F conjectured by Osburn-S and proved by Kazalicki ('19) using
Atkin—Swinnerton-Dyer congruences for non-congruence cusp forms
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L-value interpolations, cont’d

® Zagier found 6 sporadic integer solutions C(n) to: * one of A-F

(n+ 1)2u,,,+1 = (an2 +an + b)u, — en?un_1 u_q =0,up =1

THM There exists a weight 3 newform f.(7) = -, Vn,«q" so that
1985 zZ

Co(P5Y) = 7p. (modp).

® C, D proved by Beukers—Stienstra ('85); A follows from their work
® F proved using a result Verrill ('10); B through p-adic analysis
® F conjectured by Osburn-S and proved by Kazalicki ('19) using
Atkin—Swinnerton-Dyer congruences for non-congruence cusp forms
THM For *x one of A-F, except E, there is o, € Z such that
Osburn S
'19

Cu(-3) = S5L(£,2)
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L-value interpolations, cont’d

® Zagier found 6 sporadic integer solutions C(n) to: * one of A-F

(n+ 1)2u,,,+1 = (an2 +an + b)u, — en?un_1 u_q =0,up =1

THM There exists a weight 3 newform f.(7) = -, Vn,«q" so that
1985 zZ

Co(P5Y) = 7p. (modp).

® C, D proved by Beukers—Stienstra ('85); A follows from their work

® F proved using a result Verrill ('10); B through p-adic analysis

® F conjectured by Osburn-S and proved by Kazalicki ('19) using
Atkin—Swinnerton-Dyer congruences for non-congruence cusp forms

THM For *x one of A-F, except E, there is o, € Z such that
Osburn S

'19
Cu(-3) = S5L(£,2)

6
F E, C = —=L(fg,1).
or sequence 1res/2 E() 72 (fE,1)

ap==1l
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L-value interpolations, cont’d

Co(=3) = 5 L(f2)

* ;)<k> n(2r)2n(167)2 32 | Qv-2) | 8
[n/3] ' |

B >« 1)k3"*3k<372:) (i/'fs) (4r)0 6 | o | 8
k=0
= (n\? (2% [ ‘

¢ k=0 <k) <k> n(27)*n(67)* 12 | Qw3 | 12
S (n\? (ntk . i

’ 2’@ (") nn 16 | Qv=1) | 16
n n 2k 2(”—k)

- kz:;)(k)(k)( n—k > n(r)’n2rmn)n@r)?® | 8 | QV-2) | 6

F n (_1)k8”*k<Z>CA(k) q,2q2+3q3+'” 24 Q(\/j(‘)) 6
k=0 ,
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

EG [
a(n) = n! is interpolated by a(z) =T'(z + 1) = / et dt.
0
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

EG 0o
a(n) = n! is interpolated by a(z) =T'(z + 1) = / et dt.
0

THM % -
Glaisher /0 (a(0) — a(l)z? + a(2)zt — .. ) dz = 5@(—%)
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

EG 0o
a(n) = n! is interpolated by a(z) =T'(z + 1) = / et dt.
0

THM % -
Glaisher /0 (a(0) — a(l)z? + a(2)zt — .. ) dz = 5@(—%)

“pOOf” o0 1
———a(0)dz = =S71/2. 4(0)
(Glaisher's formal proof, simplified by O'Kinealy)
Here, S is the shift operator: S - b(n) = b(n + 1)
Numbers a la Apéry and their remarkable properties Armin Straub
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Interpolating sequences: Ramanujan’s master theorem

THM

Ramanujan
Hardy

Numbers a la Apéry and their remarkable properties Armin Straub 78/ 85
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Interpolating sequences: Ramanujan’s master theorem

THM e 1 >
/ 2*71 (a(0) — za(1) + 22a(2) —...) dz
0

for 0 < Re s < §, provided that
® g is analyticon H(0) = {z € C:Re z > -0},
* |a(z + iy)| < Ce®l®I+81Yl for some < 7.
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Interpolating sequences: Ramanujan’s master theorem

THM e 1 >
/ 2*71 (a(0) — za(1) + 22a(2) —...) dz
0

for 0 < Re s < §, provided that
® g is analyticon H(0) = {z € C:Re z > -0},
* |a(z + iy)| < Ce®l®I+81Yl for some < 7.

COR Suppose a satisfies the conditions for RMT. If

Carlson
1914

then a(z) = 0 identically.

® However, we will see that our interpolations do not arise in this way.
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Interpolating sequences

Q  What is the proper way of defining C'(—

)?

® For Apéry numbers A(n), Zagier used A(z) = (w) <x + k) .

k=0 k

N[

Numbers a la Apéry and their remarkable properties Armin Straub -




Interpolating sequences

Q  What is the proper way of defining C(—3)?
[e's] 2 2 z+ k 2
® For Apéry numbers A(n), Zagier used A(z) = Z ( ) < ) .
k=0

s (x+2)° Az +2) — (22 + 3)(172% + 51o + 39)A(z + 1)

+ (x4 1)%A(x) =0 forall z € Zsg
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

® For Apéry numbers A(n), Zagier used A(z) = (w) <x + k) .

k=0

s (x+2)° Az +2) — (22 + 3)(172% + 51o + 39)A(z + 1)
o 94) = S+ e
T

In particular, A(z) does not satisfy the (vertical) growth conditions of RMT.
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

0 2 2
® For Apéry numbers A(n), Zagier used A(z) = (w) (x : k> .

k=0
s (x+2)° Az +2) — (22 + 3)(172% + 51o + 39)A(z + 1)
14 S5+ e
T

In particular, A(z) does not satisfy the (vertical) growth conditions of RMT.

k

oo 2
® For the ((2) Apéry numbers B(n), we use B(z) = Z (z) <x+ k‘)
k=0

However:

® The series diverges if Re x < —1.
® Q(z,S;)B(x) = 0 where Q(x,S;) is Apéry's recurrence operator.
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

e} 2 2
® For Apéry numbers A(n), Zagier used A(z) = (:) <x - k) .

k=0 k
EG n 2
n 2k
(©) Ce(n) = Z <k> (k)
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

e} 2 2
® For Apéry numbers A(n), Zagier used A(z) = (:) <x - k) .

diverges for n & Zxq

EG n 2 1
n 2k —n,—n, s

© Cc(n)zz<k> (k>:3F2( L1
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Interpolating sequences

Q  What is the proper way of defining C'(—

)?
/ . ° r+k
® For Apéry numbers A(n), Zagier used A(z) = | ( ) ( ) |
k=0
EG "~ (n\? 1
n 2k -n, N, 3
o Cc(n)zz<k> (k>:3F2< 1,1 2

k=0

l\DM—I

We use the interpolation Cc(z) = Re 3F» (_
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Interpolating sequences

Q  What is the proper way of defining C'(—

)?
p . ol x+k
® For Apéry numbers A(n), Zagier used A(z) = ( ) < ) .

k=0
EG n 2 1
n 2k —n,—n, s
(©) Cc(n)zz<k> (k>:3F2< 11 24)
1
2 4)_

l\DM—I

k=0 ?

—Z,—x
1,1

)

We use the interpolation Cc(z) = Re 3F» (

" en=E @)
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Interpolating sequences

)?

® For Apéry numbers A(n), Zagier used A(z) = Z ( ) <x + k) .
k=0
EG n 2 1
n 2k —n,—n, s
£ S E)-n (i
—-x, —T, % 4
1,1 ’

5 eam= S ()= Cn (300

This has a simple pole at n = f%.

l\DM—I

Q  What is the proper way of defining C'(—

We use the interpolation Cc(z) = Re 3F» (
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Interpolating sequences

Q  What is the proper way of defining C(—3)?

e} 2 2
® For Apéry numbers A(n), Zagier used A(z) = (:) <x - k) .

k=0 k

cw= 3 ()

k1,k2,k3,ka=0 1=1
k1+ko=k3+ky

EG

® RE: order 4, degree 15
® DE: order 7, degree 17

(2 analytic solutions)

How to compute C(—3)?
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Interpolating sequences

Q  What is the proper way of defining C'(—

)?

® For Apéry numbers A(n), Zagier used A(z) = Z ( ) (x + k) .

k=0

cw- £ HEE)

k1,k2,k3,ka=0 1=1
k1+ko=k3+ky

l\DM—I

EG

® RE: order 4, degree 15
® DE: order 7, degree 17

(2 analytic solutions)

How to compute C(—3)?

THM For any odd prime p,
McCarthy,
Osburn, S

20 C(Z2) =9(p) (modp?),  7'2(2r) = 7(n)g" € Ss(To(4))

Q Is there a Zagier-type interpolation?
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Beukers’ proof of the irrationality of ((3)

(- )"
/ / i xy o dxdy

/ / / 1 - 1(1_;3))");511 o) dedydw

® Beukers showed that

I, = a(n)((2) 4+ a(n), Jn = b(n)¢(3) + b(n)
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Beukers’ proof of the irrationality of ((3)

2)"y(1 = )"
/ / 1—xy o dxdy

/ / / 1 - 1(1_;3))");511 o) dedydw

® Beukers showed that
L= a(m)C(@) +aln),  Ju = b(n)C(3) +b(n)
where a(n),b(n) € Q and

=3 () () - () (1)
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Beukers’ proof of the irrationality of ((3)

(- )"
/ / i xy o dxdy

/ / / 1 _ 1(1_;5))n):+(11 —w)" dxdydw

® Beukers showed that
I, = a(n)((2) 4+ a(n), Jn = b(n)¢(3) + b(n)

where a(n),b(n) € Q and
= (1) (T =) ()

® Brown realizes these as period integrals, for N = 5,6, on the moduli
space Mg n of curves of genus 0 with N marked points.

Numbers a la Apéry and their remarkable properties Armin Straub



Brown’s cellular integrals

THM Period integrals on Mg  are Q-linear combinations of multiple
Brown
2009 zeta Va|ueS (MZVS) (conjectured by Goncharov—Manin, 2004)

® Examples of such integrals can be written as: (a:, by, cij € 7)

/ [t =)t — ty)dty ... dtn—s
0<t1<...<tn_3<l

® Typically involve MZVs of all weights < N — 3.
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Brown’s cellular integrals

THM Period integrals on Mg  are Q-linear combinations of multiple

Brown
2009 zeta Va|ueS (MZVS) (conjectured by Goncharov—Manin, 2004)
® Examples of such integrals can be written as: (a:, bj, cij € 2)

/ [t =)t — ty)dty ... dtn—s
0<t1<<tN73<1

® Typically involve MZVs of all weights < N — 3.

® Brown constructs families of integrals I,(n), for which MZVs of
submaximal weight vanish.
Here, o are certain (“convergent”) permutations in Sy.

N 5 6 7 8 9 10 11
#ofoc |1 1 5 17 105 771 7028
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One of Brown'’s cellular integrals

® One of the 17 permutations for N =8 is 0 = (8,3,6,1,4,7,2,5).
® Cellular integral I,(n) = [, f2 ws where A0<ty<...<tg<1

(4

fo = (t3 —te)(te)(—ta)(ta — 1)(1 — t2)(t2 — t5) (ts —t6)(te)(—ta)(ta — 1)(1 — t2)(ta — t5)
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One of Brown'’s cellular integrals

® One of the 17 permutations for N =8is0=(8,3,6,1,4,7,2,5).

® Cellular integral I,(n) = [, f2 ws where Ai0<ty <. <tg<1
f, = = 1) = )t~ to)ts — o)t —1) dtodtsdtadtsdts
7 (ts —to) () (—ta)(ta — 1)(1 —t2)(ta —t5) 7 (ta —t6)(t6)(—ta) (ta — 1)(1 — t2)(ta — t5)
o I,(0) = 16¢(5) — 8¢(3)¢(2)
Hyperint

I1,(1) = 331,(0) — 432¢(3) + 316¢(2) — 26

I,(2) = 89291,(0) — 117500¢(3) + 213189¢(2) — 337963
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One of Brown'’s cellular integrals

® One of the 17 permutations for N =8is0=(8,3,6,1,4,7,2,5).

® Cellular integral I,(n) = [, f2 ws where Ai0<ty <. <tg<1
£, = (—t2)(ta — t3)(t3 — ta)(ta — t5)(t5 — ts)(te — 1) o dtadtsdtsdtsdts
7 (ts —to) () (—ta)(ta — 1)(1 —t2)(ta —t5) 7 (ta —t6)(t6)(—ta) (ta — 1)(1 — t2)(ta — t5)
= 1,(0) = 16¢(5) — 8¢(3)¢(2)
Hyperint

I1,(1) = 331,(0) — 432¢(3) + 316¢(2) — 26

I,(2) = 89291,(0) — 117500¢(3) + 213189¢(2) — 337963

® OGF of I,(n) satisfies a Picard—Fuchs DE of order 7 (Lairez).

With 2-dimensional space of analytic solutions at 0.
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One of Brown'’s cellular integrals

® One of the 17 permutations for N =8 is 0 = (8,3,6,1,4,7,2,5).

® Cellular integral I,(n) = [, f2 ws where A0<ty<...<tg<1
= (—t2)(t2 — t3)(t3 — ta)(ta — t5)(t5 —t6)(ts — 1) o — dtadtzdtydtsdts
7 (ts —to) () (—ta)(ta — 1)(1 —t2)(ta —t5) 7 (ta —t6)(t6)(—ta) (ta — 1)(1 — t2)(ta — t5)
= 1,(0) = 16¢(5) — 8¢(3)¢(2)
Hyperint

I1,(1) = 331,(0) — 432¢(3) + 316¢(2) — 26

I,(2) = 89291,(0) — 117500¢(3) + 213189¢(2) — 337963

® OGF of I,(n) satisfies a Picard—Fuchs DE of order 7 (Lairez).

With 2-dimensional space of analytic solutions at 0.

® The leading coefficients of I,(n) are:

1,33, 8929, 4124193, 2435948001, 1657775448033, . . .
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One of Brown'’s cellular integrals, cont’d

® One of the 17 permutations for N=8is0=(8,3,6,1,4,7,2,5).
* Cellular integral I,(n) = [, f2 ws has leading coefficients A,(n):

1, 33,8929, 4124193, 2435948001, 1657775448033, . ..
LEM

McCarthy, n 4+ k
Osburn, S Ao—(n) = E H < ) <
2020 k;
k'l k2,k'3 k4 0 =1
k1+ko=k3z+ka
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One of Brown'’s cellular integrals, cont’d

® One of the 17 permutations for N=8is0=(8,3,6,1,4,7,2,5).
* Cellular integral I,(n) = [, f2 ws has leading coefficients A,(n):

1, 33,8929, 4124193, 2435948001, 1657775448033, . ..
LEM

McCarthy, n 4+ k
Osburn, S Ao—(n) = E H < ) <
2020 k;
k1,ko,k3,ka=0 1=1
k1+ko=k3z+ka

CONJ For each N > 5 and convergent oy, the leading coefficients
McCarthy,

osburn, s A (1) satisfy (»>5)
2020

T*l)

Agy (mp") = Agy (mp (mod p*").

For N = 5,6 these are the supercongruences proved by Beukers and Coster.
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One of Brown'’s cellular integrals, cont’d

® One of the 17 permutations for N=8is0=(8,3,6,1,4,7,2,5).
* Cellular integral I,(n) = [, f2 ws has leading coefficients A,(n):

1, 33,8929, 41241937 2435948001, 1657775448033, . ..
LEM

McCarthy, n 4+ k
Osburn, S Ao—(n) = E H < ) <
2020 k;
k1,ko,k3,ka=0 1=1
k1+ko=k3z+ka

THM For any odd prime p,

McCarthy,
Osburn, S p— 1
o 4,(55=) =20)  (mod p?)
where n'? Z’y q" is the unique newform in Sg(T'o(4)).

n>1
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Collecting some thoughts. ..

® Golyshev and Zagier observed that for

=3 (1) ("1 s =aentent = e

k=0 n=1
the known modular congruences have a continuous analog: weight 4
A(PF) =ap  (modp?), A(=3) = #L(1,2)

® \We proved that the same phenomenon holds for:
® all six sporadic sequences of Zagier weight 3
® an infinite family of leading coefficients of Brown's cellular integrals

odd weight k&

® Proofs are computational and not satisfactorily uniform

Do all of these have the same motivic explanation?
Can Zagier's motivic approach (relying on Tate conjecture) be worked out explicitly in these cases?

® Further examples exist. What is the natural framework?

Apéry-like sequences, CM modular forms, hypergeometric series, ...

® How to characterize the analytic interpolations abstractly?

We used suitable binomial sums. But the interpolations are not unique! (Some grow like sin(wz) as  — i00.)

® Polynomial analogs?
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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