An invitation to constant term sequences

The Legacy of Ramanujan 2024
Celebrating the 85.37 ...th birthdays of George Andrews \& Bruce Berndt
Penn State University - June 6-9, 2024

Armin Straub
June 8, 2024
University of South Alabama

Slides available at: http://arminstraub.com/talks
based on joint work with:

Alin Bostan
(Université Paris-Saclay)

Ramanujan's elliptic functions

- Berndt, Bhargava \& Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$
{ }_{2} F_{1}\left(\frac{1}{m}, 1-\frac{1}{m} ; 1 ; x\right), \quad m \in\{2,3,4,6\} .
$$

($m=2$: classical; $m=3,4,6$: alternative bases)

Ramanujan's elliptic functions

- Berndt, Bhargava \& Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$
{ }_{2} F_{1}\left(\frac{1}{m}, 1-\frac{1}{m} ; 1 ; x\right), \quad m \in\{2,3,4,6\} .
$$

($m=2$: classical; $m=3,4,6$: alternative bases)

(1) $A_{m}(n)$ is a diagonal for all $m \geqslant 2$.

Ramanujan's elliptic functions

- Berndt, Bhargava \& Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$
{ }_{2} F_{1}\left(\frac{1}{m}, 1-\frac{1}{m} ; 1 ; x\right), \quad m \in\{2,3,4,6\} .
$$

($m=2$: classical; $m=3,4,6$: alternative bases)

(1) $A_{m}(n)$ is a diagonal for all $m \geqslant 2$.
(2) $A_{m}(n)$ is a constant term if and only if $m \in\{2,3,4,6\}$.

Ramanujan's elliptic functions

- Berndt, Bhargava \& Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$
{ }_{2} F_{1}\left(\frac{1}{m}, 1-\frac{1}{m} ; 1 ; x\right), \quad m \in\{2,3,4,6\}
$$

($m=2$: classical; $m=3,4,6$: alternative bases)

LEM
Bostan, s.
Yurkevich '23

Let $A_{m}(n)=\frac{\left(\frac{1}{m}\right)_{n}\left(1-\frac{1}{m}\right)_{n}}{n!^{2}}$ where $m \geqslant 2$ is an integer.
(1) $A_{m}(n)$ is a diagonal for all $m \geqslant 2$.
(2) $A_{m}(n)$ is a constant term if and only if $m \in\{2,3,4,6\}$.

EG

$$
3^{3 n} A_{3}(n)=\frac{(3 n)!}{n!^{3}}=\binom{2 n}{n}\binom{3 n}{n}=\operatorname{ct}\left[\left(\frac{(1+x)^{2}(1+y)^{3}}{x y}\right)^{n}\right]
$$

${ }_{m=5}^{\text {EG }} 5^{3 n} A_{5}(n)=1,20,1350,115500,10972500, \ldots$ is an integer sequence and diagonal but not a constant term.

A simple example

$\underset{\substack{\text { constant } \\ \text { term }}}{\text { EG }}\binom{2 n}{n}=\left[x^{n}\right](1+x)^{2 n}$

A simple example

$\underset{\substack{\text { constant } \\ \text { term }}}{\text { EG }}\binom{2 n}{n}=\left[x^{n}\right](1+x)^{2 n}=\operatorname{ct}\left[\boldsymbol{P}^{n}\right], \quad \boldsymbol{P}(x)=\frac{(1+x)^{2}}{x}$.

A simple example

$\underset{\substack{\text { constant } \\ \text { term }}}{\mathrm{EG}}\binom{2 n}{n}=\left[x^{n}\right](1+x)^{2 n}=\operatorname{ct}\left[\boldsymbol{P}^{n}\right], \quad \boldsymbol{P}(x)=\frac{(1+x)^{2}}{x}$.
$\underset{\text { diagonal }}{\mathrm{EG}}\binom{2 n}{n}$ is the diagonal of $\frac{1}{1-x-y}$
$\begin{array}{ccr}\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}} & a(n, \ldots, n) \\ & \text { multivariate series } & \text { diagonal }\end{array}$

A simple example

$$
\begin{aligned}
& \underset{\substack{\text { corm } \\
\text { constant }}}{\mathrm{EG}}\binom{2 n}{n}=\left[x^{n}\right](1+x)^{2 n}=\operatorname{ct}\left[\boldsymbol{P}^{n}\right], \quad \boldsymbol{P}(x)=\frac{(1+x)^{2}}{x} . \\
& \underset{\text { diagonal }}{\text { EG }}\binom{2 n}{n} \text { is the diagonal of } \frac{1}{1-x-y}=\sum_{k=0}^{\infty}(x+y)^{k} \\
& =\sum_{n, m \geqslant 0}\binom{m+n}{m} x^{m} y^{n} . \\
& \begin{array}{ccc}
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}} & a(n, \ldots, n) \\
& \text { multivariate series } & \text { diagonal }
\end{array}
\end{aligned}
$$

A simple example

$\underset{\substack{\text { constant } \\ \text { term }}}{\text { EG }}\binom{2 n}{n}=\left[x^{n}\right](1+x)^{2 n}=\operatorname{ct}\left[\boldsymbol{P}^{n}\right], \quad \boldsymbol{P}(x)=\frac{(1+x)^{2}}{x}$.
$\underset{\text { diagonal }}{\text { EG }}\binom{2 n}{n}$ is the diagonal of $\frac{1}{1-x-y}=\sum_{k=0}^{\infty}(x+y)^{k}$

$$
=\sum_{n, m \geqslant 0}\binom{m+n}{m} x^{m} y^{n} .
$$

$$
\begin{array}{ccc}
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}} & a(n, \ldots, n) \\
& \text { multivariate series } & \text { diagonal }
\end{array}
$$

THM Diagonals of rational functions

Zeilberger, Lipshitz 1981-88

HW Constant terms are always diagonals. are P-recursive.

Homework

- Such classifications are generally not straightforward!

EG Is the following hypergeometric sequence a constant term? open!

$$
\begin{aligned}
& \qquad A(n)=\frac{(8 n)!n!}{(4 n)!(3 n)!(2 n)!}=\binom{8 n}{4 n}\binom{4 n}{n}\binom{2 n}{n}^{-1} \\
& A(n)=1,140,60060,29745716,15628090140, \ldots=\mathrm{ct}\left[\left(\frac{(1+x)^{8}}{(1-x)^{2} x^{3}}\right)^{n}\right] \\
& \text { (This is algebraic and therefore a diagonal.) } \quad \begin{array}{l}
\text { not a Laurent polynomial so doesn't } \\
\text { count as constant term today }
\end{array}
\end{aligned}
$$

Homework

- Such classifications are generally not straightforward!

EG Is the following hypergeometric sequence a constant term? open!

$$
A(n)=\frac{(8 n)!n!}{(4 n)!(3 n)!(2 n)!}=\binom{8 n}{4 n}\binom{4 n}{n}\binom{2 n}{n}^{-1}
$$

$$
A(n)=1,140,60060,29745716,15628090140, \ldots=\operatorname{ct}\left[\left(\frac{(1+x)^{8}}{(1-x)^{2} x^{3}}\right)^{n}\right]
$$

(This is algebraic and therefore a diagonal.)
not a Laurent polynomial so doesn't count as constant term today

EG Is the following hypergeometric sequence a diagonal?
open!

$$
A(n)=\frac{\left(\frac{1}{9}\right)_{n}\left(\frac{4}{9}\right)_{n}\left(\frac{5}{9}\right)_{n}}{n!^{2}\left(\frac{1}{3}\right)_{n}}
$$

$3^{6 n} A(n)=1,60,20475,9373650,4881796920, \ldots$

Motivation: Integrality of P-recursive sequences

- A sequence is P-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

EG The Apéry numbers $A(n)$ satisfy $A(0)=1, A(1)=5$ and

$$
(n+1)^{3} A(n+1)=(2 n+1)\left(17 n^{2}+17 n+5\right) A(n)-n^{3} A(n-1) .
$$

$\zeta(3)$ is irrational!

OPEN Criterion/algorithm for classifying integrality of P-recursive sequences?

Motivation: Integrality of P-recursive sequences

- A sequence is P-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

EG The Apéry numbers $A(n)$ satisfy $A(0)=1, A(1)=5$ and

$$
(n+1)^{3} A(n+1)=(2 n+1)\left(17 n^{2}+17 n+5\right) A(n)-n^{3} A(n-1) .
$$

$\zeta(3)$ is irrational!

OPEN Criterion/algorithm for classifying integrality of P-recursive sequences?

CONJ Every P-recursive integer sequence of at most exponential
Christol
'90 growth is the diagonal of a rational function.

$\underset{\mathrm{S} 2014}{\text { EG }}$ The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-x y z w}$.

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x) \quad=\quad C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x) \quad=\quad C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Lairez, Salvy '17 $=$ (multiple) binomial sums

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Lairez, Salvy '17
$=$ (multiple) binomial sums

CONJ Diagonals of rational functions over \mathbb{Q}
Christol
'90 $=$ globally bounded, P-recursive sequences
(i.e. $c d^{n} a_{n} \in \mathbb{Z}$ for $c, d \in \mathbb{Z}$ and at most exponential growth)
(\subseteq known)

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Lairez,
Salvy '17
$=$ (multiple) binomial sums

CONJ Diagonals of rational functions over \mathbb{Q}
Christol
'90 $=$ globally bounded, P-recursive sequences
(i.e. $c d^{n} a_{n} \in \mathbb{Z}$ for $c, d \in \mathbb{Z}$ and at most exponential growth)

- Open: example of a diagonal that requires more than 3 variables

Applications: asymptotics, congruences, geometry, ...

$\underset{\mathrm{S} 2014}{\text { EG }}$ The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-x y z w}$.

- Well-developed theory of multivariate asymptotics
e.g., Pemantle-Wilson
- OGFs of such diagonals are algebraic modulo p^{r}. Furstenberg, Deligne '67, '84 Automatically leads to congruences such as

$$
A(n) \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } n \text { even } \\
5 & (\bmod 8), & \text { if } n \text { odd }
\end{array}\right.
$$

Applications: asymptotics, congruences, geometry, ...

$\underset{\mathrm{s} 2014}{\mathrm{EG}}$ The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-x y z w}$.

- Well-developed theory of multivariate asymptotics
e.g., Pemantle-Wilson
- OGFs of such diagonals are algebraic modulo p^{r}.

Furstenberg, Deligne '67, '84
Automatically leads to congruences such as

$$
A(n) \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } n \text { even } \\
5 & (\bmod 8), & \text { if } n \text { odd }
\end{array}\right.
$$

Chowla-Cowles-Cowles '80
Rowland-Yassawi '13
Rowland-Zeilberger '14

- Univariate generating function:

$$
\sum_{n \geqslant 0} A(n) t^{n}=\frac{17-t-z}{4 \sqrt{2}(1+t+z)^{3 / 2}}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
1,1
\end{array} \right\rvert\,-\frac{1024 t}{(1-t+z)^{4}}\right), \quad z=\sqrt{1-34 t+t^{2}}
$$

Applications: asymptotics, congruences, geometry, ...

EG 52014 The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-x y z w}$.

- Well-developed theory of multivariate asymptotics
e.g., Pemantle-Wilson
- OGFs of such diagonals are algebraic modulo p^{r}. Furstenberg, Deligne '67, '84 Automatically leads to congruences such as

$$
A(n) \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } n \text { even } \\
5 & (\bmod 8), & \text { if } n \text { odd. }
\end{array}\right.
$$

- Univariate generating function:

$$
\sum_{n \geqslant 0} A(n) t^{n}=\frac{17-t-z}{4 \sqrt{2}(1+t+z)^{3 / 2}}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
1,1
\end{array} \right\rvert\,-\frac{1024 t}{(1-t+z)^{4}}\right), \quad z=\sqrt{1-34 t+t^{2}} .
$$

$$
\underset{\substack{\text { constant } \\ \text { term }}}{\text { EG }} A(n)=\operatorname{ct}\left[L^{n}\right] \text { with } L=\frac{(1+y)(1+z)(1+x+z)(1+x+z+y z)}{x y z}
$$

- $F_{A}(t)=\sum_{n \geqslant 0} A(n) t^{n}=c t\left[\frac{1}{1-t L}\right]$ is a period function.

The DE satisfied by $F_{A}(t)$ is the Picard-Fuchs DE for the family $V_{t}: 1-t L=0$.
Generically, V_{t} is birationally equivalent to a K3 surface with Picard number 19.
(Beukers-Peters '84)

Strands of the web of modularity

THM
Beukers
'87

$$
{\underset{\text { modular form }}{\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular function }}}_{q q+13 q^{2}+23 q^{3}+O\left(q^{4}\right)}^{q-12 q^{2}+66 q^{3}+O\left(q^{4}\right)} \quad q=e^{2 \pi i \tau}
$$

Strands of the web of modularity

n_{i} are the p-adic digits of n

Strands of the web of modularity

$$
{\underset{\text { modular form }}{\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular function }}}_{1+5 q+13 q^{2}+23 q^{3}+O\left(q^{4}\right)}^{q-12 q^{2}+66 q^{3}+O\left(q^{4}\right)}
$$

THM
Gessel '82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

$$
n_{i} \text { are the } p \text {-adic digits of } n
$$

THM
Coster '88
$A\left(p^{r} m\right) \equiv A\left(p^{r-1} m\right) \quad\left(\bmod p^{3 r}\right)$

Strands of the web of modularity

THM
Beukers '87

$$
{\underset{\text { modular form }}{\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular function }}}_{1+5 q+13 q^{2}+23 q^{3}+O\left(q^{4}\right)}^{q-12 q^{2}+66 q^{3}+O\left(q^{4}\right)}
$$

THM

Gessel ' 82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n

THM

Coster '88

$$
A\left(p^{r} m\right) \equiv A\left(p^{r-1} m\right) \quad\left(\bmod p^{3 r}\right)
$$

THM
Ahlgren-
Ono '00

$$
\begin{aligned}
A\left(\frac{p-1}{2}\right) & \equiv c(p) \quad\left(\bmod p^{2}\right) \\
f(\tau) & =\sum_{n \geqslant 1} c(n) q^{n}=\eta(2 \tau)^{4} \eta(4 \tau)^{4} \in S_{4}\left(\Gamma_{0}(8)\right)
\end{aligned}
$$

Strands of the web of modularity

THM
Beukers '87

$$
{\underset{\text { modular form }}{\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular function }}}_{1+5 q+13 q^{2}+23 q^{3}+O\left(q^{4}\right)}^{q-12 q^{2}+66 q^{3}+O\left(q^{4}\right)}
$$

THM
Gessel ' 82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n

$$
A\left(p^{r} m\right) \equiv A\left(p^{r-1} m\right) \quad\left(\bmod p^{3 r}\right)
$$

THM
Ahlgren-
Ono '00

$$
\begin{aligned}
A\left(\frac{p-1}{2}\right) & \equiv c(p) \quad\left(\bmod p^{2}\right) \\
f(\tau) & =\sum_{n \geqslant 1} c(n) q^{n}=\eta(2 \tau)^{4} \eta(4 \tau)^{4} \in S_{4}\left(\Gamma_{0}(8)\right)
\end{aligned}
$$

THM
Zagier '16

$$
A\left(-\frac{1}{2}\right)=\frac{16}{\pi^{2}} L(f, 2)
$$

- These extend to all known sporadic (Apéry-like) numbers!!!???

An application of constant term representations

$$
\text { Lucas congruences: } A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n
THM All of the $6+6+3$ known sporadic sequences satisfy Lucas congruences modulo every prime.

An application of constant term representations

$$
\text { Lucas congruences: } A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n
THM All of the $6+6+3$ known sporadic sequences satisfy Lucas congruences modulo every prime.

THM Suppose the origin is the only interior integral point of the Newton polytope of $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$.
Then $A(n)=\operatorname{ct}\left[P(x)^{n}\right]$ satisfies Lucas congruences.

An application of constant term representations

Lucas congruences: $A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)$
n_{i} are the p-adic digits of n
THM All of the $6+6+3$ known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)

THM Suppose the origin is the only interior integral point of the Newton polytope of $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$.
Then $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$ satisfies Lucas congruences.

THM Each sporadic sequence, except possibly (η), can be expressed
Gorodetsky
'21 as $\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$ so that the result of Samol-van Straten applies.
$\underset{\substack{\text { Gorodetsky } \\ \text { '21 }}}{\mathrm{EG}}(\eta): \frac{(z x+x y-y z-x-1)(x y+y z-z x-y-1)(y z+z x-x y-z-1)}{x y z}$
$(1,0,0),(1,1,0)$ and their permutations are interior points.
Q Algorithmic tools to find useful constant term expressions?
Once found, algorithmically provable using creative telescoping.

A question of Zagier

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.

EG

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\mathrm{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

EG

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

A question of Zagier

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.

EG
$Q=1$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

EG

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

$\underset{\text { Zagier } 16}{\mathbf{Q}}$ Which integer sequences are constant terms?
And in which case can we choose $Q=1$?

A question of Zagier

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.

EG
$=1$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

EG
Catalan

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

${ }_{\text {2ager }} \mathrm{Q}_{16}$
Which integer sequences are constant terms?
And in which case can we choose $Q=1$?

- Constant terms are necessarily diagonals.

$$
\frac{Q(\boldsymbol{x})}{1-t x_{1} \cdots x_{d} P(\boldsymbol{x})}
$$

Q Which diagonals are constant terms?
Which are linear combinations of constant terms?

A question of Zagier

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.

EG
$Q=1$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\mathrm{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

EG
Catalan

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

$\underset{\text { Zagier '16 }}{\mathbf{Q}}$
Which integer sequences are constant terms?
And in which case can we choose $Q=1$?

- Constant terms are necessarily diagonals.

$$
\frac{Q(\boldsymbol{x})}{1-t x_{1} \cdots x_{d} P(\boldsymbol{x})}
$$

Q Which diagonals are constant terms?
Which are linear combinations of constant terms?

- We will answer this in the case of a single variable.
(C-finite sequences!)
- For instance: Are Fibonacci numbers constant terms?

$$
\frac{x}{1-x-x^{2}}
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p)
$$

proof

$$
A(p)=\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right]
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p)
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) }
\end{aligned}
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p)
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) } \\
\text { (if } p>\operatorname{deg} Q) \quad & =\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right)\right]=\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}[P(\boldsymbol{x})]
\end{aligned}
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p)
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) } \\
\text { (if } p>\operatorname{deg} Q) \quad & =\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right)\right]=\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}[P(\boldsymbol{x})]
\end{aligned}
$$

EG
The Fibonacci numbers are $F(n)=\frac{\varphi_{+}^{n}-\varphi_{-}^{n}}{\sqrt{5}}$ with $\varphi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}$.

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p, Bostan, S, Yurkevich '23

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}}(\bmod p) .
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) } \\
\text { (if } p>\operatorname{deg} Q \text {) } & =\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right)\right]=\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}[P(\boldsymbol{x})]
\end{aligned}
$$

EG
The Fibonacci numbers are $F(n)=\frac{\varphi_{+}^{n}-\varphi_{-}^{n}}{\sqrt{5}}$ with $\varphi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}$. It follows that

$$
F(p) \equiv\left\{\begin{array}{ll}
1, & \text { if } p \equiv 1,4 \bmod 5, \\
-1, & \text { if } p \equiv 2,3 \bmod 5,
\end{array} \quad(\bmod p) .\right.
$$

Hence, the Fibonacci numbers cannot be constant terms.

C-finite sequences that are constant terms

- It is not hard to see that $A(n)=\operatorname{poly}(n) \lambda^{n}$ is a constant term. And so are sequences of finite support.

EG

- $2^{n}=\operatorname{ct}\left[(x+2)^{n}\right]=\operatorname{ct}\left[2^{n}\right]$
- $n^{2} 2^{n}=\operatorname{ct}\left[(x+2)^{n}\left(\frac{8}{x^{2}}+\frac{2}{x}\right)\right]$

C-finite sequences that are constant terms

- It is not hard to see that $A(n)=\operatorname{poly}(n) \lambda^{n}$ is a constant term. And so are sequences of finite support.

```
EG
```

- $2^{n}=\operatorname{ct}\left[(x+2)^{n}\right]=\operatorname{ct}\left[2^{n}\right]$
- $n^{2} 2^{n}=\operatorname{ct}\left[(x+2)^{n}\left(\frac{8}{x^{2}}+\frac{2}{x}\right)\right]$

THM There are no further C-finite sequences that are constant terms. Or linear combinations of constant terms.

- More precisely: A C-finite sequence $A(n)$ is a \mathbb{Q}-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the $A(n)$ are integers, then the characteristic roots are integers. (Carlo Sanna

C-finite sequences that are constant terms

- It is not hard to see that $A(n)=\operatorname{poly}(n) \lambda^{n}$ is a constant term. And so are sequences of finite support.

```
EG
```

- $2^{n}=\operatorname{ct}\left[(x+2)^{n}\right]=\operatorname{ct}\left[2^{n}\right]$
- $n^{2} 2^{n}=\mathrm{ct}\left[(x+2)^{n}\left(\frac{8}{x^{2}}+\frac{2}{x}\right)\right]$

THM There are no further C-finite sequences that are constant terms. Or linear combinations of constant terms.

- More precisely: A C-finite sequence $A(n)$ is a \mathbb{Q}-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the $A(n)$ are integers, then the characteristic roots are integers. (Carlo Sanna

EG Fibonacci and Lucas numbers are not (sums of) constant terms.

C-finite sequences that are constant terms

- It is not hard to see that $A(n)=\operatorname{poly}(n) \lambda^{n}$ is a constant term. And so are sequences of finite support.

EG

- $2^{n}=\operatorname{ct}\left[(x+2)^{n}\right]=\operatorname{ct}\left[2^{n}\right]$
- $n^{2} 2^{n}=\mathrm{ct}\left[(x+2)^{n}\left(\frac{8}{x^{2}}+\frac{2}{x}\right)\right]$

THM There are no further C-finite sequences that are constant terms. Or linear combinations of constant terms.

- More precisely: A C-finite sequence $A(n)$ is a \mathbb{Q}-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the $A(n)$ are integers, then the characteristic roots are integers. (Carlo Sanna

EG Fibonacci and Lucas numbers are not (sums of) constant terms.
EG $\quad 2^{n}+1$ is not a constant term but is a sum of two.

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function.

These are the P-recursive sequences of order 1 .

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function.

These are the P-recursive sequences of order 1 .
CONJ Every P-recursive integer sequence with at most exponential

Christol
'90 growth is the diagonal of a rational function.

- Open even for hypergeometric sequences!

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the P-recursive sequences of order 1 .

CONJ Every P-recursive integer sequence with at most exponential growth is the diagonal of a rational function.

- Open even for hypergeometric sequences!

EG Is the following hypergeometric sequence a diagonal?

open!

$$
A(n)=\frac{\left(\frac{1}{9}\right)_{n}\left(\frac{4}{9}\right)_{n}\left(\frac{5}{9}\right)_{n}}{n!^{2}\left(\frac{1}{3}\right)_{n}}
$$

$$
3^{6 n} A(n)=1,60,20475,9373650,4881796920, \ldots
$$

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the P-recursive sequences of order 1 .

CONJ Every P-recursive integer sequence with at most exponential growth is the diagonal of a rational function.

- Open even for hypergeometric sequences!

EG Is the following hypergeometric sequence a diagonal?

open!

$$
A(n)=\frac{\left(\frac{1}{9}\right)_{n}\left(\frac{4}{9}\right)_{n}\left(\frac{5}{9}\right)_{n}}{n!^{2}\left(\frac{1}{3}\right)_{n}}
$$

$3^{6 n} A(n)=1,60,20475,9373650,4881796920, \ldots$
LEM This hypergeometric sequence is not a constant term (or a linear

Bostan, S,
Yurkevich '23 combination of constant terms).

Proof idea: $A(p)$ takes different values modulo p depending on whether $p \equiv \pm 1(\bmod 9)$.

Constant terms are special

- For hypergeometric sequences:
$\underset{\text { (or linear combinations) }}{\text { constant terms }}\} \subsetneq\{$ diagonals $\} \subseteq\{P$-recursive, globally bounded seq's $\}$
- The second inclusion is strict iff Christol's conjecture is false.

Constant terms are special

- For hypergeometric sequences:
$\underset{\text { (or linear combinations) }}{\text { constant term }\}} \subsetneq\{$ diagonals $\} \subseteq\{P$-recursive, globally bounded seq's $\}$
- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.

$$
\begin{aligned}
& \substack{\text { LEMM } \\
\text { Bostan, s. s. } \\
\text { lurkerch }} \\
& \text { Let } A_{m}(n)=\frac{\left(\frac{1}{m}\right)_{n}\left(1-\frac{1}{m}\right)_{n}}{n!^{2}} \text { where } m \geqslant 2 \text { is an integer. } \\
& \text { (1) } A_{m}(n) \text { is a diagonal for all } m \geqslant 2 .
\end{aligned}
$$

Constant terms are special

- For hypergeometric sequences:
$\underset{\text { (or linear combinations) }}{\text { constant term }\}} \subsetneq\{$ diagonals $\} \subseteq\{P$-recursive, globally bounded seq's $\}$
- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.
$\underset{\substack{\text { Som } \\ \text { Sustanev.s. } \\ \text { rech }}}{\mathrm{LE}}$ Let $A_{m}(n)=\frac{\left(\frac{1}{m}\right)_{n}\left(1-\frac{1}{m}\right)_{n}}{n!^{2}}$ where $m \geqslant 2$ is an integer.
(1) $A_{m}(n)$ is a diagonal for all $m \geqslant 2$.
(2) $A_{m}(n)$ is a constant term if and only if $m \in\{2,3,4,6\}$.
- The cases $m \in\{2,3,4,6\}$ correspond to the hypergeometric functions underlying Ramanujan's theory of elliptic functions.
($m=2$: classical case; $m=3,4,6$: alternative bases)

Conclusions \& Outlook

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
- Hypergeometric sequences
- Algebraic sequences (diagonals in two variables)
- Algebraic hypergeometric series
- Integral factorial ratios
(Bober, 2007; via Beukers-Heckman)
EG
Is $A(n)=\frac{(8 n)!n!}{(4 n)!(3 n)!(2 n)!}=\binom{8 n}{4 n}\binom{4 n}{n}\binom{2 n}{n}^{-1}$ a constant term?

$$
1,140,60060,29745716,15628090140, \ldots=\text { ct }\left[\left(\frac{(1+x)^{8}}{(1-x)^{2} x^{3}}\right)^{n}\right]
$$

This is algebraic (and therefore a diagonal) and hypergeometric.

Conclusions \& Outlook

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
- Hypergeometric sequences
- Algebraic sequences (diagonals in two variables)
- Algebraic hypergeometric series
- Integral factorial ratios
(Bober, 2007; via Beukers-Heckman)
EG
Is $A(n)=\frac{(8 n)!n!}{(4 n)!(3 n)!(2 n)!}=\binom{8 n}{4 n}\binom{4 n}{n}\binom{2 n}{n}^{-1}$ a constant term?

$$
1,140,60060,29745716,15628090140, \ldots=\text { ct }\left[\left(\frac{(1+x)^{8}}{(1-x)^{2} x^{3}}\right)^{n}\right]
$$

This is algebraic (and therefore a diagonal) and hypergeometric.

- How to find representations as (nice) constant terms or diagonals?

Once found, such representations can be proved using creative telescoping.

- How unique are the Laurent polynomials in a constant term?

Connections to cluster algebras, mutations of Laurent polynomials, ...

Happy birthday, Bruce and George!

BCB +1 day (March 2014)

Thank you for being so great to so many for so long!

