An invitation to constant term sequences

The Legacy of Ramanujan 2024

Celebrating the 85.37...th birthdays of George Andrews & Bruce Berndt

Penn State University — June 6-9, 2024

Armin Straub

June 8, 2024

University of South Alabama

Slides available at: http://arminstraub.com/talks

An invitation to constant term sequences

based on joint work with:

Alin Bostan (Université Paris-Saclay)

Sergey Yurkevich (University of Vienna)

• Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m}, 1-\frac{1}{m}; 1; x\right), \qquad m \in \{2, 3, 4, 6\}.$$

(m = 2: classical; m = 3, 4, 6: alternative bases)

LEM
Bostan, S.
Yurkevich
23 Let
$$A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2}$$
 where $m \ge 2$ is an integer.

• Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m}, 1-\frac{1}{m}; 1; x\right), \qquad m \in \{2, 3, 4, 6\}.$$

(m = 2: classical; m = 3, 4, 6: alternative bases)

LEM
Bostan, S,
Yurkevich
'23 Let
$$A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2}$$
 where $m \ge 2$ is an integer.
1 $A_m(n)$ is a **diagonal** for all $m \ge 2$.

• Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m}, 1-\frac{1}{m}; 1; x\right), \qquad m \in \{2, 3, 4, 6\}.$$

(m = 2: classical; m = 3, 4, 6: alternative bases)

LEM
Bostan, S,
Yurkevich
'23

Let
$$A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2}$$
 where $m \ge 2$ is an integer.
1 $A_m(n)$ is a **diagonal** for all $m \ge 2$.
2 $A_m(n)$ is a **constant term** if and only if $m \in \{2, 3, 4, 6\}$.

• Berndt, Bhargava & Garvan (1995) develop Ramanujan's theories of elliptic functions based on the hypergeometric functions

$$_{2}F_{1}\left(\frac{1}{m}, 1-\frac{1}{m}; 1; x\right), \qquad m \in \{2, 3, 4, 6\}.$$

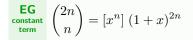
(m = 2: classical; m = 3, 4, 6: alternative bases)

LEM
Bostan, S,
Yurkevich
'23

Let
$$A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2}$$
 where $m \ge 2$ is an integer.
1 $A_m(n)$ is a **diagonal** for all $m \ge 2$.
2 $A_m(n)$ is a **constant term** if and only if $m \in \{2, 3, 4, 6\}$.

$$\overset{\text{EG}}{=} 3^{3n} A_3(n) = \frac{(3n)!}{n!^3} = \binom{2n}{n} \binom{3n}{n} = \operatorname{ct} \left[\left(\frac{(1+x)^2 (1+y)^3}{xy} \right)^n \right]$$

EG $_{m=5}^{m=5}$ $5^{3n}A_5(n) = 1, 20, 1350, 115500, 10972500, ...$ is an integer sequence and diagonal but not a constant term.



$$\begin{array}{l} \mathop{\rm EG}_{\text{constant}}\\ \mathop{\rm term}\\ n \end{array} = [x^n] \ (1+x)^{2n} = {\rm ct} \left[{\boldsymbol P}^n \right], \qquad {\boldsymbol P}(x) = \frac{(1+x)^2}{x}. \end{array}$$

$$\begin{array}{l} \mathbf{EG}\\ \mathbf{constant}\\ \mathbf{term} \end{array} \begin{pmatrix} 2n\\ n \end{pmatrix} = [x^n] \ (1+x)^{2n} = \mathrm{ct} \left[\mathbf{P}^n \right], \qquad \mathbf{P}(x) = \frac{(1+x)^2}{x}. \end{array}$$

$$\begin{array}{l} \mathbf{EG}\\ \mathbf{diagonal}\\ n \end{pmatrix} \text{ is the diagonal of } \frac{1}{1-x-y} \end{array}$$

$$\sum_{\substack{n_1,\dots,n_d \ge 0}} \frac{a(n_1,\dots,n_d)}{\text{multivariate series}} x_1^{n_1} \cdots x_d^{n_d}$$

 $a(n,\ldots,n)$ diagonal

$$\sum_{\substack{n_1,\dots,n_d \ge 0}} \frac{a(n_1,\dots,n_d)}{\text{multivariate series}} \frac{x_1^{n_1}\cdots x_d^{n_d}}{\text{diagonal}}$$

$$\begin{array}{l} \label{eq:generalized_constant terms} \end{tabular} \left(\begin{array}{c} 2n\\ n \end{array} \right) = [x^n] \ (1+x)^{2n} = \operatorname{ct} \left[\end{tabular}^n \right], \qquad \end{tabular} \left(\begin{array}{c} 2n\\ n \end{array} \right) \text{ is the diagonal of } \frac{1}{1-x-y} = \sum_{k=0}^{\infty} (x+y)^k \\ = \sum_{n,m \geqslant 0} \binom{m+n}{m} x^m y^n. \end{array} \right.$$

Homework

• Such classifications are generally not straightforward!

EG Is the following hypergeometric sequence a constant term?

$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = \binom{8n}{4n} \binom{4n}{n} \binom{2n}{n}^{-1}$$

 $A(n) = 1, 140, 60060, 29745716, 15628090140, \ldots = \, {\rm ct}$

(This is algebraic and therefore a diagonal.)

$$\left(\frac{(1+x)^8}{(1-x)^2x^3}\right)^n$$

not a Laurent polynomial so doesn't count as **constant term** today

Homework

• Such classifications are generally not straightforward!

EG Is the following hypergeometric sequence a constant term?

$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = \binom{8n}{4n} \binom{4n}{n} \binom{2n}{n}^{-1}$$

 $A(n) = 1,140,60060,29745716,15628090140,\ldots = \operatorname{ct} \left| \left(\frac{(1+x)^8}{(1-x)^2 x^3} \right)^n \right|$

(This is algebraic and therefore a diagonal.)

not a Laurent polynomial so doesn't count as **constant term** today

EG Is the following hypergeometric sequence a diagonal?

$$A(n) = \frac{\left(\frac{1}{9}\right)_n \left(\frac{4}{9}\right)_n \left(\frac{5}{9}\right)_n}{n!^2 \left(\frac{1}{3}\right)_n}$$

 $3^{6n}A(n) = 1,60,20475,9373650,4881796920,\ldots$

Motivation: Integrality of *P*-recursive sequences

• A sequence is *P*-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

EG The **Apéry numbers**
$$A(n)$$
 satisfy $A(0) = 1$, $A(1) = 5$ and

$$(n + 1)^{3}A(n + 1) = (2n + 1)(17n^{2} + 17n + 5)A(n) - n^{3}A(n - 1)$$

 $(n+1)^{\mathfrak{s}}$ $\zeta(3)$ is irrational!

OPEN Criterion/algorithm for classifying integrality of *P*-recursive sequences?

Motivation: Integrality of *P*-recursive sequences

• A sequence is *P*-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

EG The **Apéry numbers** A(n) satisfy A(0) = 1, A(1) = 5 and

$$(n+1)^{3}A(n+1) = (2n+1)(17n^{2}+17n+5)A(n) - n^{3}A(n-1).$$

 $\zeta(3)$ is irrational!

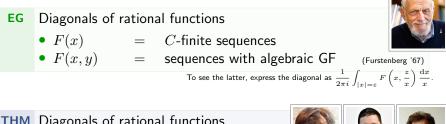
OPEN Criterion/algorithm for classifying integrality of *P*-recursive sequences?

CONJ Every *P*-recursive integer sequence of at most exponential growth is the diagonal of a rational function.

EG s 2014 The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-xyzw}$. EG Diagonals of rational functions

• F(x) = C-finite sequences

EG Diagonals of rational functions • F(x) = C-finite sequences • F(x,y) = sequences with algebraic GF (Furstenberg '67) To see the latter, express the diagonal as $\frac{1}{2\pi i} \int_{|x|=e} F\left(x, \frac{z}{x}\right) \frac{dx}{x}$.

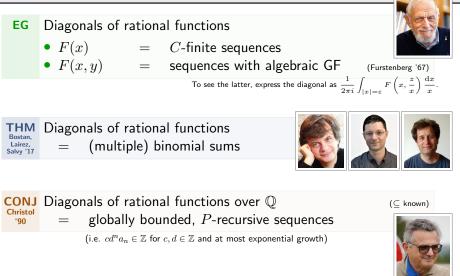


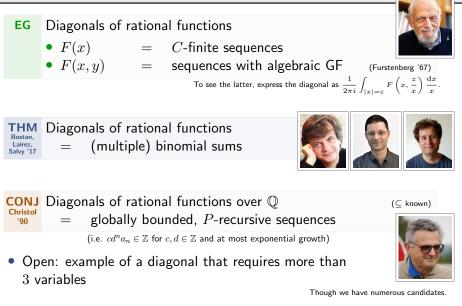
Diagonals of rational functions = (multiple) binomial sums

Bostan.

Lairez.

Salvy '17





Applications: asymptotics, congruences, geometry, ...

EG s 2014 The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-xyzw}$.

- Well-developed theory of multivariate asymptotics
- OGFs of such diagonals are algebraic modulo p^r. Automatically leads to congruences such as

$$A(n) \equiv \begin{cases} 1 \pmod{8}, & \text{if } n \text{ even,} \\ 5 \pmod{8}, & \text{if } n \text{ odd.} \end{cases}$$

e.g., Pemantle–Wilson

Furstenberg, Deligne '67, '84

Chowla–Cowles–Cowles '80 Rowland–Yassawi '13 Rowland–Zeilberger '14

Applications: asymptotics, congruences, geometry, ...

EG s 2014 The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-xyzw}$.

- Well-developed theory of multivariate asymptotics
- OGFs of such diagonals are algebraic modulo p^r. Automatically leads to congruences such as

$$A(n) \equiv \begin{cases} 1 & (\mod 8), & \text{if } n \text{ even,} \\ 5 & (\mod 8), & \text{if } n \text{ odd.} \end{cases}$$

e.g., Pemantle–Wilson

Furstenberg, Deligne '67, '84

Chowla–Cowles–Cowles '80 Rowland–Yassawi '13 Rowland–Zeilberger '14

• Univariate generating function:

$$\sum_{n \ge 0} A(n)t^n = \frac{17 - t - z}{4\sqrt{2}(1 + t + z)^{3/2}} \, {}_3F_2\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1 \end{array} \middle| -\frac{1024t}{(1 - t + z)^4}\right), \quad z = \sqrt{1 - 34t + t^2}$$

Applications: asymptotics, congruences, geometry, ...

EG s 2014 The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-xyzw}$.

- Well-developed theory of multivariate asymptotics
- OGFs of such diagonals are algebraic modulo p^r. Automatically leads to congruences such as

$$A(n) \equiv \begin{cases} 1 & (\mod 8), & \text{if } n \text{ even,} \\ 5 & (\mod 8), & \text{if } n \text{ odd.} \end{cases}$$

e.g., Pemantle–Wilson

Furstenberg, Deligne '67, '84

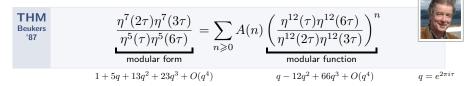
Chowla–Cowles–Cowles '80 Rowland–Yassawi '13 Rowland–Zeilberger '14

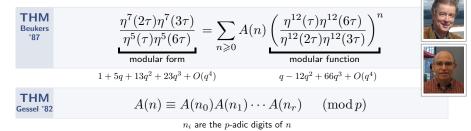
• Univariate generating function:

$$\sum_{n \ge 0} A(n)t^n = \frac{17 - t - z}{4\sqrt{2}(1 + t + z)^{3/2}} {}_{3}F_2\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1} \middle| -\frac{1024t}{(1 - t + z)^4}\right), \quad z = \sqrt{1 - 34t + t^2}$$

EG
constant
term
$$A(n) = \operatorname{ct} [L^n]$$
 with $L = \frac{(1+y)(1+z)(1+x+z)(1+x+z+yz)}{xyz}$

•
$$F_A(t) = \sum_{n \ge 0} A(n)t^n = \operatorname{ct} \left[\frac{1}{1-tL}\right]$$
 is a **period function**.
The DE satisfied by $F_A(t)$ is the **Picard–Fuchs DE** for the family $V_t : 1 - tL = 0$.
Generically, V_t is birationally equivalent to a K3 surface with Picard number 19. (Beukers-Peters '84)





An invitation to constant term sequences

THM Beukers '87	$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n \geqslant 0} A$	${\rm L}(n) \left(rac{\eta^{12}(\tau) \eta^{12}(6\tau)}{\eta^{12}(2\tau) \eta^{12}(3\tau)} ight)^n$ modular function	
	$1 + 5q + 13q^2 + 23q^3 + O(q^4)$	$q - 12q^2 + 66q^3 + O(q^4)$	
THM Gessel '82	$A(n) \equiv A(n_0)A(n_1)$	$\cdots A(n_r) \pmod{p}$	
	n_i are the p -adic	c digits of n	
THM Coster '88	$A(p^rm) \equiv A(p^{r-1})$	$(\operatorname{mod} p^{3r})$	

THM Beukers '87	$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n \geqslant 0} A$ modular form	$(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^{n}_{\text{modular function}}$	
	$1 + 5q + 13q^2 + 23q^3 + O(q^4)$	$q - 12q^2 + 66q^3 + O(q^4)$	
THM Gessel '82	$A(n) \equiv A(n_0)A(n_1)$		
	n_i are the p -adic	digits of n	1
THM Coster '88	$A(p^rm) \equiv A(p^{r-1})$	$^{1}m) \pmod{p^{3r}}$	
THM Ahlgren- Ono '00	$A\left(\frac{p-1}{2}\right) \equiv c($	$p) \pmod{p^2}$	
	$f(\tau) = \sum_{n \geqslant 1}$	$c(n)q^n = \eta(2\tau)^4 \eta(4\tau)^4 \in S_4(\Gamma_0(8))$	6

THM Beukers '87	$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n \geqslant 0} A(1)$	$n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n$ modular function	
	$1 + 5q + 13q^2 + 23q^3 + O(q^4)$	$q - 12q^2 + 66q^3 + O(q^4)$	
THM Gessel '82	$A(n) \equiv A(n_0)A(n_1) \cdot n_i$ are the <i>p</i> -adic of		
THM Coster '88	$A(p^r m) \equiv A(p^{r-1})$	m) (mod p^{3r})	
THM Ahlgren- Ono '00	$A\Big(rac{p-1}{2}\Big)\equiv c(p)$	p) (mod p^2)	
	$f(\tau) = \sum_{n \geqslant 1} e^{-\frac{1}{2}}$	$c(n)q^n = \eta(2\tau)^4 \eta(4\tau)^4 \in S_4(\Gamma_0(8))$	
THM Zagier '16	$A\left(-rac{1}{2} ight) =$	$\frac{16}{\pi^2}L(f,2)$	
• These exte	end to all known sporadic (A	péry-like) numbers!!!??	

? = partially known

An application of constant term representations

Lucas congruences: $A(n) \equiv A(n_0)A(n_1)\cdots A(n_r)$ $(\mod p)$

 n_i are the *p*-adic digits of n

THM All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)

An application of constant term representations

 $(\mod p)$ Lucas congruences: $A(n) \equiv A(n_0)A(n_1)\cdots A(n_r)$

 n_i are the *p*-adic digits of n

THM All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)

Suppose the origin is the only interior integral point THM Samol, van Samol, van Straten '09 of the Newton polytope of $P \in \mathbb{Z}[x^{\pm 1}]$.

Then $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$ satisfies Lucas congruences.

An application of constant term representations

Lucas congruences: $A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$

THM All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas congruences modulo every prime. (Proof long and technical for 2 sequences)

THM Suppose the origin is the only interior integral point of the Newton polytope of $P \in \mathbb{Z}[x^{\pm 1}]$.

Then $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n]$ satisfies Lucas congruences.

THM Each sporadic sequence, except possibly (η) , can be expressed as $\operatorname{ct}[P(\boldsymbol{x})^n]$ so that the result of Samol-van Straten applies.

$$\mathop{\mathrm{EG}}_{\operatorname{Gorodetsky}}_{21}(\eta): \ \frac{(zx+xy-yz-x-1)(xy+yz-zx-y-1)(yz+zx-xy-z-1)}{xyz}$$

(1,0,0), (1,1,0) and their permutations are interior points.

Q Algorithmic tools to find useful constant term expressions?

Once found, algorithmically provable using creative telescoping.

An invitation to constant term sequences

• c(n) is a constant term if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ for Laurent polynomials $P, Q \in \mathbb{Q}[\boldsymbol{x}^{\pm 1}]$ in $\boldsymbol{x} = (x_1, \dots, x_d)$.

$$\sum_{Q=1}^{n} \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2} = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz} \right)^{n} \right]$$

EG
Catalan
$$\frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

• c(n) is a constant term if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ for Laurent polynomials $P, Q \in \mathbb{Q}[\boldsymbol{x}^{\pm 1}]$ in $\boldsymbol{x} = (x_1, \dots, x_d)$.

$$\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz}\right)^{n}\right]$$

EG
Catalan
$$\frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

Q Zagier 16 Which integer sequences are constant terms? And in which case can we choose Q = 1?

• c(n) is a **constant term** if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ for Laurent polynomials $P, Q \in \mathbb{Q}[\boldsymbol{x}^{\pm 1}]$ in $\boldsymbol{x} = (x_1, \dots, x_d)$.

Rowland-Zeilberger '14

$$\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz}\right)^{n}\right]$$

G
alan
$$\frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

Q Zagier '16 Which integer sequences are constant terms? And in which case can we choose Q = 1?

• Constant terms are necessarily diagonals.

 $\frac{Q(\boldsymbol{x})}{1 - tx_1 \cdots x_d P(\boldsymbol{x})}$

Q Which diagonals are constant terms? Which are linear combinations of constant terms?

E Cata

• c(n) is a constant term if $c(n) = \operatorname{ct}[P^n(\boldsymbol{x})Q(\boldsymbol{x})]$ for Laurent polynomials $P, Q \in \mathbb{Q}[\boldsymbol{x}^{\pm 1}]$ in $\boldsymbol{x} = (x_1, \dots, x_d)$.

ynomiais
$$P, Q \in \mathbb{Q}[x^-]$$
 in $x = (x_1, \dots, x_d)$.

$$\int_{-\infty}^{\infty} (n+k)^2 = \operatorname{at}\left[\left((x+y)(z+1)(x+y+z)(y+x+1)\right)^n\right]$$

EC Cata

$$\binom{n}{k}\binom{n+k}{k} = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+y)}{xyz}\right)\right]$$

$$\frac{1}{n+1}\binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1} = \operatorname{ct}\left[\left(\frac{(x+1)^2}{x}\right)^n (1-x)\right]$$

Q Zagier '16 Which integer sequences are constant terms? And in which case can we choose Q = 1?

• Constant terms are necessarily diagonals.

 $\frac{Q(\boldsymbol{x})}{1 - tx_1 \cdots x_d P(\boldsymbol{x})}$

- Q Which diagonals are constant terms? Which are linear combinations of constant terms?
- We will answer this in the case of a single variable.
- For instance: Are Fibonacci numbers constant terms?

Are Fibonacci numbers constant terms?

• Our key ingredient to answer these questions are congruences:

LEM Bostan, S, Yurkevich '23	If $A(n)$ is a constant term then, for all large enough primes p , $A(p) \equiv \operatornamewithlimits{const}_{\in \mathbb{Q}} \pmod{p}.$
proof	$A(p) = \operatorname{ct}[P(oldsymbol{x})^p Q(oldsymbol{x})]$

Are Fibonacci numbers constant terms?

• Our key ingredient to answer these questions are congruences:

LEM Bostan, S, Yurkevich '23	If $A(n)$ is a constant term then, for all large enough primes p , $A(p) \equiv \operatornamewithlimits{const}_{\in \mathbb{Q}} \pmod{p}.$
proof	$\begin{split} A(p) &= \operatorname{ct}[P(\boldsymbol{x})^p Q(\boldsymbol{x})] \\ &\equiv \operatorname{ct}[P(\boldsymbol{x}^p)Q(\boldsymbol{x})] \qquad \text{(little Fermat)} \end{split}$

Are Fibonacci numbers constant terms?

• Our key ingredient to answer these questions are **congruences**:

LEM
Bostan, Sr
23If A(n) is a constant term then, for all large enough primes p,
 $A(p) \equiv const$ (mod p).proof $A(p) = ct[P(x)^pQ(x)]$
 $\equiv ct[P(x^p)Q(x)]$ (little Fermat)
 $(if <math>p > \deg Q)$ $= ct[Q(x)] ct[P(x^p)] = ct[Q(x)] ct[P(x)]$

Are Fibonacci numbers constant terms?

• Our key ingredient to answer these questions are congruences:

 $\underset{^{23}}{\overset{\text{LEM}}{\overset{\text{Bostan, S,}}{\overset{\text{Vurkevich}}{\overset{23}{\overset{}}{\overset{}}}}} \text{ If } A(n) \text{ is a constant term then, for all large enough primes } p, \\ A(p) \equiv \underset{_{\in \mathbb{Q}}}{\overset{\text{const}}{\overset{}}} \pmod{p}.$

proof

$$\begin{split} A(p) &= \operatorname{ct}[P(\boldsymbol{x})^{p}Q(\boldsymbol{x})] \\ &\equiv \operatorname{ct}[P(\boldsymbol{x}^{p})Q(\boldsymbol{x})] \qquad \text{(little Fermat)} \\ &\text{(if } p > \deg Q) \qquad = \operatorname{ct}[Q(\boldsymbol{x})]\operatorname{ct}[P(\boldsymbol{x}^{p})] = \operatorname{ct}[Q(\boldsymbol{x})]\operatorname{ct}[P(\boldsymbol{x})] \end{split}$$

EG The Fibonacci numbers are $F(n) = \frac{\varphi_+^n - \varphi_-^n}{\sqrt{5}}$ with $\varphi_{\pm} = \frac{1 \pm \sqrt{5}}{2}$.

Are Fibonacci numbers constant terms?

• Our key ingredient to answer these questions are congruences:

 $\underset{^{23}}{\overset{\text{LEM}}{\overset{\text{Bostan, S,}}{\overset{\text{Vurkevich}}{\overset{23}{\overset{}}{\overset{}}}}} \text{ If } A(n) \text{ is a constant term then, for all large enough primes } p, \\ A(p) \equiv \underset{\in \mathbb{O}}{\overset{\text{const}}{\overset{\text{const}}{\overset{}}{\overset{}}}} \pmod{p}.$

proof

$$\begin{split} A(p) &= \operatorname{ct}[P(\boldsymbol{x})^p Q(\boldsymbol{x})] \\ &\equiv \operatorname{ct}[P(\boldsymbol{x}^p)Q(\boldsymbol{x})] \quad \text{(little Fermat)} \end{split}$$

$$(\text{if } p > \deg Q) \quad &= \operatorname{ct}[Q(\boldsymbol{x})]\operatorname{ct}[P(\boldsymbol{x}^p)] = \operatorname{ct}[Q(\boldsymbol{x})]\operatorname{ct}[P(\boldsymbol{x})]$$

EG The Fibonacci numbers are $F(n) = \frac{\varphi_+^n - \varphi_-^n}{\sqrt{5}}$ with $\varphi_{\pm} = \frac{1 \pm \sqrt{5}}{2}$. It follows that

$$F(p) \equiv \begin{cases} 1, & \text{if } p \equiv 1,4 \mod 5, \\ -1, & \text{if } p \equiv 2,3 \mod 5, \end{cases} \pmod{p}.$$

Hence, the Fibonacci numbers cannot be constant terms.

• It is not hard to see that $A(n) = poly(n)\lambda^n$ is a constant term. And so are sequences of finite support.

EG

$$\lambda = 2^{n} = \operatorname{ct} \left[(x+2)^{n} \right] = \operatorname{ct} \left[2^{n} \right]$$

• $n^{2}2^{n} = \operatorname{ct} \left[(x+2)^{n} \left(\frac{8}{x^{2}} + \frac{2}{x} \right) \right]$

• It is not hard to see that $A(n) = poly(n)\lambda^n$ is a constant term. And so are sequences of finite support.

EG

$$\lambda = 2^{n} = \operatorname{ct} \left[(x+2)^{n} \right] = \operatorname{ct} \left[2^{n} \right]$$

• $n^{2}2^{n} = \operatorname{ct} \left[(x+2)^{n} \left(\frac{8}{x^{2}} + \frac{2}{x} \right) \right]$

THM Bostan, S, Yurkevich C-finite sequences that are constant terms. Or linear combinations of constant terms.

- More precisely: A C-finite sequence A(n) is a \mathbb{Q} -linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the A(n) are integers, then the characteristic roots are integers. (Carlo Sanna '23)

• It is not hard to see that $A(n) = poly(n)\lambda^n$ is a constant term. And so are sequences of finite support.

EG

$$\lambda = 2^{n} = \operatorname{ct} \left[(x+2)^{n} \right] = \operatorname{ct} \left[2^{n} \right]$$

• $n^{2}2^{n} = \operatorname{ct} \left[(x+2)^{n} \left(\frac{8}{x^{2}} + \frac{2}{x} \right) \right]$

THM C-finite sequences that are constant terms. ^{Bostan, S,} ^{Yurkevich} Or linear combinations of constant terms.

- More precisely: A C-finite sequence A(n) is a Q-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the A(n) are integers, then the characteristic roots are integers. (Carlo Sanna '23)

EG Fibonacci and Lucas numbers are not (sums of) constant terms.

• It is not hard to see that $A(n) = poly(n)\lambda^n$ is a constant term. And so are sequences of finite support.

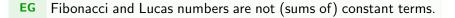
EG

$$\lambda = 2^{n} = \operatorname{ct} [(x+2)^{n}] = \operatorname{ct} [2^{n}]$$

• $n^{2}2^{n} = \operatorname{ct} \left[(x+2)^{n} \left(\frac{8}{x^{2}} + \frac{2}{x} \right) \right]$

THM C-finite sequences that are constant terms. ^{Bostan, S,} ^{Yurkevich} Or linear combinations of constant terms.

- More precisely: A C-finite sequence A(n) is a Q-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the A(n) are integers, then the characteristic roots are integers. (Carlo Sanna '23)



EG $2^n + 1$ is not a constant term but is a sum of two.

• A sequence c(n) is **hypergeometric** if $\frac{c(n+1)}{c(n)}$ is a rational function.

These are the $\ensuremath{P}\xspace$ recursive sequences of order 1.

An invitation to constant term sequences	Armin Straub
	13/16

• A sequence c(n) is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the *P*-recursive sequences of order 1.

CONJ ^{Christol} ¹⁹⁰ Every *P*-recursive integer sequence with at most exponential growth is the diagonal of a rational function.

• Open even for hypergeometric sequences!

• A sequence c(n) is **hypergeometric** if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the *P*-recursive sequences of order 1.

CONJ ^{Christol} ⁹⁰ growth is the diagonal of a rational function.

• Open even for hypergeometric sequences!

EG Is the following hypergeometric sequence a diagonal?

$$A(n) = \frac{\left(\frac{1}{9}\right)_n \left(\frac{4}{9}\right)_n \left(\frac{5}{9}\right)_n}{n!^2 \left(\frac{1}{3}\right)_n}$$

 $3^{6n}A(n) = 1,60,20475,9373650,4881796920,\ldots$

• A sequence c(n) is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the P-recursive sequences of order 1.

CONJ Every *P*-recursive integer sequence with at most exponential Christol growth is the diagonal of a rational function. '90

Open even for hypergeometric sequences!

EG Is the following hypergeometric sequence a diagonal? open!

$$A(n) = \frac{\left(\frac{1}{9}\right)_n \left(\frac{4}{9}\right)_n \left(\frac{5}{9}\right)_n}{n!^2 \left(\frac{1}{3}\right)_n}$$

 $3^{6n}A(n) = 1,60,20475,9373650,4881796920,\ldots$

This hypergeometric sequence is not a constant term (or a linear LEM Bostan S Yurkevich combination of constant terms).

Proof idea: A(p) takes different values modulo p depending on whether $p \equiv \pm 1 \pmod{9}$.

'23

• For hypergeometric sequences:

(or *C*-finite or *P*-recursive)

 $\{ constant terms \} \subseteq \{ diagonals \} \subseteq \{ P - recursive, globally bounded seq's \}$

• The second inclusion is strict iff Christol's conjecture is false.

An invitation to constant term sequences	Armin Straub
· · · · · · · · · · · · · · · · · · ·	14 / 16

For hypergeometric sequences:

(or *C*-finite or *P*-recursive)

 $\{ \underset{\text{(or linear combinations)}}{\text{(scalar combinations)}} \subseteq \{ \text{diagonals} \} \subseteq \{ P \text{-recursive, globally bounded seq's} \}$

- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.

LEM
Bostan, S.
Yurkevich
23
Let
$$A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2}$$
 where $m \ge 2$ is an integer.
1 $A_m(n)$ is a diagonal for all $m \ge 2$.

For hypergeometric sequences:

(or C-finite or P-recursive)

 $\{ \underset{\text{(or linear combinations)}}{\text{(scalar combinations)}} \subseteq \{ \text{diagonals} \} \subseteq \{ P \text{-recursive, globally bounded seq's} \}$

- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.

LEM
Bostan, S,
Yurkevich
²³ Let
$$A_m(n) = \frac{\left(\frac{1}{m}\right)_n \left(1 - \frac{1}{m}\right)_n}{n!^2}$$
 where $m \ge 2$ is an integer.
1 $A_m(n)$ is a diagonal for all $m \ge 2$.
2 $A_m(n)$ is a constant term if and only if $m \in \{2, 3, 4, 6\}$.

The cases m ∈ {2,3,4,6} correspond to the hypergeometric functions underlying Ramanujan's theory of elliptic functions.
 (m = 2: classical case; m = 3,4,6: alternative bases)

Conclusions & Outlook

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
 - Hypergeometric sequences
 - Algebraic sequences (diagonals in two variables)
 - Algebraic hypergeometric series
 - Integral factorial ratios

(Bober, 2007; via Beukers-Heckman)

EG
Is
$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = {\binom{8n}{4n}} {\binom{4n}{n}} {\binom{2n}{n}}^{-1}$$
 a constant term?
1,140,60060,29745716,15628090140,... = ct $\left[\left(\frac{(1+x)^8}{(1-x)^2 x^3} \right)^n \right]$
This is algebraic (and therefore a diagonal) and hypergeometric.

Conclusions & Outlook

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
 - Hypergeometric sequences
 - Algebraic sequences (diagonals in two variables)
 - Algebraic hypergeometric series
 - Integral factorial ratios

(Bober, 2007; via Beukers-Heckman)

EG
Is
$$A(n) = \frac{(8n)!n!}{(4n)!(3n)!(2n)!} = \binom{8n}{4n} \binom{4n}{n} \binom{2n}{n}^{-1}$$
 a constant term?
1,140,60060,29745716,15628090140,... = ct $\left[\left(\frac{(1+x)^8}{(1-x)^2 x^3} \right)^n \right]$
This is algebraic (and therefore a diagonal) and hypergeometric.

- How to find representations as (nice) constant terms or diagonals?
 Once found, such representations can be proved using creative telescoping.
- How unique are the Laurent polynomials in a constant term? Connections to cluster algebras, mutations of Laurent polynomials, ...

Happy birthday, Bruce and George!

BCB+1 day (March 2014)

Thank you for being so great to so many for so long!

An invitation to constant term sequences