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(Université Paris-Saclay)

Sergey Yurkevich
(University of Vienna)

An invitation to constant term sequences Armin Straub
1 / 16

http://arminstraub.com/talks


Ramanujan’s elliptic functions

• Berndt, Bhargava & Garvan (1995) develop Ramanujan’s theories of elliptic
functions based on the hypergeometric functions

2F1

(
1

m
, 1− 1

m
; 1;x

)
, m ∈ {2, 3, 4, 6}.

(m = 2: classical; m = 3, 4, 6: alternative bases)

Let Am(n) =

(
1
m

)
n

(
1− 1

m

)
n

n!2
where m ⩾ 2 is an integer.

1 Am(n) is a diagonal for all m ⩾ 2.

2 Am(n) is a constant term if and only if m ∈ {2, 3, 4, 6}.

LEM
Bostan, S,
Yurkevich

’23

33nA3(n) =
(3n)!

n!3
=

(
2n

n

)(
3n

n

)
= ct

[(
(1 + x)2(1 + y)3

xy

)n]EG
m = 3

53nA5(n) = 1, 20, 1350, 115500, 10972500, . . . is an integer se-
quence and diagonal but not a constant term.

EG
m = 5
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A simple example(
2n

n

)
= [xn] (1 + x)2n

= ct [P n] , P (x) =
(1 + x)2

x
.

EG
constant
term

(
2n

n

)
is the diagonal of

1

1− x− y

=
∑

n,m⩾0

(
m+ n

m

)
xmyn.

=

∞∑
k=0

(x+ y)k

EG
diagonal

∑
n1,...,nd⩾0

multivariate series

a(n1, . . . , nd) xn1
1 · · ·xnd

d

diagonal

a(n, . . . , n)

Diagonals of rational functions
are P -recursive.

THM
Gessel,

Zeilberger,
Lipshitz
1981–88

Constant terms are always diagonals.HW
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Homework

• Such classifications are generally not straightforward!

Is the following hypergeometric sequence a constant term?

A(n) =
(8n)!n!

(4n)!(3n)!(2n)!
=

(
8n

4n

)(
4n

n

)(
2n

n

)−1

A(n) = 1, 140, 60060, 29745716, 15628090140, . . . =

not a Laurent polynomial so doesn’t
count as constant term today

ct

[ (
(1 + x)8

(1− x)2x3

)n
]

(This is algebraic and therefore a diagonal.)

EG
open!

Is the following hypergeometric sequence a diagonal?

A(n) =

(
1
9

)
n

(
4
9

)
n

(
5
9

)
n

n!2
(
1
3

)
n

36nA(n) = 1, 60, 20475, 9373650, 4881796920, . . .

EG
open!
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Motivation: Integrality of P -recursive sequences

• A sequence is P -recursive / holonomic if it satisfies
a linear recurrence with polynomial coefficients.

The Apéry numbers A(n) satisfy A(0) = 1, A(1) = 5 and

(n+ 1)3A(n+ 1) = (2n+ 1)(17n2 + 17n+ 5)A(n)− n3A(n− 1).

EG

ζ(3) is irrational!

Criterion/algorithm for classifying integrality of P -recursive sequences?OPEN

Every P -recursive integer sequence of at most exponential
growth is the diagonal of a rational function.

CONJ
Christol

’90

The Apéry numbers are the diagonal of
1

(1− x− y)(1− z − w)− xyzw
.EG

S 2014
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Characterizations of diagonals

Diagonals of rational functions

• F (x) = C-finite sequences

• F (x, y) = sequences with algebraic GF (Furstenberg ’67)

EG

To see the latter, express the diagonal as
1

2πi

∫
|x|=ε

F

(
x,

z

x

)
dx

x
.

Diagonals of rational functions
= (multiple) binomial sums

THM
Bostan,
Lairez,

Salvy ’17

Diagonals of rational functions over Q (⊆ known)

= globally bounded
(i.e. cdnan ∈ Z for c, d ∈ Z and at most exponential growth)

, P -recursive sequences

CONJ
Christol

’90

• Open: example of a diagonal that requires more than
3 variables

Though we have numerous candidates.
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Applications: asymptotics, congruences, geometry, . . .

The Apéry numbers are the diagonal of
1

(1− x− y)(1− z − w)− xyzw
.EG

S 2014

• Well-developed theory of multivariate asymptotics e.g., Pemantle–Wilson

• OGFs of such diagonals are algebraic modulo pr. Furstenberg, Deligne ’67, ’84

Automatically leads to congruences such as

A(n) ≡

{
1 (mod 8), if n even,

5 (mod 8), if n odd.

Chowla–Cowles–Cowles ’80
Rowland–Yassawi ’13

Rowland–Zeilberger ’14

• Univariate generating function:∑
n⩾0

A(n)tn =
17− t− z

4
√
2(1 + t+ z)3/2

3F2

(
1
2
, 1
2
, 1
2

1, 1

∣∣∣∣− 1024t

(1− t+ z)4

)
, z =

√
1− 34t+ t2.

A(n) = ct [Ln] with L =
(1 + y)(1 + z)(1 + x+ z)(1 + x+ z + yz)

xyz

EG
constant
term

• FA(t) =
∑
n⩾0

A(n)tn = ct

[
1

1− tL

]
is a period function.

The DE satisfied by FA(t) is the Picard–Fuchs DE for the family Vt : 1− tL = 0.

Generically, Vt is birationally equivalent to a K3 surface with Picard number 19. (Beukers–Peters ’84)
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Strands of the web of modularity

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 +O(q4)

modular form

=
∑
n⩾0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n

q − 12q2 + 66q3 +O(q4)

modular function

q = e2πiτ

THM
Beukers

’87

A(n) ≡
ni are the p-adic digits of n

A(n0)A(n1) · · ·A(nr) (mod p)THM
Gessel ’82

A(prm) ≡ A(pr−1m) (mod p3r)THM
Coster ’88

A
(
p− 1

2

)
≡

f(τ) =
∑
n⩾1

c(n)qn = η(2τ)4η(4τ)4 ∈ S4(Γ0(8))

c(p) (mod p2)THM
Ahlgren–
Ono ’00

A
(
−1

2

)
=

16

π2
L(f, 2)THM

Zagier ’16

• These extend to all known sporadic (Apéry-like) numbers!!!??
! = proven
? = partially known
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! = proven
? = partially known

An invitation to constant term sequences Armin Straub
8 / 16



Strands of the web of modularity

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 +O(q4)

modular form

=
∑
n⩾0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n

q − 12q2 + 66q3 +O(q4)

modular function

q = e2πiτ

THM
Beukers

’87

A(n) ≡
ni are the p-adic digits of n

A(n0)A(n1) · · ·A(nr) (mod p)THM
Gessel ’82

A(prm) ≡ A(pr−1m) (mod p3r)THM
Coster ’88

A
(
p− 1

2

)
≡

f(τ) =
∑
n⩾1

c(n)qn = η(2τ)4η(4τ)4 ∈ S4(Γ0(8))

c(p) (mod p2)THM
Ahlgren–
Ono ’00

A
(
−1

2

)
=

16

π2
L(f, 2)THM

Zagier ’16

• These extend to all known sporadic (Apéry-like) numbers!!!??
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An application of constant term representations

Lucas congruences: A(n) ≡
ni are the p-adic digits of n

A(n0)A(n1) · · ·A(nr) (mod p)

All of the 6 + 6 + 3 known sporadic sequences satisfy Lucas
congruences modulo every prime. (Proof long and technical for 2 sequences)

THM
Malik–S

’16

Suppose the origin is the only interior integral point
of the Newton polytope of P ∈ Z[x±1].

Then A(n) = ct[P (x)n] satisfies Lucas congruences.

THM
Samol, van
Straten ’09

Each sporadic sequence, except possibly (η), can be expressed
as ct[P (x)n] so that the result of Samol–van Straten applies.

THM
Gorodetsky

’21

(η):
(zx+ xy − yz − x− 1)(xy + yz − zx− y − 1)(yz + zx− xy − z − 1)

xyz
EG

Gorodetsky
’21

(1, 0, 0), (1, 1, 0) and their permutations are interior points.

Algorithmic tools to find useful constant term expressions?Q

Once found, algorithmically provable using creative telescoping.
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A question of Zagier

• c(n) is a constant term if c(n) = ct[Pn(x)Q(x)] Rowland–Zeilberger ’14

for Laurent polynomials P,Q ∈ Q[x±1] in x = (x1, . . . , xd).

n∑
k=0

(
n

k

)2(
n+ k

k

)2

= ct

[(
(x+ y)(z + 1)(x+ y + z)(y + x+ 1)

xyz

)n]EG
Q = 1

1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
= ct

[(
(x+ 1)2

x

)n

(1− x)

]
EG

Catalan

Which integer sequences are constant terms?
And in which case can we choose Q = 1?

Q
Zagier ’16

• Constant terms are necessarily diagonals.
Q(x)

1− tx1 · · ·xdP (x)

Which diagonals are constant terms?
Which are linear combinations of constant terms?

Q

• We will answer this in the case of a single variable. (C-finite sequences!)

• For instance: Are Fibonacci numbers constant terms?
x

1− x− x2
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Are Fibonacci numbers constant terms?

• Our key ingredient to answer these questions are congruences:

If A(n) is a constant term then, for all large enough primes p,

A(p) ≡ const
∈ Q

(mod p).

LEM
Bostan, S,
Yurkevich

’23

A(p) = ct[P (x)pQ(x)]

≡ ct[P (xp)Q(x)] (little Fermat)

(if p > degQ) = ct[Q(x)] ct[P (xp)] = ct[Q(x)] ct[P (x)]

proof

The Fibonacci numbers are F (n) =
φn
+ − φn

−√
5

with φ± =
1±

√
5

2
.

It follows that

F (p) ≡

{
1, if p ≡ 1, 4 mod 5,

−1, if p ≡ 2, 3 mod 5,
(mod p).

Hence, the Fibonacci numbers cannot be constant terms.

EG
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C-finite sequences that are constant terms

• It is not hard to see that A(n) = poly(n)λn is a constant term.
And so are sequences of finite support.

• 2n = ct [(x+ 2)n] = ct [2n]

• n22n = ct

[
(x+ 2)n

(
8

x2
+

2

x

)]EG
λ = 2

There are no further C-finite sequences that are constant terms.
Or linear combinations of constant terms.

THM
Bostan, S,
Yurkevich

’23

• More precisely: A C-finite sequence A(n) is a Q-linear combination of r constant
terms if and only if it has at most r distinct characteristic roots, all rational.

• If the A(n) are integers, then the characteristic roots are integers. (Carlo Sanna ’23)

Fibonacci and Lucas numbers are not (sums of) constant terms.EG

2n + 1 is not a constant term but is a sum of two.EG
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Hypergeometric sequences

• A sequence c(n) is hypergeometric if
c(n+ 1)

c(n)
is a rational function.

These are the P -recursive sequences of order 1.

Every P -recursive integer sequence with at most exponential
growth is the diagonal of a rational function.

CONJ
Christol

’90

• Open even for hypergeometric sequences!

Is the following hypergeometric sequence a diagonal?

A(n) =

(
1
9

)
n

(
4
9

)
n

(
5
9

)
n

n!2
(
1
3

)
n

36nA(n) = 1, 60, 20475, 9373650, 4881796920, . . .

EG
open!

This hypergeometric sequence is not a constant term (or a linear
combination of constant terms).

LEM
Bostan, S,
Yurkevich

’23

Proof idea: A(p) takes different values modulo p depending on whether p ≡ ±1 (mod 9).
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Constant terms are special

• For hypergeometric sequences: (or C-finite or P -recursive)

{constant terms
(or linear combinations)

} ⊊ {diagonals} ⊆ {P -recursive, globally bounded seq’s}

• The second inclusion is strict iff Christol’s conjecture is false.

• The following is an indication that constant terms are special among
diagonals and often have significant additional arithmetic properties.

Let Am(n) =

(
1
m

)
n

(
1− 1

m

)
n

n!2
where m ⩾ 2 is an integer.

1 Am(n) is a diagonal for all m ⩾ 2.

2 Am(n) is a constant term if and only if m ∈ {2, 3, 4, 6}.

LEM
Bostan, S,
Yurkevich

’23

• The cases m ∈ {2, 3, 4, 6} correspond to the hypergeometric functions
underlying Ramanujan’s theory of elliptic functions.
(m = 2: classical case; m = 3, 4, 6: alternative bases)
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Conclusions & Outlook

• Constant terms are an arithmetically interesting subset of diagonals.
• We have classified them in the case of a single variable. Natural
classes of sequences to consider next:

• Hypergeometric sequences
• Algebraic sequences (diagonals in two variables)
• Algebraic hypergeometric series
• Integral factorial ratios (Bober, 2007; via Beukers–Heckman)

Is A(n) =

1, 140, 60060, 29745716, 15628090140, . . . = ct

[(
(1 + x)8

(1− x)2x3

)n]
(8n)!n!

(4n)!(3n)!(2n)!
=

(
8n

4n

)(
4n

n

)(
2n

n

)−1

a constant term?

This is algebraic (and therefore a diagonal) and hypergeometric.

EG

• How to find representations as (nice) constant terms or diagonals?
Once found, such representations can be proved using creative telescoping.

• How unique are the Laurent polynomials in a constant term?
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Happy birthday
+87 and +187

, Bruce and George!

BCB+1 day (March 2014)

Thank you for being so great to so many for so long!
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