On the representability of sequences as constant terms

 International Conference on Modular Forms and q-SeriesUniversity of Cologne - March 11-15, 2024

Armin Straub

March 11, 2024
University of South Alabama

$$
\begin{aligned}
\frac{1}{n+1}\binom{2 n}{n} & =\operatorname{ct}\left[\left(\frac{1}{x}+2+x\right)^{n}(1-x)\right] \\
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} & =\operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
\end{aligned}
$$

Slides available at:
http://arminstraub.com/talks
based on joint work with:

Alin Bostan
(Université Paris-Saclay)

Sergey Yurkevich
(University of Vienna)

Integrality of D-finite sequences

- A sequence is D-finite / P-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

EG The Apéry numbers $A(n)$ satisfy $A(0)=1, A(1)=5$ and

$$
(n+1)^{3} A(n+1)=(2 n+1)\left(17 n^{2}+17 n+5\right) A(n)-n^{3} A(n-1)
$$

$\zeta(3)$ is irrational!

OPEN Criterion or algorithm for classifying integrality of D-finite sequences?

Integrality of D-finite sequences

- A sequence is D-finite / P-recursive / holonomic if it satisfies a linear recurrence with polynomial coefficients.

EG The Apéry numbers $A(n)$ satisfy $A(0)=1, A(1)=5$ and

$$
(n+1)^{3} A(n+1)=(2 n+1)\left(17 n^{2}+17 n+5\right) A(n)-n^{3} A(n-1)
$$

$\zeta(3)$ is irrational!

OPEN Criterion or algorithm for classifying integrality of D-finite sequences?

CONJ Every D-finite integer sequence of at most exponential
Christol
'90 growth is the diagonal of a rational function.

$\underset{\mathrm{S} 2014}{\text { EG }}$ The Apéry numbers are the diagonal of $\frac{1}{(1-x-y)(1-z-w)-x y z w}$.

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

$$
\sum_{n \geqslant 0} a(n, \ldots, n) t^{n}
$$

EG

$$
\frac{1}{1-x-y}
$$

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}, \text { multivariate series }
$$

$$
\sum_{n \geqslant 0} \frac{a(n, \ldots, n)}{\text { diagonal }} t^{n}
$$

EG

$$
\begin{aligned}
\frac{1}{1-x-y} & =\sum_{k=0}^{\infty}(x+y)^{k} \\
& =\sum_{n, m \geqslant 0}\binom{m+n}{m} x^{m} y^{n}
\end{aligned}
$$

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}, \text { multivariate series }
$$

EG

$$
\begin{aligned}
\frac{1}{1-x-y} & =\sum_{k=0}^{\infty}(x+y)^{k} \quad \quad \text { diagonal: } \quad \sum_{n=0}^{\infty}\binom{2 n}{n} t^{n}=\frac{1}{\sqrt{1-4 t}} \\
& =\sum_{n, m \geqslant 0}\binom{m+n}{m} x^{m} y^{n}
\end{aligned}
$$

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

EG

$$
\begin{array}{rlr}
\frac{1}{1-x-y} & =\sum_{k=0}^{\infty}(x+y)^{k} & \text { diagonal: } \quad \sum_{n=0}^{\infty}\binom{2 n}{n} t^{n}=\frac{1}{\sqrt{1-4 t}} \\
& =\sum_{n, m \geqslant 0}\binom{m+n}{m} x^{m} y^{n} &
\end{array}
$$

$\underset{\text { Gessel. }}{\text { THM }}$ The diagonal of a rational function is D-finite.

Zeilberger, Lipshitz 1981-88

More generally, the diagonal of a D-finite function is D-finite.
$F \in K\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if its partial derivatives span a finite-dimensional vector space over $K\left(x_{1}, \ldots, x_{d}\right)$.

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x) \quad=\quad C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x) \quad=\quad C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Lairez, Salvy '17 $=$ (multiple) binomial sums

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Bostan,
Lairez, Salvy ' 17 $=$ (multiple) binomial sums

CONJ Diagonals of rational functions over \mathbb{Q}
Christol
'90 $=$ globally bounded, D-finite sequences
(i.e. $c d^{n} a_{n} \in \mathbb{Z}$ for $c, d \in \mathbb{Z}$ and at most exponential growth)
(\subseteq known)

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF
(Furstenberg '67)
To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Lairez,
Salvy '17
$=$ (multiple) binomial sums

CONJ Diagonals of rational functions over \mathbb{Q}
Christol
'90 $=$ globally bounded, D-finite sequences
(i.e. $c d^{n} a_{n} \in \mathbb{Z}$ for $c, d \in \mathbb{Z}$ and at most exponential growth)

- Open: example of a diagonal that requires more than 3 variables

The Apéry numbers as diagonals
EG The Apéry numbers are the diagonal coefficients of S 2014

$$
\frac{1}{(1-x-y)(1-z-w)-x y z w} .
$$

The Apéry numbers as diagonals

EG The Apéry numbers are the diagonal coefficients of S 2014

$$
\frac{1}{(1-x-y)(1-z-w)-x y z w} .
$$

- Well-developed theory of multivariate asymptotics
- OGFs of such diagonals are algebraic modulo p^{r}. Automatically leads to congruences such as

$$
A(n) \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } n \text { even } \\
5 & (\bmod 8), & \text { if } n \text { odd }
\end{array}\right.
$$

The Apéry numbers as diagonals

EG The Apéry numbers are the diagonal coefficients of
S 2014

$$
\frac{1}{(1-x-y)(1-z-w)-x y z w} .
$$

- Well-developed theory of multivariate asymptotics
- OGFs of such diagonals are algebraic modulo p^{r}. Automatically leads to congruences such as

$$
A(n) \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } n \text { even } \\
5 & (\bmod 8), & \text { if } n \text { odd }
\end{array}\right.
$$

- Univariate generating function:

$$
\sum_{n \geqslant 0} A(n) x^{n}=\frac{17-x-z}{4 \sqrt{2}(1+x+z)^{3 / 2}}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
1,1
\end{array} \right\rvert\,-\frac{1024 x}{(1-x+z)^{4}}\right),
$$

where $z=\sqrt{1-34 x+x^{2}}$.

Strands of the web of modularity

THM
 Beukers
 '87

$$
\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular form }}
$$

Strands of the web of modularity

THM
 Beukers ' 87

$$
\begin{aligned}
& 1+5 q+13 q^{2}+23 q^{3}+O\left(q^{4}\right) \quad q-12 q^{2}+66 q^{3}+O\left(q^{4}\right)
\end{aligned}
$$

Gessel ' 82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n

Strands of the web of modularity

THM
Beukers
'87

$$
\underbrace{\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}}_{\text {modular form }}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular function }}
$$

THM
Gessel ' 82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n

THM

Coster '88

$$
A\left(p^{r} m\right) \equiv A\left(p^{r-1} m\right) \quad\left(\bmod p^{3 r}\right)
$$

Strands of the web of modularity

THM
Beukers
'87

$$
{\underset{\text { modular form }}{\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular function }}}_{1+5 q+13 q^{2}+23 q^{3}+O\left(q^{4}\right)}^{q-12 q^{2}+66 q^{3}+O\left(q^{4}\right)}
$$

THM

Gessel ' 82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n

THM

Coster '88

$$
A\left(p^{r} m\right) \equiv A\left(p^{r-1} m\right) \quad\left(\bmod p^{3 r}\right)
$$

THM
Ahlgren-
Ono '00

$$
\begin{aligned}
A\left(\frac{p-1}{2}\right) & \equiv c(p) \quad\left(\bmod p^{2}\right) \\
f(\tau) & =\sum_{n \geqslant 1} c(n) q^{n}=\eta(2 \tau)^{4} \eta(4 \tau)^{4} \in S_{4}\left(\Gamma_{0}(8)\right)
\end{aligned}
$$

Strands of the web of modularity

THM
Beukers '87

$$
{\underset{\text { modular form }}{\frac{\eta^{7}(2 \tau) \eta^{7}(3 \tau)}{\eta^{5}(\tau) \eta^{5}(6 \tau)}}=\sum_{n \geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau) \eta^{12}(6 \tau)}{\eta^{12}(2 \tau) \eta^{12}(3 \tau)}\right)^{n}}_{\text {modular function }}}_{1+5 q+13 q^{2}+23 q^{3}+O\left(q^{4}\right)}^{q-12 q^{2}+66 q^{3}+O\left(q^{4}\right)}
$$

THM

Gessel ' 82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

n_{i} are the p-adic digits of n

$$
A\left(p^{r} m\right) \equiv A\left(p^{r-1} m\right) \quad\left(\bmod p^{3 r}\right)
$$

THM
AhlgrenOno '00

$$
\begin{aligned}
A\left(\frac{p-1}{2}\right) & \equiv c(p) \quad\left(\bmod p^{2}\right) \\
f(\tau) & =\sum_{n \geqslant 1} c(n) q^{n}=\eta(2 \tau)^{4} \eta(4 \tau)^{4} \in S_{4}\left(\Gamma_{0}(8)\right)
\end{aligned}
$$

THM
Zagier '16

$$
A\left(-\frac{1}{2}\right)=\frac{16}{\pi^{2}} L(f, 2)
$$

- These extend to all other known Apéry-like numbers!!???

$$
?=\text { partially known }
$$

Constant term representations

$\underset{\substack{\text { constant } \\ \text { terms }}}{\text { EG }} A(n)=\operatorname{ct}\left[L^{n}\right]$ with $L=\frac{(1+y)(1+z)(1+x+z)(1+x+z+y z)}{x y z}$

- $F_{A}(t)=\sum_{n \geqslant 0} A(n) t^{n}=c t\left[\frac{1}{1-t L}\right]$ is a period function.

The DE satisfied by $F_{A}(t)$ is the Picard-Fuchs DE for the family $V_{t}: 1-t L=0$.
Generically, V_{t} is birationally equivalent to a K3 surface with Picard number 19.
(Beukers-Peters '84)

Constant term representations

$\underset{\substack{\text { constant } \\ \text { terms }}}{\text { EG }} A(n)=\mathrm{ct}\left[L^{n}\right]$ with $L=\frac{(1+y)(1+z)(1+x+z)(1+x+z+y z)}{x y z}$

- $F_{A}(t)=\sum_{n \geqslant 0} A(n) t^{n}=c t\left[\frac{1}{1-t L}\right]$ is a period function.

The DE satisfied by $F_{A}(t)$ is the Picard-Fuchs DE for the family $V_{t}: 1-t L=0$.
Generically, V_{t} is birationally equivalent to a K3 surface with Picard number 19.
(Beukers-Peters '84)
$\underset{\text { Samol, van }}{\text { THM }} A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$ satisfies Lucas congruences if the Newton poly-

Samol, van Straten '09 tope of $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$ has the origin as its only interior integral point.

Constant term representations

$\underset{\substack{\text { constant } \\ \text { terms }}}{\text { EG }} A(n)=\operatorname{ct}\left[L^{n}\right]$ with $L=\frac{(1+y)(1+z)(1+x+z)(1+x+z+y z)}{x y z}$

- $F_{A}(t)=\sum_{n \geqslant 0} A(n) t^{n}=c t\left[\frac{1}{1-t L}\right]$ is a period function.

The DE satisfied by $F_{A}(t)$ is the Picard-Fuchs DE for the family $V_{t}: 1-t L=0$. Generically, V_{t} is birationally equivalent to a K3 surface with Picard number 19 .
$\underset{\text { Samol, van }}{\text { THM }} A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$ satisfies Lucas congruences if the Newton poly-

Samol, van Straten '09 tope of $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$ has the origin as its only interior integral point.

THM All of the $6+6+3$ known sporadic sequences satisfy Lucas congruences modulo every prime.
(Proof long and technical for 2 sequences)

Constant term representations

$\underset{\substack{\text { constant } \\ \text { terms }}}{\text { EG }} A(n)=\operatorname{ct}\left[L^{n}\right]$ with $L=\frac{(1+y)(1+z)(1+x+z)(1+x+z+y z)}{x y z}$

- $F_{A}(t)=\sum_{n \geqslant 0} A(n) t^{n}=\mathrm{ct}\left[\frac{1}{1-t L}\right]$ is a period function.

The DE satisfied by $F_{A}(t)$ is the Picard-Fuchs DE for the family $V_{t}: 1-t L=0$. Generically, V_{t} is birationally equivalent to a K3 surface with Picard number 19.
(Beukers-Peters '84)
THM $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$ satisfies Lucas congruences if the Newton poly-

Samol, van Straten '09 tope of $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$ has the origin as its only interior integral point.

THM All of the $6+6+3$ known sporadic sequences satisfy Lucas congruences modulo every prime.
(Proof long and technical for 2 sequences)
THM Each sporadic sequence, except possibly (η), can be expressed
 as $\mathrm{ct}\left[P(\boldsymbol{x})^{n}\right]$ so that the result of Samol-van Straten applies.
$\underset{\substack{\text { Gorodetsky } \\ \text { '21 }}}{\mathrm{EG}}(\eta): \frac{(z x+x y-y z-x-1)(x y+y z-z x-y-1)(y z+z x-x y-z-1)}{x y z}$
$(1,0,0),(1,1,0)$ and their permutations are interior points.

Constant terms

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.

EG

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

EG
Catalan

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

Constant terms

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.
$\underset{Q=1}{\text { EG }} \quad \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]$
EG

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

$\underset{\text { Zagier } 16}{Q}$ Which integer sequences are constant terms?
And in which case can we choose $Q=1$?

Constant terms

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.

EG
$Q=1$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

EG
Catalan

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

$\underset{\text { Zagier '16 }}{\mathbf{Q}}$
Which integer sequences are constant terms?
And in which case can we choose $Q=1$?

- Constant terms are necessarily diagonals.

$$
\frac{Q(\boldsymbol{x})}{1-t x_{1} \cdots x_{d} P(\boldsymbol{x})}
$$

Q Which diagonals are constant terms?
Which are linear combinations of constant terms?

Constant terms

- $c(n)$ is a constant term if $c(n)=\operatorname{ct}\left[P^{n}(\boldsymbol{x}) Q(\boldsymbol{x})\right]$ for Laurent polynomials $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.

EG
$Q=1$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

EG
Catalan

$$
\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\left(\frac{(x+1)^{2}}{x}\right)^{n}(1-x)\right]
$$

$\underset{Z_{20} \mathrm{~g}^{2} \mathrm{e} 16}{\mathrm{Q}}$ Which integer sequences are constant terms?
And in which case can we choose $Q=1$?

- Constant terms are necessarily diagonals.

$$
\frac{Q(\boldsymbol{x})}{1-t x_{1} \cdots x_{d} P(\boldsymbol{x})}
$$

Q Which diagonals are constant terms?
Which are linear combinations of constant terms?

- We will answer this in the case of a single variable.
- For instance: Are Fibonacci numbers constant terms?
(C-finite sequences!)

$$
\frac{x}{1-x-x^{2}}
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p)
$$

proof

$$
A(p)=\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right]
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p)
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) }
\end{aligned}
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p) .
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) } \\
\text { (if } p>\operatorname{deg} Q) \quad & =\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right)\right]=\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}[P(\boldsymbol{x})]
\end{aligned}
$$

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p,

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}} \quad(\bmod p)
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) } \\
\text { (if } p>\operatorname{deg} Q) \quad & =\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right)\right]=\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}[P(\boldsymbol{x})]
\end{aligned}
$$

EG
The Fibonacci numbers are $F(n)=\frac{\varphi_{+}^{n}-\varphi_{-}^{n}}{\sqrt{5}}$ with $\varphi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}$.

Are Fibonacci numbers constant terms?

- Our key ingredient to answer these questions are congruences:

LEM If $A(n)$ is a constant term then, for all large enough primes p, Bostan, S, Yurkevich '23

$$
A(p) \equiv \underset{\in \mathbb{Q}}{\operatorname{const}}(\bmod p) .
$$

proof

$$
\begin{aligned}
A(p) & =\operatorname{ct}\left[P(\boldsymbol{x})^{p} Q(\boldsymbol{x})\right] \\
& \equiv \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right) Q(\boldsymbol{x})\right] \quad \text { (little Fermat) } \\
\text { (if } p>\operatorname{deg} Q \text {) } & =\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}\left[P\left(\boldsymbol{x}^{p}\right)\right]=\operatorname{ct}[Q(\boldsymbol{x})] \operatorname{ct}[P(\boldsymbol{x})]
\end{aligned}
$$

EG
The Fibonacci numbers are $F(n)=\frac{\varphi_{+}^{n}-\varphi_{-}^{n}}{\sqrt{5}}$ with $\varphi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}$. It follows that

$$
F(p) \equiv\left\{\begin{array}{ll}
1, & \text { if } p \equiv 1,4 \bmod 5, \\
-1, & \text { if } p \equiv 2,3 \bmod 5,
\end{array} \quad(\bmod p) .\right.
$$

Hence, the Fibonacci numbers cannot be constant terms.

C-finite sequences that are constant terms

DEF A sequence is C-finite if its generating function is rational.

- Every C-finite sequence can be represented as

$$
\underset{\text { (finite support) }}{A_{0}(n)}+\sum_{j=1}^{d} \sum_{r=0}^{m_{j}-1} c_{j, r} n^{r} \lambda_{j}^{n} .
$$

- The characteristic roots are the λ_{j}, as well as 0 if $A_{0} \not \equiv 0$.

C-finite sequences that are constant terms

DEF A sequence is C-finite if its generating function is rational.

- Every C-finite sequence can be represented as

$$
\underset{\text { (finite support) }}{A_{0}(n)}+\sum_{j=1}^{d} \sum_{r=0}^{m_{j}-1} c_{j, r} n^{r} \lambda_{j}^{n} \text {. }
$$

- The characteristic roots are the λ_{j}, as well as 0 if $A_{0} \not \equiv 0$.

EG

$$
\begin{aligned}
& \text { - } 2^{n}=\operatorname{ct}\left[(x+2)^{n}\right]=\operatorname{ct}\left[2^{n}\right] \\
& \text { - } n^{2} 2^{n}=\operatorname{ct}\left[(x+2)^{n}\left(\frac{8}{x^{2}}+\frac{2}{x}\right)\right]
\end{aligned}
$$

- In general: ct $\left[(x+\lambda)^{n}\left(\frac{\lambda}{x}\right)^{r}\right]=\binom{n}{r} \lambda^{n}$

EG A sequence $A_{0}(n)$ with finite support $[0, N]$:

$$
A_{0}(n)=\operatorname{ct}\left[x^{n}\left(A_{0}(0)+A_{0}(1) x^{-1}+\cdots+A_{0}(N) x^{-N}\right)\right]
$$

C-finite sequences that are constant terms, cont'd

THM There are no further C-finite sequences that are constant terms.

- More precisely: A C-finite sequence $A(n)$ is a \mathbb{Q}-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the $A(n)$ are integers, then the characteristic roots are integers. (Carlo Sanna '23)

C-finite sequences that are constant terms, cont'd

$\underset{\text { Bostan, s. }}{\text { THM }}$ There are no further C-finite sequences that are constant terms. $\substack{\text { Bostan, s. } \\ \text { Yurkevich } \\ \text { rich }}$ Or linear combinations of constant terms.

- More precisely: A C-finite sequence $A(n)$ is a \mathbb{Q}-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the $A(n)$ are integers, then the characteristic roots are integers. (Carlo Sanna

EG Fibonacci and Lucas numbers are not (sums of) constant terms.

C-finite sequences that are constant terms, cont'd

$\underset{\text { Bostan. s. }}{\text { THM }}$ There are no further C-finite sequences that are constant terms. $\substack{\text { Bostan, s. } \\ \text { Yurkevich }}$ Or linear combinations of constant terms.

- More precisely: A C-finite sequence $A(n)$ is a \mathbb{Q}-linear combination of r constant terms if and only if it has at most r distinct characteristic roots, all rational.
- If the $A(n)$ are integers, then the characteristic roots are integers. (Carlo Sanna

EG Fibonacci and Lucas numbers are not (sums of) constant terms.

EG $2^{n}+1$ is not a constant term but is a sum of two.

The case of pure powers

$\underset{\text { Zagier } 16}{\mathbf{Q}}$ Which integer sequences are constant terms $\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$?
$\underset{\text { Bostan, s. }}{\text { LE }}$ Let $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$ with $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$. TFAE: Yurkevich
'23
(1) $A(n)=A(0) \operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$.

The case of pure powers

$\underset{\text { Qgier } 16}{\mathbf{Q}}$ Which integer sequences are constant terms $\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right] ?$
$\underset{\text { Bostan, s, }}{\text { LEM }}$ Let $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$ with $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$. TFAE:

Yurkevich
'23
(1) $A(n)=A(0) \operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$.
(2) $A\left(p^{r} n\right) \equiv A\left(p^{r-1} n\right)\left(\bmod p^{r}\right) \quad$ for p large enough
(Gauss congruences)

- Gauss congruences satisfied by realizable sequences $a(n)$:

$$
a(n)=\#\left\{x \in X: T^{n} x=x\right\} \quad \text { "points of period } n \text { " }
$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, the congruences characterize realizability.

The case of pure powers

$\underset{\text { 2gier } 16}{\mathbf{Q}}$ Which integer sequences are constant terms $\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right] ?$
$\underset{\text { Bostan, s, }}{\text { LEM }}$ Let $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$ with $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$. TFAE:

Yurkevich '23
(1) $A(n)=A(0) \operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$.
(2) $A\left(p^{r} n\right) \equiv A\left(p^{r-1} n\right)\left(\bmod p^{r}\right) \quad$ for p large enough
(Gauss congruences)
3 $A(p n) \equiv A(n)(\bmod p) \quad$ for p large enough

- Gauss congruences satisfied by realizable sequences $a(n)$:

$$
a(n)=\#\left\{x \in X: T^{n} x=x\right\} \quad \text { "points of period } n \text { " }
$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, the congruences characterize realizability.

The case of pure powers

$\underset{\text { Zagier } 16}{\mathbf{Q}}$ Which integer sequences are constant terms $\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$?
$\underset{\text { Bostan, s, }}{\text { LEM }} A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$ with $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$. TFAE:

Yurkevich '23
(1) $A(n)=A(0) \operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$.
(2) $A\left(p^{r} n\right) \equiv A\left(p^{r-1} n\right)\left(\bmod p^{r}\right) \quad$ for p large enough
(Gauss congruences)
(3) $A(p n) \equiv A(n)(\bmod p) \quad$ for p large enough

THM Let $A(n)$ be C-finite. TFAE:
Minton,
2014
(1) $A(n)$ is a trace sequence.
(2) $A\left(p^{r} n\right) \equiv A\left(p^{r-1} n\right)\left(\bmod p^{r}\right)$
(3) $A(p n) \equiv A(n)(\bmod p)$ for p large enough for p large enough

- Gauss congruences satisfied by realizable sequences $a(n)$:

$$
a(n)=\#\left\{x \in X: T^{n} x=x\right\} \quad \text { "points of period } n \text { " }
$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, the congruences characterize realizability.

The case of pure powers

$\underset{\text { Q }}{\mathbf{Q} \text { ier } 16}$ Which integer sequences are constant terms $\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$?
$\underset{\text { Bostan, s, }}{\text { LEM }}$ Let $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$ with $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$. TFAE:

Yurkevich '23
(1) $A(n)=A(0) \operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$.
(2) $A\left(p^{r} n\right) \equiv A\left(p^{r-1} n\right)\left(\bmod p^{r}\right)$
(Gauss congruences)
(3) $A(p n) \equiv A(n)(\bmod p)$

THM Let $A(n)$ be C-finite. TFAE:
Minton,
2014
(1) $A(n)$ is a trace sequence.
(2) $A\left(p^{r} n\right) \equiv A\left(p^{r-1} n\right)\left(\bmod p^{r}\right)$

3 $A(p n) \equiv A(n)(\bmod p)$ for p large enough
for p large enough
for p large enough for p large enough

COR A C-finite sequence $A(n)$ is a constant term $\operatorname{ct}\left[P(\boldsymbol{x})^{n}\right]$ iff it satisfies the Lucas congruences.

In both cases, the only sequences are $A(n)=\lambda^{n}$.

$$
A(n) \equiv \underset{n_{i} \text { are the } p \text {-adic digits of } n}{A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)}
$$

For Lucas congruences, this was proved by McIntosh ' 92 .

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the D-finite sequences of order 1 .

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the D-finite sequences of order 1 .

CONJ Every D-finite integer sequence with at most exponential growth
Christol
'90 is the diagonal of a rational function.

- Open even for hypergeometric sequences!

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the D-finite sequences of order 1 .

CONJ Every D-finite integer sequence with at most exponential growth
Christol '90 is the diagonal of a rational function.

- Open even for hypergeometric sequences!

EG Is the following hypergeometric sequence a diagonal?

open!

$$
A(n)=\frac{\left(\frac{1}{9}\right)_{n}\left(\frac{4}{9}\right)_{n}\left(\frac{5}{9}\right)_{n}}{n!^{2}\left(\frac{1}{3}\right)_{n}}
$$

$$
3^{6 n} A(n)=1,60,20475,9373650,4881796920, \ldots
$$

Hypergeometric sequences

- A sequence $c(n)$ is hypergeometric if $\frac{c(n+1)}{c(n)}$ is a rational function. These are the D-finite sequences of order 1 .

CONJ Every D-finite integer sequence with at most exponential growth 90 is the diagonal of a rational function.

- Open even for hypergeometric sequences!

EG Is the following hypergeometric sequence a diagonal?

open!

$$
A(n)=\frac{\left(\frac{1}{9}\right)_{n}\left(\frac{4}{9}\right)_{n}\left(\frac{5}{9}\right)_{n}}{n!^{2}\left(\frac{1}{3}\right)_{n}}
$$

$3^{6 n} A(n)=1,60,20475,9373650,4881796920, \ldots$
LEM This hypergeometric sequence is not a constant term (or a linear

Bostan, S,
Yurkevich '23 combination of constant terms).

Proof idea: $A(p)$ takes different values modulo p depending on whether $p \equiv \pm 1(\bmod 9)$.

Constant terms are special

- For hypergeometric sequences:
$\underset{\text { (or linear combinations) }}{\text { constant terms }}\} \subsetneq\{$ diagonals $\} \subseteq\{P$-finite \& globally bounded seq's $\}$
- The second inclusion is strict iff Christol's conjecture is false.

Constant terms are special

- For hypergeometric sequences:
$\underset{\text { (or linear combinations) }}{\text { constans }\}} \subsetneq\{$ diagonals $\} \subseteq\{P$-finite \& globally bounded seq's $\}$
- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.

```
LEM
Bostan, S,
Yurkevich
    '23
    Let \(A_{m}(n)=\frac{\left(\frac{1}{m}\right)_{n}\left(1-\frac{1}{m}\right)_{n}}{n!^{2}}\) where \(m \geqslant 2\) is an integer.
    (1) \(A_{m}(n)\) is a diagonal for all \(m \geqslant 2\).
```


Constant terms are special

- For hypergeometric sequences:
$\underset{\text { (or linear combinations) }}{\text { constant }\}} \subseteq \subsetneq\{$ diagonals $\} \subseteq\{P$-finite \& globally bounded seq's $\}$
- The second inclusion is strict iff Christol's conjecture is false.
- The following is an indication that constant terms are special among diagonals and often have significant additional arithmetic properties.

LEM
$\substack{\text { Bostan s. s. } \\ \text { Yurkevich } \\ \text { 23 }}$ Let $A_{m}(n)=\frac{\left(\frac{1}{m}\right)_{n}\left(1-\frac{1}{m}\right)_{n}}{n!^{2}}$ where $m \geqslant 2$ is an integer.
(1) $A_{m}(n)$ is a diagonal for all $m \geqslant 2$.
(2) $A_{m}(n)$ is a constant term if and only if $m \in\{2,3,4,6\}$.

- The cases $m \in\{2,3,4,6\}$ correspond to the hypergeometric functions underlying Ramanujan's theory of elliptic functions. ($m=2$: classical case; $m=3,4,6$: alternative bases)

Conclusions \& Outlook

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
- Hypergeometric sequences
- Algebraic sequences (diagonals in two variables)
- Algebraic hypergeometric series
- Integral factorial ratios
(Bober, 2007; via Beukers-Heckman)
EG
Is $A(n)=\frac{(8 n)!n!}{(4 n)!(3 n)!(2 n)!}=\binom{8 n}{4 n}\binom{4 n}{n}\binom{2 n}{n}^{-1}$ a constant term?

$$
1,140,60060,29745716,15628090140, \ldots=\text { ct }\left[\left(\frac{(1+x)^{8}}{(1-x)^{2} x^{3}}\right)^{n}\right]
$$

This is algebraic (and therefore a diagonal) and hypergeometric.

Conclusions \& Outlook

- Constant terms are an arithmetically interesting subset of diagonals.
- We have classified them in the case of a single variable. Natural classes of sequences to consider next:
- Hypergeometric sequences
- Algebraic sequences (diagonals in two variables)
- Algebraic hypergeometric series
- Integral factorial ratios
(Bober, 2007; via Beukers-Heckman)
EG
Is $A(n)=\frac{(8 n)!n!}{(4 n)!(3 n)!(2 n)!}=\binom{8 n}{4 n}\binom{4 n}{n}\binom{2 n}{n}^{-1}$ a constant term?

$$
1,140,60060,29745716,15628090140, \ldots=\text { ct }\left[\left(\frac{(1+x)^{8}}{(1-x)^{2} x^{3}}\right)^{n}\right]
$$

This is algebraic (and therefore a diagonal) and hypergeometric.

- How to find representations as (nice) constant terms or diagonals?

Once found, such representations can be proved using creative telescoping.

- How unique are the Laurent polynomials in a constant term?

Connections to cluster algebras, mutations of Laurent polynomials, ...

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

\square

A. Bostan, A. Straub, S. Yurkevich

On the representability of sequences as constant terms
Journal of Number Theory, Vol. 253, 2023, p. 235-256

