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CONJ 7,¢(3),¢(5), ... are algebraically independent over Q.
® Apéry (1978): ¢(3) is irrational
® Open: ((5) is irrational
® Open: ((3) is transcendental
e Open: ((3)/n is irrational

based on joint work(s) with:

ROCER APERY
1916 ~ 199%

Marc Chamberland Wadim Zudilin
(Grinnell College) (Radboud University)
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Mit del’ Tiil’ irIS HaUS fa"en. .. Falling into the house with the door. ..

CONJ L
Franel, The minimal recurrence for A®)(n) =" ( ) has order |51 ].
1895 -

dllald A (n) satisfies a recurrence of order [ = ].

OPEN s that recurrence of minimal order?
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CONJ . " s
Franel,  The minimal recurrence for A®)(n) =3 (") has order [*£1].
1895 = \k 2

dllald A (n) satisfies a recurrence of order [ = ].

OPEN s that recurrence of minimal order?

THM . " /n\° .
s-zudiin Any telescoping recurrence for Z (k> solved by certain sequences
TAYm) ifo<2)<s, k=0

The Apéry limits are:

A (n) _ N
: J 425 2j
A Z ey ] (sin(wt)) € Q>0
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Mit der Tiil’ irIS HaUS fa"en. .. Falling into the house with the door. ..

CONJ

1895

THM  A()(n) satisfies a recurrence of order |

Stoll '97

OPEN

THM
S-Zudilin
21

n El
Franel, The minimal recurrence for A®)(n) =" (:) has order |51 ].
k=0

SJerJ_

Is that recurrence of minimal order?

n

Any telescoping recurrence for Z (Z) solved by certain sequences
AYm)if0<2j <s. k=0

The Apéry limits are:

(s) s
Fo = () <70

nli»H;o AG)(n) sin(7t)

Moreover, Ag.s)(n) with 0 < 2j < s are linearly independent, so that any
telescoping recurrence has order at least | ].

Armin Straub
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Apéry numbers and the irrationality of ((3)

® The Apéry numbers 1,5,73,1445,. ..

S0 C1)

satisfy k=0
(n 4+ 1D3up1 = (20 + 1)(A7T0* 4+ 170 + 5)up, — nu, 1.
THM

o0
1 o q ]
Apéry'78 ((3) = Zﬁ is irrational.
n=1
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Apéry numbers and the irrationality of ((3)

® The Apéry numbers 1,5,73,1445,. ..

LR

(n 4+ 1D3up1 = (20 + 1)(A7T0* 4+ 170 + 5)up, — nu, 1.

THM
Apéry'18 (3 Z — is irrational.

n=1

proof The same recurrence is satisfied by the “near”-integers

s-3 () (1) (zz((%u)

m=1

Then, ﬁgz) — ((3). But too fast for {(3) to be rational. O

Z

After a few days of fruitless effort the specific problem was men-
tioned to Don Zagier (Bonn), and with irritating speed he showed
that indeed the sequence satisfies the recurrence.

Alfred van der Poorten — A proof that Euler missed. .. (1979)
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Background: Creative telescoping

Goal "\ fn+k\2
A tel i f
elescoping recurrence ror kZ_O <k> ( i >

=:a(n, k)

N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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elescoping recurrence ror kz_o <k> ( i >

=:a(n, k)

N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)

® Suppose we have P(n,N) € Q[n, N] and R(n, k) € Q(n, k) so that:

P(n,N)a(n,k) = (K —1)R(n,k)a(n, k) = bn,k+1)—bn,k)
® Then: P(n,N) Z a(n,k) =0 Assuming Jim b(n, k) = 0.
keZ

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Creative telescoping

k k

Goal i 2 N2
A telescoping recurrence for Z <n> (n + >
k=0

=:a(n, k)

N, K shift operators in n and k: Na(n,k) =a(n+ 1,k)

® Suppose we have P(n,N) € Q[n, N] and R(n, k) € Q(n, k) so that:

P(n,N)a(n,k) = (K —1)R(n,k)a(n, k) = bn,k+1)—bn,k)
® Then: P(n,N) Z a(n,k) =0 Assuming Jim b(n, k) = 0.
keZ

EC P, N) = (n+2)3N? — (2n + 3)(17n2 + 51n + 39)N + (n + 1)3

_ 4K*(2n + 3)(4n? — 2k% 4 12n + 3k + 8)
N (n—k+1)2(n—k+2)2

R(n, k) is the certificate of the telescoping recurrence operator P(n, N).

R(n, k)

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:

Untd + Pd—1(N) Unga—1 + -+ p1(N) Ups1 + po(n) u, =0
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:
Unta + Pa-1(n) Unta—1+ -+ p1(n) Unt1 + po(n) un =0

® If lim pg(n) = ¢k, then the characteristic polynomial is:
n—oo d

P a1 o I c1 M+ ¢ :H()\— Ak )
k=1
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:

Untd + Pd—1(N) Unga—1 + -+ p1(N) Ups1 + po(n) u, =0

® If lim pg(n) = ¢k, then the characteristic polynomial is:
n—oo d

Xt g M4 a At e =[O0 M)
k=1

THM g, 5h0se the | A | are distinct. Then, for any solution u,,

Poincaré
1885
3 Unp+1
lim — = ), (P)
n—00 Uy,

for some k € {1,...,d}, unless u, is eventually zero.
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k=1
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Poincaré
1885

Suppose the | i | are distinct. Then, for any solution u,,

lim 224l — ), (P)

n—oo Uy

for some k € {1,...,d}, unless u, is eventually zero.

THM Suppose, in addition, pg(n) # 0 for all n > 0.

Perron

1909 Then, for each )\ , there exists a u,, such that (P) holds.
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:

Untd + Pd—1(N) Unga—1 + -+ p1(N) Ups1 + po(n) u, =0

® If lim pg(n) = ¢k, then the characteristic polynomial is:
n—oo d

Xt g M4 a At e =[O0 M)
k=1

THM

Poincaré
1885

Suppose the | i | are distinct. Then, for any solution u,,

lim 224l — ), (P)

n—oo Uy

for some k € {1,...,d}, unless u, is eventually zero.

THM Suppose, in addition, pg(n) # 0 for all n > 0.
Perron

1909 Then, for each )\ , there exists a u,, such that (P) holds.

KEG For un42 — 2unt1 + (1 + 5)u, =0, we have Ay = Ay = 1.

1080 However, (P) does not hold for any real w,,.

There are two complex solutions asymptotic to n”" with r = exp(£mi/3).
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Background: Poincaré and Perron

® Normalized general homogeneous linear recurrence of order d:

Untd + Pd—1(N) Unga—1 + -+ p1(N) Ups1 + po(n) u, =0

® If lim pg(n) = ¢k, then the characteristic polynomial is:
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k=1

THM

Poincaré
1885

Suppose the | i | are distinct. Then, for any solution u,,

lim 224l — ), (P)

n—oo Uy

for some k € {1,...,d}, unless u, is eventually zero.

THM Suppose, in addition, pg(n) # 0 for all n > 0.

Perron

1909 Then, for each )\ , there exists a u,, such that (P) holds.

EG For antnta+ (i1 — an)tng1 — pp1uy, = 0, we have Aq, Ag = 1.
Kooman

1089 However, (P) holds for all u,, with RHS = 1. ap =1+ #

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub

5/ 20



Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5, 73,1445, 33001, . ..
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,y 1 = (2n+ 1)(170? + 170 + 5)u

® u_1 =0,up = 1: Apéry numbers A(n)
® uy=0,u; = 1: 2nd solution B(n)

3
n — N Unp—1.

1,5,73,1445, 33001, ...

0 1 117 62531 11424695

7216 7 1728

gee e
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73,1445, 33001, . ..
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 82531 1142469 ...
THM B(n 3
Apéry'78 lim L = C( )

n—oo A(n) 6
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73, 1445, 33001, .

® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 82531 1142469 ...
THM B(n 3

Apéry '78 hm 7( ) =] C( )

n—oo A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.

A(n), B(n) grow like (1 4 v/2)*.
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73, 1445, 33001, .

® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 82531 1142469 ...
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n—oo A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.

A(n), B(n) grow like (1 4 v/2)*.

=(1-Vv2)"

® By Perron's theorem, there is a (unique) solution

" L Cnt1)
Cln) =7A(n) + B(n) with  lim =z

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub

6/20



Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73,1445, 33001, . ..
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 62531 11424695
THM B(n 3
Apéry '78 hm 7( ) =] C( )

n—o0 A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.

, i . i A(n), B(n) grow like (1 4 v/2)*.
® By Perron's theorem, there is a (unique) solution

. Cn+1)
C(n) = vA(n) + B(n) with  lim ———~= = (1 —v/2)%.
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73,1445, 33001, . ..
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 62531 11424695
THM B(n 3
Apéry '78 lim L — @

n—o0 A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.

, i . i A(n), B(n) grow like (1 4 v/2)*.
® By Perron's theorem, there is a (unique) solution

C(n) =7A(n) + B(n) with  lim_ C(g(:)” — (1-2)",
0=+ lim o

COR A(n)((3) —6B(n) is "Perron’s small solution” .

This is a small linear form in 1 and ¢(3).
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Another look at Apéry’s recurrence and limit

® Apéry's recurrence has order 2 and degree 3:

(n+1)3u,1 = (2n+ 1)(A702 + 170 + 5)up — n3up_1.

® u_1 =0,up =1: Apéry numbers A(n) 1,5,73,1445, 33001, . ..
® ug = 0,u; = 1: 2nd solution B(n) 0,1, 117, 62531 11424695
THM B(n 3
Apéry '78 hm 7( ) =] L( )

n—o0 A(n) 6

® Characteristic polynomial n? — 34n + 1 has roots (1 +1/2)* ~ 33.97,0.0294.

, i . i A(n), B(n) grow like (1 4 v/2)*.
® By Perron's theorem, there is a (unique) solution

C(n) =7A(n) + B(n) with  lim_ C(g(:)” — (1-2)",
B(n)

COR A(n)((3) —6B(n) is "Perron’s small solution” .

This is a small linear form in 1 and ¢(3).

?  Tools to construct the solutions guaranteed by Perron’s theorem?
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A motivating example

n
k .

® The (central) Delannoy numbers A(n) = (Z) (nz ) satisfy

(n 4+ Dupt1 = 32n + 1)uy,, — nup—q k=0 A(-1) =0,4(0) =1

count lattice paths from (0, 0) to (n, n) using the steps (0, 1), (1,0) and (1, 1)

A(n) =1,3,13,63,321, 1683, 8989, 48639, . . .
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n
k .

® The (central) Delannoy numbers A(n) = (Z) (nz ) satisfy

(n 4+ Dupt1 = 32n + 1)uy,, — nup—q k=0 A(-1) =0,4(0) =1

count lattice paths from (0, 0) to (n, n) using the steps (0, 1), (1,0) and (1, 1)

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) = 1.
A(n) =1,3,13,63,321, 1683, 8989, 48639, . . .

131 445 34997 62307 2359979
647 60 ° 20 140 77

9
B(n) = 071753
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A motivating example

® The (central) Delannoy numbers A(n Z ( )( ) satisfy
(n+ Dupt1 =320 + Duy — nup—g A(-1)=0,4(0) =1

count lattice paths from (0, 0) to (n, n) using the steps (0, 1), (1,0) and (1, 1)

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) =
A(n) = 1,3,13,63,321, 1683, 8989, 48639, . ..

Bny —0,1,2 131 445 3997 62307 2350979
U264 60 0 20 0 140
B(n) 1 9 131 445 34997 62307 2359979
=l =0, -, — 0.34657359 . .
@) (n) 3726’ 378’ 12847 100980 179780 6809460 ”
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A motivating example

® The (central) Delannoy numbers A(n Z ( )( ) satisfy
(n 4+ Dupt1 = 32n + 1)uy,, — nup—q

A(~1) = 0, A0) =
count lattice paths from (0, 0) to (n, n) using the steps (0, 1), (1,0) and (1, 1)

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) =
A(n) = 1,3,13,63,321, 1683, 8989, 48639, . ..

9 131 445 34997 62307 2359979
B( )_ 071777

276747 607 207 140 77

B(n) 1 9 131 445 34997 62307 2359979
= s =050 56 g0 Toe , , 0.34657359 . ..
@) (n) 3726’ 378" 1284° 100980° 179780 6809460 ”
11 1 1 1 1 1
71 _
Q) =Qn=1) = 3,75 3157 30893’ 2701215’ 00770922 3060511797
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A motivating example

® The (central) Delannoy numbers A(n) = Z ( ) (n + k) satisfy

k
(n 4+ Dupt1 = 32n + 1)uy,, — nup—q A(-1) =0, A(0) =
count lattice paths from (0, 0) to (n, n) using the steps (0, 1), (1,0) and (1, 1)

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) =
A(n) = 1,3,13,63,321, 1683, 8989, 48639, . ..

9 131 445 34997 62307 2359979
B( )_ 071777

276747 607 207 140 77

B(n) 1 9 131 445 34997 62307 2359979
== 0,2, — 0.34657359 . ..
@) (n) 37267 3787 12847 100980 179780 6809460’ ”
11 1 1 1 1 1
— 1 _ e
Q) = Qn = 1) = 3,75 3157 50892’ 2701215’ 90770922 3060511797

m B0 _ Ly,
n—oo A(n) 2
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A motivating example

® The (central) Delannoy polynomials A(n) = Z

(Z) (n Z k) z" satisfy
(n+ Dup+1 = 2z +1) 2n+ Duy — nup—1 k

0 A(-1)=0,4(0) =1

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) = 1.

A(n) =
B(n) =
Q) = 5 =
Q(n) - Qn—1) =
B _
n—oo A(n)
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A motivating example

® The (central) Delannoy polynomials A(n) = Z (Z) (n Z k) z* satisfy
(n+ Dup+1 = 2z +1) 2n+ Duy — nup—1 k=0 A(-1) =0,4(0) =1

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) = 1.
A(n) = 1,14 2,1 + 62 + 622, (1 + 2z)(1 + 10z + 102?), ...

B(n) =
B(n)
Q(n) == An) ~
Qn) —Q(n—1) =
B _
n—oo A(n)
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® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) = 1.
A(n) = 1,14 2,1 + 62 + 622, (1 + 2z)(1 + 10z + 102?), ...

3 1 5
B(n) =0,1,5(1+22), 6(11 + 60z 4 602%), — (1 + 22)(5 + 42z + 422?), . ..

12
Q) = 5 =
Qn)—Q(n—1)=
lim i) =
n—oo A(n)
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(n+ Dup+1 = 2z +1) 2n+ Duy — nup—1 k=0 A(-1) =0,4(0) =1

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) = 1.
A(n) = 1,14 2,1 + 62 + 622, (1 + 2z)(1 + 10z + 102?), ...

3 1 5
B(n) =0,1,5(1+22), 6(11 + 60z 4 60z%), 5 (1 +22)(5 + 422 + 4222), ...
o) = Bn) _, 1 3(1 + 2z) 11 + 60z + 602
A(n) 14227 2(1+ 62 + 622) 6(1 + 2x) (1 + 10z + 1022)" "
Qn) —Q(n—1) =

B _

n—oo A(n)
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A motivating example

® The (central) Delannoy polynomials A(n Z ( ) ( ) z* satisfy
(n+ Dup+1 = 2z +1) 2n+ Duy — nup—1 k=0 A(-1) =0, A(0) =

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) =
A(n) = 1,14 2,1 + 62 + 622, (1 + 2z)(1 + 10z + 102?), ...

3 1 5
B(n) =0,1,5(1+22), 6(11 + 60z 4 60z%), 5 (1 +22)(5 + 422 + 4222), ...
o) = Bn) _, 1 3(1 + 2z) 11 + 60z + 602
A(n) 14227 2(1+ 62 + 622) 6(1 + 2x) (1 + 10z + 1022)" "
Qn) —Q(n—1) =
B(n)
e A n)
1 1 1 1 1 1
3 = T T 5 < T % a1 — T O -7
8 =3 "2 T ed & 10 12ed O
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B(n) =0,1,5(1+22), 6(11 + 60z 4 60z%), 5 (1 +22)(5 + 422 + 4222), ...
o) = Bn) _, 1 3(1 + 2z) 11 + 602 + 6022
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A motivating example

® The (central) Delannoy polynomials A(n Z ( ) ( ) z* satisfy
(n+ Dup+1 = 2z +1) 2n+ Duy — nup—1 k=0 A(-1) =0, A(0) =

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) =
A(n) = 1,14 2,1 + 62 + 622, (1 + 2z)(1 + 10z + 102?), ...

3 1 5
B(n) =0,1,5(1+22), 6(11 + 60z 4 60z%), 5 (1 +22)(5 + 422 + 4222), ...
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1 1 1
- 1) = N
QU =R =) = i (11627658 nAm)A(n = 1)
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A motivating example

® The (central) Delannoy polynomials A(n) = Z (:) (n Z k) z* satisfy
(n+ Dup+1 = 2z +1) 2n+ Duy — nup—1 k=0 A(-1) =0,4(0) =1

® Let B(n) be the 2nd solution with initial conditions B(0) =0, B(1) = 1.
A(n) = 1,14 2,1 + 62 + 622, (1 + 2z)(1 + 10z + 102?), ...

1
B(n):0,1,%(1+2x),6(11+60z+60x2),%(1+2x)(5+42x+42x2),...
O(n) = B(n) _, 1 3(1+ 2z) 11 + 602 + 60>
A(n) 14227 2(1+ 62 + 622) 6(1 + 2x) (1 + 10z + 1022)" "
1 1 1
_ 1) = N
QU =R =) = i (11627658 nAm)A(n = 1)
. B(n) 1 1\ | = 1
P A(n) =g (HE) - ;nA(n)A(n—l)
11 1 1 1 1 .
OB =3, "2 T &d & 105 12ed O
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Explore Apéry limits

© Pick a binomial sum A(n).

Using creative telescoping, compute a recurrence satisfied by A(n).

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions

Armin Straub




Explore Apéry limits

© Pick a binomial sum A(n).
Using creative telescoping, compute a recurrence satisfied by A(n).
® Compute the initial terms of a secondary solution B(n) to the recurrence.
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Explore Apéry limits

© Pick a binomial sum A(n).

Using creative telescoping, compute a recurrence satisfied by A(n).
® Compute the initial terms of a secondary solution B(n) to the recurrence.
© Try to identify lim,,_, . B(n)/A(n),

either numerically or as a power series in an additional parameter.
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Explore Apéry limits

© Pick a binomial sum A(n).

Using creative telescoping, compute a recurrence satisfied by A(n).
® Compute the initial terms of a secondary solution B(n) to the recurrence.
© Try to identify lim,,_, . B(n)/A(n),

either numerically or as a power series in an additional parameter.

EG

Z —k .
aw  Use Z (Z) (n B )xk to rediscover the CF
k=0
z 1222 22,2 n2z2

t = = e
arctan(z) it 34 B Gnt Dt
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Explore Apéry limits

© Pick a binomial sum A(n).

Using creative telescoping, compute a recurrence satisfied by A(n).
® Compute the initial terms of a secondary solution B(n) to the recurrence.
© Try to identify lim,,_, . B(n)/A(n),

either numerically or as a power series in an additional parameter.

EG " /n\ /n—k &

i he CF
HW Usekzo(k>( B ):c to rediscover the C

z 1222 22,2 n2z2
1+ 3+ 5+  (@n+1)+

Y Start with kio (Z) (n + k) * and Z ( ) (n+ k) z*.

Compare findings with those by Zudilin on S|mu|taneous approximations to the
logarithm, dilogarithm and trilogarithm.

arctan(z) =

s
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Explore Apéry limits

© Pick a binomial sum A(n).

Using creative telescoping, compute a recurrence satisfied by A(n).
® Compute the initial terms of a secondary solution B(n) to the recurrence.
© Try to identify lim,,_, . B(n)/A(n),

either numerically or as a power series in an additional parameter.

HW

EG
HW

EG

bonus

Use Z (:) (n ; k) z* to rediscover the CF

2 1222 22 2 71222

1+ 3+ 5+  (@n+D+

Start with kio (Z) (n + k) * and Z ( ) (n+ k) z*.

Compare findings with those by Zudilin on S|mu|taneous approximations to the
logarithm, dilogarithm and trilogarithm.

arctan(z) =

n 2
For > (Z) (3k) determine and prove the Apéry limits.
i n
k=0

This is one of many cases conjectured by Almkvist, van Straten and Zudilin (2008)
for CY DE's. Can we establish all these limits in a uniform fashion?
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Approaches to proving Apéry limits

B
How to prove lim B = @?
n—oo A(n) 6
© Via explicit expressions: (Apéry, '78)
I /n\2n+k\ [« 1 u —1)m-1
o (T (£ St
i) Uk ) (55 " 2o
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Approaches to proving Apéry limits

How t lim S\ _
ow to proVe nl_{[;()m = T

© Via explicit expressions:

w150 <“+’f>2(_

@ Via integral representations:

[ [ s

(Apéry, '78)

(Beukers, '79)

dzdydz = A(n)((3) — 6B(n)
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Approaches to proving Apéry limits

B 3
How to prove lim B = @?
n—oo A(n) 6
© Via explicit expressions: (Apéry,

w-iS () <>(zzm)

@ Via integral representations: (Beukers,

/ / / A=) A=y A= D" s — Am)C(3) — 6B(n)

17 (1 —zy)z)ntt

© Via hypergeometric series representations: (Gutnik,

oo _ . _n 2
_% ; R (t) = A(n)C(3) — 6B(n), where Rn(f) = (%)

78)

'79)

79)
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Approaches to proving Apéry limits

How t lim S\ _
ow to proVe nl_{[;()m = T

© Via explicit expressions: (Apéry, '78)

w150 <“+’f>2(_

@ Via integral representations: (Beukers, '79)

/ / / A=) A=y A= D" s — Am)C(3) — 6B(n)

17 (1 —zy)z)ntt

© Via hypergeometric series representations: (Gutnik, '79)

oo _ . _n 2
_% ; R (t) = A(n)C(3) — 6B(n), where Rn(f) = (%)

® Via modular forms (Beukers '87, Zagier '03, Yang '07)
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Approaches to proving Apéry limits

How t lim S\ _
ow to proVe nl_{[;()m = T

© Via explicit expressions: (Apéry,
n n k
1 < ) (rz+k)2 1 (—=1)m-1
a 3 + n n—+m
SaEP> 25 )
@ Via integral representations: (Beukers,
n _ rL (1 _ U)n ”(1 _ Z)"' o
/ / / 1 — 1 ~ ) dzdydz = A(n)((3) — 6B(n)
© Via hypergeometric series representations: (Gutnik,

oo _ . _n 2
_% ; R (t) = A(n)C(3) — 6B(n), where Rn(f) = (%)

o Vla modular forms (Beukers '87, Zagier '03, Yang
© Via continued fractions (for recurrences of order 2)

78)

'79)

79)

'07)
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Continued fractions and Apéry limits

al a9 as al

C=——— =
b1+ bo+ b3+ b1+b2+“7%3 (bn # 0)

b3+

THM 1-1 correspondence between CFs and order 2 recurrences, such that

the value of the CF is an Apéry limit: C = lim B(n)
n—oo A(n)
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Continued fractions and Apéry limits

al a9 as al

C=——— =
b1+ bo+ b3+ b1+b2+“7%3 (bn # 0)

b3+

THM 1-1 correspondence between CFs and order 2 recurrences, such that

the value of the CF is an Apéry limit: C = lim B(n)
n—oo A(n)

® Here, A(n), B(n) are the solutions to u,, = byun—1 + antn_2o
with A(—1) =0, A(0) =1 and B(0) =0, B(1) = a;.
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Continued fractions and Apéry limits

C = al a9 as L al
bit bat bat T byt e (bn 70)
CR e

THM 1-1 correspondence between CFs and order 2 recurrences, such that
the value of the CF is an Apéry limit: C = lim B(n)

n—oo A(n)

® Here, A(n), B(n) are the solutions to u,, = byun—1 + antn_2o

with A(—1) =0, A(0) =1 and B(0) = 0, B(1) = a;.

. n B
proof The n-th convergent is C,, := — - (n). U
b1+ b2+ bn

Armin Straub
10 / 20
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Continued fractions and Apéry limits

al a9 as al

C=——— =
b1+ bo+ b3+ b1+bz+‘172% (bn # 0)

b3+

THM 1-1 correspondence between CFs and order 2 recurrences, such that

the value of the CF is an Apéry limit: C = lim B(n)
n—oo A(n)

® Here, A(n), B(n) are the solutions to u,, = byun—1 + antn_2o
with A(—1) =0, A(0) =1 and B(0) =0, B(1) = a;.

EG n
- Z ( ) (n N )x" solves (n + Vun1 = (22 +1)(2n + 1)uy, — naty_1.

=0
Let B(n) be the solution with B(0) =0, B(1) = 1.
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Continued fractions and Apéry limits

al a9 as al

C=——— =
b1+ bo+ b3+ b1+bz+‘172% (bn # 0)

b3+

THM 1-1 correspondence between CFs and order 2 recurrences, such that

the value of the CF is an Apéry limit: C = lim B(n)
n—oo A(n)

® Here, A(n), B(n) are the solutions to u,, = byun—1 + antn_2o
with A(—1) =0, A(0) =1 and B(0) =0, B(1) = a;.

EG n
Z (:) (n + k) 2* solves (n + Dupt1 = (22 + 1)(2n + Duy, — ntg_1.

=0
Let B(n) be the solution with B(0) =0, B(1) = 1.

Hence, n!A(n),n!B(n) solve u, 1 = 2z 4+ 1)(2n+1) uy — n? up_1.

byt1 An+1

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub 10




Continued fractions and Apéry limits

al a9 as al

C=——— =
b1+ bo+ b3+ b1+bz+‘172% (bn # 0)

b3+

THM 1-1 correspondence between CFs and order 2 recurrences, such that

the value of the CF is an Apéry limit: C = lim B(n)
n—oo A(n)

® Here, A(n), B(n) are the solutions to u,, = byun—1 + antn_2o
with A(—1) =0, A(0) =1 and B(0) =0, B(1) = a;.

EG n k
Z (:) (” * )xk solves (n + Dupt1 = (22 4+ 1)(2n + Duy, — nup, ;.
k=0 Let B(n) be the solution with B(0) = 0, B(1) = 1.
Hence, n!A(n),n!B(n) solve u, 1 = 2z 4+ 1)(2n+1) u, — n2 up_1.
bnt1 An+1
Apéry limit and equivalent CF:
B 1 12 22 1 1
lim (n): -~~:7ln<1+7)
n—oo A(n)  (2z41)— 32z +1)— 52z +1) — 2 T
Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub
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Franel numbers

DEF n s _
Franel  A(®) (ny Z are the (generalized) Franel numbers.
1894
k=0
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Franel numbers

DEF LR
ranel (S) = " i
A (n) kz_o <k) are the (generalized) Franel numbers.

o AN (p) =2n

Upt1 = 2Up
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Franel numbers

DEF LR
ranel (S) = " i
A (n) kz_o <k) are the (generalized) Franel numbers.

° A(l)(n) — 9n
Un+1 = 2up,
° A(Z) (n) = (27?)
(n+ Duptr =220 + u,

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub

11 /20



Franel numbers

Fana AO(m) =3 (™) are th lized) Franel numb
Franel A kZ_()( ) are the (generalized) Franel numbers.

o AN (p) =2n

Upt1 = 2Up

e A®)(n) = (2")

n
(n+ Duptr =220 + u,

° A(3)(n) =1,2,10,56, 346, 2252, 15184, 104960, 739162, . . .
(n 4 1) %upy1 = (Tn? + Tn + 2)uy, + 8n’up, 1 (Franel, 1894)
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Franel numbers

DEF LR
ranel (S) i
Franel | A kZ_()( ) are the (generalized) Franel numbers.
o AN (p) =2n
Un41 = 2uy,
[ ] A(Z) (n) = (27?)

(n+ 1)unt1 =2(2n + L)uy,

o A®)(n) =1,2,10,56,346, 2252, 15184, 104960, 739162, . . .
(n 4 1) %upy1 = (Tn? + Tn + 2)uy, + 8n’up, 1 (Franel, 1894)
o AW(p)=1,2,18,164,1810,21252, 263844, 3395016, 44916498, . . .
(n+ 1)3upyy = 2(2n + 1)(3n2 + 3n + 1)u, + 4n(16n2 — 1)u,_y (Franel, 1895)
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Franel numbers

DEF LR
Franel  A(%) (ny Z( ) are the (generalized) Franel numbers.

1894

k=0

o AN (p) =2n

Un41 = 2uy,

2 _ (2n
e A@)(n) = (n)

(n+ 1)unt1 =2(2n + L)uy,
o AB) (n) =1,2,10, 56, 346, 2252, 15184, 104960, 739162, . . .

(n 4 1) %upy1 = (Tn? + Tn + 2)uy, + 8n’up, 1 (Franel, 1894)
o AW (n) =1,2,18,164,1810, 21252, 263844, 3395016, 44916498, . . .

n+ 1)U, = 2(2n + 1)(3n2 4+ 3n + Du, + 4n(16n% — D)u,_ (Franel, 1895)
+

CONJ The minimal recurrence for A®) (n) has order L%lj

Franel,

1895  and degree s — 1. (spoiler: the degree part is not true)
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | = |

Franel,

1895 and degree s — 1.
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | = |

Franel,

1895  gnd s— 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | &L |

Franel,

1895 gnd s— 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping

dllal A (n) satisfies a recurrence of order [ = ].

Cusick '89 also constructs such recurrences.

OPEN Is that recurrence of minimal order?
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Franel's conjecture

CONJ The minimal recurrence for A®)(n) has order | = |

Franel,

1895 and degree 5 — 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping

dllal A (n) satisfies a recurrence of order [ = ].

Cusick '89 also constructs such recurrences.

OPEN Is that recurrence of minimal order?

CONJ The minimal recurrence for A*)(n) has order m = | 42| and

Bostan
2L 1 2

sm(m? —1)+1, for even s,

degree =

=

tm® — Im?+ Zm + 7(_1);_1, for odd s.

If true, the degree grows like s3/24.

® Verified at least for s < 20.

using MinimalRecurrence from the LREtools Maple package
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Franel's conjecture

CONJ The minimal recurrence for A*)(n) has order ||
1895 and degree 5 — 1.

® Perlstadt '86: order 3 recurrences for s = 5,6 of degrees 6,9
computed using MACSYMA and creative telescoping

THM  A()(n) satisfies a recurrence of order | ££1].
Stoll 97 2
Cusick '89 also constructs such recurrences.

OPEN Is that recurrence of minimal order?

CONJ The minimal recurrence for A*)(n) has order m = | 42| and

Bostan
21
im(m? —1) +1, for even s,
degree = (—1ym_1
%m3 — %mQ + %m + 57—, forodds.

If true, the degree grows like s3/24.

® Verified at least for s < 20.

using MinimalRecurrence from the LREtools Maple package

® Goal: The minimal telescoping recurrence for A*)(n) has order > | =t ].
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How to prove lower bounds for orders of recurrences?

EG P\ n+ k2
° Z(k> ( N ) . recurrence of order 2 (Apéry '78)
k=0
n - s
o Z( ) : recurrence of order [ | (Stoll '97)
k
k=0
Could there be recurrences of lower order? ... and higher degree

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub 13




How to prove lower bounds for orders of recurrences?

EG u 2+ k\?
° Z (Z) (nk ) : recurrence of order 2 (Apéry '78)
k=0
n - s
o Z( ) : recurrence of order [ | (Stoll '97)
k
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)

an algorithm to compute order 1 (right) factors of recurrence operators.
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How to prove lower bounds for orders of recurrences?

EG u 2+ k\?
° Z (Z) (nk ) : recurrence of order 2 (Apéry '78)
k=0
n - s
o Z( ) : recurrence of order [ | (Stoll '97)
k
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)

an algorithm to compute order 1 (right) factors of recurrence operators.

® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '04,

for computing factors of differen(tial/ce) operators. Zhou~van Hoeij 15, ..)
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How to prove lower bounds for orders of recurrences?

EG u 2+ k\?
° Z (Z) (nk ) : recurrence of order 2 (Apéry '78)
k=0
n - s
o Z( ) : recurrence of order [ | (Stoll '97)
k
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)

an algorithm to compute order 1 (right) factors of recurrence operators.

® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '04,
. . . Zhou-van Hoeij '19, ...
for computing factors of differen(tial/ce) operators. ourvan Hoel )
® For Franel numbers, order 1 can be ruled out for all s >3 (Yuan-Lu-Schmidt '08)
using congruential properties.
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How to prove lower bounds for orders of recurrences?

EG 2\ (n+k\?
[ ] 0 Ja
> (k) ( N ) . recurrence of order 2 (Apéry '78)
k=0
n - s 1
Yy (k) . recurrence of order |1 | (Stoll '97)
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)
an algorithm to compute order 1 (right) factors of recurrence operators.
® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '94,
for computing factors of differen(tial/ce) operators. Zhou~van Hoeij 15, ..)
® For Franel numbers, order 1 can be ruled out for all s >3 (Yuan-Lu-Schmidt '08)

using congruential properties.

If A(n+1)/A(n) — u for u € Q of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (Mclntosh '89)
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How to prove lower bounds for orders of recurrences?

EG 2\ (n+k\?
[ ] 0 Ja
> (k) ( N ) . recurrence of order 2 (Apéry '78)
k=0
n - s 1
Yy (k) . recurrence of order |1 | (Stoll '97)
k=0
Could there be recurrences of lower order? ... and higher degree
® For fixed sequence, order 1 can be ruled out using Hyper, (Petkoviek '92)
an algorithm to compute order 1 (right) factors of recurrence operators.
® There are algorithms for fixed recurrence operators (Beke 1894, Bronstein '94,
for computing factors of differen(tial/ce) operators. Zhou~van Hoeij 15, ..)
® For Franel numbers, order 1 can be ruled out for all s >3 (Yuan-Lu-Schmidt '08)

using congruential properties.
If A(n+1)/A(n) — u for u € Q of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (Mclntosh '89)

For Apéry numbers: p = (1 +/2)%.
For Franel numbers: 1 = 25. Not helpful!
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Solutions to the Franel number recurrences

THM . n n S () .
s-zudiin Any telescoping recurrence for <k) solved by A;”(n) if 0 <25 <.
4l k=0 (fine print: for large enough n)

—S

AG) (n, 1) == 1:0 (Z)S f[l (1 _ ;) nl:[f (1 4 ;) =3 A m) 2

Jj=0
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Solutions to the Franel number recurrences

THM SN
s-zudiin Any telescoping recurrence for <Z) solved by A;s)(n) if0<2j<s.

4l k=0 (fine print: for large enough n)

n n s k ¢ n—k ¢ - )
A (n,t) = ( ) H(l—é)H<1+7> = AP (n)t¥
’ - : J
im0 /i 17 A J 30
f S
E:?u:.)e © Suppose: P(n,N) (Z) =b(n,k+1)—b(n,k)
for a hypergeometric term b(n, k) = rat(n, k) (})".
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n s k — -
s n s j
A (n,t) = (k) H(l—f) H( ) =5 AV ) ¥
k=0 j=1 j=1 7>0

f S
E:?u:.)e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".
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Solutions to the Franel number recurrences

THM n
s-zudiin Any telescoping recurrence for Z <k) solved by A;s)(n) if0<2j<s.
2 k=0 (fine print: for large enough n)
n n s k — - )
A(S)(n7t) = (k) H (1 — 7) H ( ) — Z AES)(H) 27
k=0 j=1 j=1 j=0
f S
E:?u:.)e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
=t for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, 6 - t) - b(n, a — t) b(n, t) entire for n >0

k=a
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n n s k — - )
A9, 1) := (k) I1 (1 - f) I1 ( ) =Y A7) ¥
k=0 j=1 j=1 §>0
f S
E:?Ii?e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, ,8 - t) - b(n, a — t) b(n, t) entire for n >0

k=a

a<0and B>n = O(t) since b(n.t) = rat(n, t) (’:)

L]
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n n s k — - )
A9, 1) := (k) I1 (1 - f) I1 ( ) =Y A7) ¥
k=0 j=1 j=1 §>0
f S
E:?Ii?e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, ,8 - t) - b(n, a — t) b(n, t) entire for n >0

k=a

a<0and B>n = O(t) since b(n.t) = rat(n, t) (’:)

n s
Z ( ) (ts) omitted terms are O(t*)
k=0

L]
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Solutions to the Franel number recurrences

THM n

s-zudiin Any telescoping recurrence for Z < ) solved by A;s)(n) if0<2j<s.
21 P k

(fine print: for large enough n)
n n s k — - )
A9, 1) := (k) I1 (1 - f) I1 ( ) =Y A7) ¥
k=0 j=1 j=1 §>0
f S
E:?Ii?e © Suppose: P(n,N) (k " ) =bn,k—t+1)—b(n,k—t)
i for a hypergeometric term b(n, k) = rat(n, k) (})".

B-1 s
(2] P(n7 N) Z (k‘ 71 t) = b(n, ,8 - t) - b(n, a — t) b(n, t) entire for n >0

k=a

a<0and B>n = O(t) since b(n.t) = rat(n, t) (’:)

n s
Z ( ) (ts) omitted terms are O(t*)

k=0

0 AW (n,t) = (

s n
Tt

sin(7rt)

<kit>s and so P(n, N)A®) (n,t) = O(t*).

L]

k=0
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Apéry limits for Franel numbers

THM
s-zudilin Any telescoping recurrence for Z ( ) solved by A;s)(n) if0<2j<s.
21
k=0 (fine print: for large enough n)
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Apéry limits for Franel numbers

THM () 1 :
s-zudilin Any telescoping recurrence for Z ( ) solved by A;”(n) if 0 < 2j < s.
21 k=0 (fine print: for large enough n)
THM (s) s
S-Zudilin  1; 2@ = [t¥] L € 19Qx
21 n—oo A(S) (n) sm(7rt)
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Apéry limits for Franel numbers

THM () + -
s-zudilin Any telescoping recurrence for Z ( ) solved by A;”(n) if 0 < 2j < s.
21 k=0 (fine print: for large enough n)
THM (s) s
S-Zudilin iy 4, (n) =[] ( = mh € 19Qs0
21 pooo A 5)(n) sin(mt)

® Qur proof is based on showing locally uniform convergence in ¢ of

A (1) ; i( ) LHI (177) ﬁk (1+§>}

j=1

S
mt
im 2 = lim _ == .
n—0o o« /n\° n— 00 " <n)‘s 51n(7rt)
Z k=0

. k
P k
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Apéry limits for Franel numbers

THM () + -
s-zudilin Any telescoping recurrence for Z ( ) solved by A;”(n) if 0 < 2j < s.
21 k=0 (fine print: for large enough n)
THM (s) s
S-Zudilin iy 4, (n) =[] ( = mh € 19Qs0
21 oo A 5)(n) sin(mt)

® Qur proof is based on showing locally uniform convergence in ¢ of

L) ) (CP)

j=1

t #
i}m n s 1m n s = N (7rt) .
n—00 Z ’Il) n—00 Z(n) S
k=0 (

k

“poof” For large n and k = n/2,

-1 (o) =J10-5) () -2

J=1

O
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Apéry limits for Franel numbers

THM
s-zudilin Any telescoping recurrence for Z ( ) solved by A;s)(n) if0<2j<s.
21 k=0 (fine print: for large enough n)
THM (s) s
S-Zudilin  Jim M =[t¥] ( = mh € 1% Qsg
21 n—oo AG)(n) sin(mt)
s > N s(5s +2)
() - (5 )y 1 s o

J=1
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Apéry limits for Franel numbers

THM ()
s-zudilin Any telescoping recurrence for Z ( ) solved by A;”(n) if 0 < 2j < s.
2 k=0 (fine print: for large enough n)
THM (s) s
S-Zudilin iy 4, (n) =[] ( = mh € 19Qs0
21 pooo A 5)(n) sin(mt)
° - 2;\% _ o 8(5s+2) 4 6
<bm7r > (;( e 2) @2)7) =1+ ((2) £ + =@+ 0(t)
EG (s) s
j=1 lim B®(n) _ ! s¢(2) = <) B®(n) = A0 () =0,1,...
novoe AB)(n) T g(s41) s+1 AP )

A1) = s(s+1)
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Apéry limits for Franel numbers

THM () 1 :
s-zudilin Any telescoping recurrence for Z ( ) solved by A;”(n) if 0 < 2j < s.
21 k=0 (fine print: for large enough n)
THM (s) s
S-Zudilin M =[t¥] ( = mh € 1% Qsg
21 n—oo A(S) (n) sm(7rt)

<bm (nt >S (i ( 927 2> (Zj)f?.i)S =1+ s((2) * + @4(4) 4+ 0(t%)

Jj=1
EG B®(n 1 ¢(2 @
j=1 lim ( ) 5C(2) = ‘@ B(S)(n):Al (n)—o‘l..._
noo AG)(n)  g(s 4 1) s+1 AP()
® s = 3,4 numerically observed by Cusick (1979) A1) = s(s+1)
® s = 3 proved by Zagier (2009)
® s =5 conjectured by Almkvist, van Straten, Zudilin (2008)
L]

s > 3 conjectured by Chamberland—S (2020)
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Apéry limits for Franel numbers

THM () + -
s-zudilin Any telescoping recurrence for Z ( ) solved by A;”(n) if 0 < 2j < s.
21 k=0 (fine print: for large enough n)
THM (s) s
S-Zudilin M =[t¥] ( = mh € 1% Qsg
21 n—oo A(s) (n) sm(7rt)

<bm (nt )S (i ( 927 2> (Zj)r?.i)s =1+ s((2) * + @4(4) 4+ 0(t%)

Jj=1
EG B®)(n 1 ¢(2 ()
j=1 lim ( ) 5C(2) = ‘@ B®(n) = Al () =0,1,...
n—o0 A(g) (77,) S(S + 1) s+ 1 A(ls)(l)
® s = 3,4 numerically observed by Cusick (1979) a (s+1)
® s = 3 proved by Zagier (2009)
® s =5 conjectured by Almkvist, van Straten, Zudilin (2008)
L]

s > 3 conjectured by Chamberland—S (2020)

e i GO0 _ 12 (5s+2)
70 BN A ) T S5+ D)(s+2)(s +3)

® s > 5 conjectured by Chamberland-S (2020)

¢4) o®@)= A0 _ 01,...
AP
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Telescoping version of Franel’s conjecture

THM
s-zudiin Any telescoping recurrence for Z (k) has order at least L%J .
21 k=0
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Telescoping version of Franel’s conjecture

THM
s-zudiin Any telescoping recurrence for Z (k) has order at least L%J

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.
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Telescoping version of Franel’s conjecture

THM

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.

® The claim follows if these are linearly independent.

s-zudiin Any telescoping recurrence for Z (k) has order at least L%J
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Telescoping version of Franel’s conjecture

THM

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.
® The claim follows if these are linearly independent.
155
©0= ) XA ®)

s-zudiin Any telescoping recurrence for Z (k) has order at least L%J
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Telescoping version of Franel’s conjecture

THM
s-zudiin Any telescoping recurrence for Z (k) has order at least L%J

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.

® The claim follows if these are linearly independent.

Ls;lj = IJ A(S)( )
e 0= E AjA<5)(n) — 0= lim E Aj—2
= g n— o0 A(9
=
[
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Telescoping version of Franel’s conjecture

THM
s-zudiin Any telescoping recurrence for Z (k) has order at least L%J

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.

® The claim follows if these are linearly independent.

Ls;lj " s—lJ A(S)( ) Lq lj
— . = — J
©0= Z;J NAPM) = 0= lim Z o Z AM
2
[
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Telescoping version of Franel’s conjecture

THM
s-zudiin Any telescoping recurrence for Z (k) has order at least L%J

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.

® The claim follows if these are linearly independent.

L5 “ e OIS ) 125
— = — J
©0= Z;) NAP(m) = 0= lim Z ,\]A“ Z AM
"
O Transcendence of 7 implies that all A; are zero. [
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Telescoping version of Franel’s conjecture

THM
s-zudiin Any telescoping recurrence for Z (k) has order at least L%J

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.

® The claim follows if these are linearly independent.

L=z

L25*) “ L=z*) A9, )
— = — J
©0= Z;) NAP(m) = 0= lim Z ,\]A“ Z AM
"
O Transcendence of 7 implies that all A; are zero. [

® This implies Franel's conjecture on the exact order
if the minimal-order recurrence is telescoping. True at least for s < 30.
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Telescoping version of Franel’s conjecture

THM
s-zudiin Any telescoping recurrence for Z (k) has order at least L%J

21 k=0

f i : (s) . .
proot @ Any telescoping recurrence is solved by A;”(n) € Q if 0 <2j <.

Here, and below, we assume that n is large enough.

® The claim follows if these are linearly independent.

L=z

L25*) “ L=z*) A9, )
— = — J
©0= Z;) NAP(m) = 0= lim Z ,\]A“ Z Ajpim
= heg oo
O Transcendence of 7 implies that all A; are zero. [

® This implies Franel's conjecture on the exact order
if the minimal-order recurrence is telescoping. True at least for s < 30.
® Order could be reduced by a different representation such as:

20 -0
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When does creative telescoping fall short?

EG . n\ (dk
pale,  Consider Sy(n) =Y (~1)F .
Schorn k n
95 (=0
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When does creative telescoping fall short?

p'asli. Consider S;(n) = i(fl)k <Z) (d:)

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:

P(n, N)(—1)F (Z) <CZ“> = b(n, k + 1) — b(n, k)
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When does creative telescoping fall short?

e Consider Sy(n) = i(fl)k@) (Cff) = (=d)".

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:

P(n,N)H)kZ Yy, k+1) = b(n, k)

® However, Sg(n) = (—d)™ satisfies NS4(n) + dSq(n) = 0.
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When does creative telescoping fall short?

e Consider Sy(n) = i(fl)k@) (Cff) = (=d)".

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:

P(n,N)H)kZ Yy, k+1) = b(n, k)

® However, Sg(n) = (—d)™ satisfies NS4(n) + dSq(n) = 0.

® Open problem: When does CT fall short?
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When does creative telescoping fall short?

e Consider Sy(n) = i(q)k(’;) (Cff) = (=d)".

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:
P N (1) (T) = bk 1)~ b, By
® However, Sg(n) = (—d)™ satisfies NS4(n) + dSq(n) = 0.

® Open problem: When does CT fall short?
® (Can these cases be “fixed" by a different hypergeometric representation?
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When does creative telescoping fall short?

e Consider Sy(n) = i(fl)k@) (Cff) = (=d)".

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:
PN (1) () = otk + 1) = b
® However, Sg(n) = (—d)™ satisfies NS4(n) + dSq(n) = 0.

® Open problem: When does CT fall short?
® (Can these cases be “fixed" by a different hypergeometric representation?

EG 20 2n 2 2n (371)'

iese ’ i -1 L = (=" . :
e on Consider ) )(k) (k'—l) Y = D@ T 1)
symmetriz-

ing”

Armin Straub
17 / 20
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When does creative telescoping fall short?

e Consider Sy(n) = i(fl)k@) (Cff) = (=d)".

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:

P(n, N)(—1)F (Z CZ“ = b(n, k +1) — b(n, k)
® However, Sg(n) = (—d)™ satisfies NS4(n) + dSq(n) = 0.

® Open problem: When does CT fall short?

® (Can these cases be “fixed" by a different hypergeometric representation?

EG 2n 2 2 9 |
EG _ (20 n\ (3n)!
o Y ) (2 =0 = Tmrny

symmetriz-
" ® CT produces order 2 recurrence on summand a(n, k), but
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When does creative telescoping fall short?

e Consider Sy(n) = i(fl)k@) (Cff) = (=d)".

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:

P(n, N)(—1)F (Z CZ“ = b(n, k +1) — b(n, k)
® However, Sg(n) = (—d)™ satisfies NS4(n) + dSq(n) = 0.

® Open problem: When does CT fall short?

® (Can these cases be “fixed" by a different hypergeometric representation?

EG 2 2n\2/ 2n (3n)!
iese ’ i =il k =(-1" : .
fiese 01 Consider ;< ) (k) (k - 1) e T T
"™ e CT produces order 2 recurrence on summand a(n, k), but
2n — 2k +1
. 1 Mm—k1)= LT .
order 1 on a(n, k) +a(n,2n —k+1) Sy a(n, k)
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When does creative telescoping fall short?

e Consider Sy(n) = i(q)k(’;) (Cff) = (=d)".

Schorn
05 k=0
® Any telescoping recurrence P(n, N) has order > d — 1:
PN (1) () = otk + 1) = b
® However, Sg(n) = (—d)™ satisfies NS4(n) + dSq(n) = 0.

® Open problem: When does CT fall short?

® (Can these cases be “fixed" by a different hypergeometric representation?

e o 2n\?( 2n (3n)!
iese ’ i -1 Ls =(=1)" . )
R t.01 Consider ;( ) (k) (k B 1) (-1 M= 1120+ 1)
" e CT produces order 2 recurrence on summand a(n, k), but
2n —2k +1
L4 1 2n — )=2-_="1- )
order 1 on a(n, k) +a(n,2n —k+1) Sy a(n, k)

Studying a huge number of practical applications one is tempted to conjecture
that Zeilberger's algorithm always returns the recurrence with minimal order.

Peter Paule, Markus Schorn, Journal of Symbolic Computation, 1995
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Modularity and Apéry limits

n
® let A(n Z ( ) ( ) be Zagier's sporadic sequence C. 1,3,15,93,. ..
k=0
THM w
Zagier '09 ,'7( A < (67-) )
(7 (67)2 ;0 27 Pn(37)
I—I
modular form modular function
f(r) =1+3q+3¢*+3¢% + O(q?) 2(1) = ¢ —4¢* +10¢* + O(q*) q = e¥mim
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Modularity and Apéry limits

® let A(n Z ( ) ( ) be Zagier's sporadic sequence C. 1,3,15,93,. ..
k=0
THM
Zagier '09 ,'7( Z A < (67-) >
(P67 2 S(37)?

modular function

2(1) = q — 4¢%> +10¢® + O(q

modular form

f(T) =1+3¢+ 3¢+ 3¢+ O0(¢)

4) q= eZTriT

* Context: f(r) modular form of weight k
2(7) modular function
y(xz) such that y(x(7)) = f(1)

Then y(z) satisfies a linear differential equation Ly = 0 of order k + 1.

Armin Straub
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Modularity and Apéry limits

® let A(n Z ( ) ( ) be Zagier's sporadic sequence C. 1,3,15,93,. ..
k=0

THM n
Zagier '09 ,'7( Z A ( (67’) >

(P67 2 278 (37)?

|—|

modular form modular function
a(r) =q—4¢° +10¢> + O(¢") ~ q=¢€""

f(T) =1+3¢+ 3¢+ 3¢+ O0(¢)

* Context: f(r) modular form of weight k
2(7) modular function
y(xz) such that y(x(7)) = f(1)

Then y(z) satisfies a linear differential equation Ly = 0 of order k + 1.

® Solutions to Ly = rat(x) are of the form y(x) times an Eichler integral of

Dx M pat(x
h(T) = ( L(T)> rat(z(r)) (a modular form of weight k + 2) (Yang '07)
a(7) 1) e ad
dq
If chq“ is a modular form of weight k + 2, then Z ni:'lq" is an Eichler integral.

n>1

n=1
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Modularity and Apéry limits

eZTrZT

® let A(n Z ( ) ( ) be Zagier's sporadic sequence C. 1,3,15,93,. ..
k=0
THM
Zagier '09 ,'7( Z A < (67-) )
(P67 2 S(37)?
modular form modular function
f(7) =1+3q+3¢* +3¢* + O(¢") (1) = q — 4¢> + 10¢*> + O(¢") q=

)= A" = F(z(r)) = f(r)

n>0

7= Y B = G =10 Y
n>1

n=0
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Modularity and Apéry limits

® let A(n Z ( ) ( ) be Zagier's sporadic sequence C. 1,3,15,93,. ..
k=0
n
Z-:—g!;ir“'{]lg 77( Z A < ) (67_) )
(7P (67)2 ) 2r)en(37)"
modular form modular function
f(T) =1+3¢+ 3¢+ 3¢+ O0(¢) 2(1) = ¢ — 4¢%> + 10¢® + O(¢%) q = e

)= A" = F(z(r)) = f(r)

n>0 _ N
n=Y Bt = Ga) =iy
n=0 n=1
@ = lim i)
A )~ 2 F @)

characteristic roots 1,9

F(z),G(z) have radius of convergence R =
() — LF

B
G(z) (x) has radius of convergence B’ =1>} for L= lim (n)

nms Aln)’
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® let A(n Z ( ) ( ) be Zagier's sporadic sequence C. 1,3,15,93,. ..
k=0
n
Z-:—g!;ir“'{]lg 77( Z A < ) (67_) )
(7P (67)2 ) 2r)en(37)"
modular form modular function
f(r) =1+3q¢+3¢* +3¢° + O(¢*) a(r) =q—4¢° +10¢> + O(¢") ~ q=¢€""

)= A" = F(z(r)) = f(r)

n>0

7= Y B = G =10 Y
n>1

n=0
Bn) _ . G@) .. G()
lim = lim = lim
characteristic roots 1,9 z(1) = % forr=00rg=1
F(z),G(z) have radius of convergence R = B
G(x) — LF(z) has radius of convergence B’ =1>}for L= lgn A((”;'
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Modularity and Apéry limits

n

® let A(n Z ( ) ( ) be Zagier's sporadic sequence C.

k=0

SIHIN) n(27)°n(37) )y
(o672 ) =2_ A ( 2 )

n=0

modular form modular function

f(T) =1+3¢+ 3¢+ 3¢+ O0(¢) 2(1) = ¢ — 4¢* + 10¢® + O(¢*

)= A" = F(z(r)) = f(r)

n>0

v) =Y Bme" = Glalr) = ()Y
1

n=0 n>=

Bn) _ . G@) _, G _ .
lim = lim = lim = lim
nooo A(n) 4oL F(z) 0 F(x(7)) ¢l
9 n=1
characteristic roots 1,9 z(1) = % forr=00rg=1
F(z),G(z) have radius of convergence R = B
G(x) — LF(z) has radius of convergence B’ =1>}for L= lgn A((”;

1,3,15,93,. ..

2miT

qg=e
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Conclusions and some open questions

® Applications of Apéry limits:
® |rrationality proofs for ((2) and ((3)
® Explicitly construct the solutions guaranteed by Perron's theorem
® Continued fractions
® Prove lower bounds on orders of recurrences new!
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Conclusions and some open questions

® Applications of Apéry limits:
® |rrationality proofs for ((2) and ((3)
® Explicitly construct the solutions guaranteed by Perron's theorem
® Continued fractions
® Prove lower bounds on orders of recurrences new!

® Many open questions! For instance:

® Cusick '89 and Stoll '97 construct recurrences for Franel numbers.
Can these constructions produce telescoping recurrences?
® What can we learn from other families of binomial sums?
Also, it would be nice to simplify some of the technical steps in the arguments.
® Can we (uniformly) establish the conjectural Apéry limits for CY DE's?
® Can we explain when CT falls short? And algorithmically “fix" this
issue?
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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