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BaSiC q'analogs g-binomial coefficients

IDEA A g-analog reduces to the classical object in the limit ¢ — 1.

DEF n—1
e g-number: [n], = 4 =1+4+q+...¢" ¢
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BaSiC q'analogs g-binomial coefficients

IDEA A g-analog reduces to the classical object in the limit ¢ — 1.

DEF e g-number: [n]q = qq __11 =1+4q+. ”qnfl
 aactorsl it = [ o 1,11, = (L

For g-series fans:

D]_ e g-binomial: (Z) - |[”]q! _ (q;q.)n
q q g
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BaSiC q'analogs g-binomial coefficients

IDEA A g-analog reduces to the classical object in the limit ¢ — 1.

DEF e g-number: [n]q = qq __11 =1+4q+. ”qnfl
 aactorsl it = [ o 1,11, = (L

For g-series fans:

o 5 - . Yy _ i = (:9)
D]_ g-binomial: <k>q =, [nq_ K (@ k(@ Dnr

EG 6\ 6-5
B)=
6\ _(U+e+@++a'+)(A+a++d°+qY)
2[17 1+g¢
=(1-q+)1+q+@)1+q+*+7 +q")
=13], =[5],
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BaSiC q'analogs g-binomial coefficients

IDEA A g-analog reduces to the classical object in the limit ¢ — 1.

DEF e g-number: [n]q = qq __11 =1+4q+. ”qnfl
 aactorsl it = [ o 1,11, = (L

For g-series fans:

o 5 - . Yy _ i = (:9)
D]_ g-binomial: <k>q =, [nq_ K (@ k(@ Dnr

EG 6 6-5
= - 3 . 5
(6)=%
6\ _(U+e+@++a'+)(A+a++d°+qY)
2 7 o 1 +q
(1) = 1 =(1-q+@)(1+q+)A+aq+*+ +q*)
becomes invisible —®g(q) :[3](1 :[5]q
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CyClOtomiC pOlynomials g-binomial coefficients

DEF The nth cyclotomic polynomial:

®u(g)= [] (@—¢" where ¢ = ¢*™/"

1<k<n
(k,n)=1
irreducible polynomial (nontrivial; Gauss!) with integer coefficients
q" -1 :
° [n]q =T 1= H Dy(q) For primes: [p], = ®,(q)
q 1<d<n

dln

EG
P5(q)=¢*"+¢* +q*+q+1

P0(0)=¢"-¢"+ -+ —"+F —q+1
®105(q) = g% + ¢'7 + g% — ¢® — ¢12 — 2" — g0 _ ¥
F PP+ 4 PP 4P+ P — P — 26—
- B SRS L QTR L L B C SIS T SRR
=2 - -+ +q+1

9
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g-binomials: factored and expanded

g-binomial coefficients

LEM

| n _ _ _
factored (n> — '[n]Q' ' — H (I)d(q) |_’I'L/dJ Lk/dJ L(?’L k)/dJ
k), [klg!n —klg! e € {0,1}

proof n Ln/dJ

ot =TI T 2t H

m=1 d|lm d=2
d‘>1 L]

e |n particular, the g-binomial is a polynomial. (of degree k(n — k))
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g-binomials: factored and expanded

g-binomial coefficients

LEM

n nl,! @ n/d| — |k/d| — |(n—k)/d
factored (k> _ [k] '% ]q_ k] ' _ Hq)d(q) |_ / J L / J L( E{O i{ J
. gn s :
proof n
[n],! = H H ®,4(q H Ln/dJ
m=1 d|lm d=2
d‘>1 L]
e |n particular, the g-binomial is a polynomial. (of degree k(n — k))
EG 6\ _ s 7 6 5 4 3 2
i o) =1 +q"' +2¢° +2¢°+3¢ +2¢° +2¢" +q+1
q
9
(3) — ¢'® + q'7 + 2¢'0 4 3¢5 + 4¢M 1 5¢'3 + 742
q +7q11—1—8(]10+8q9+8q8+7q7+7q6+5q5
+4¢" +3¢° +2¢° + g+ 1
o The coefficients are positive and unimodal. Sylvester, 1878
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g-binomials: combinatorial ) e

THM n normalized sum of Y’
(k) = Zq“’(y) where w(Y') = Zyj —j
v ; D2
The sum is over all k-element subsets Y of {1,2,...,n}.
EG
{1 2} {1 3} {1 4} {2 3} {2 4} {3 4}

SN\ W

() =1+q+2¢*+@P+¢*
q
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g-binomials: combinatorial ) e

THM n normalized sum of Y’
(k) = qu(y) where w(Y') = Zyj —j
v ; D2
The sum is over all k-element subsets Y of {1,2,...,n}.
EG
{1 2} {1 3} {1 4} {2 3} {2 4} {3 4}

SN\ W

() =1+q+2¢*+@P+¢*
q

The coefficient of ¢™ in (Z)q counts the number of

e k-element subsets of n whose normalized sum is m,
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g-binomials: combinatorial ) e

THM n normalized sum of Y’
(k) = qu(y) where w(Y') = Zyj —j
v ; D2
The sum is over all k-element subsets Y of {1,2,...,n}.
EG
{1 2} {1 3} {1 4} {2 3} {2 4} {3 4}

SN\ W

() =1+q+2¢*+@P+¢*
q

The coefficient of ¢™ in (Z)q counts the number of
e k-element subsets of n whose normalized sum is m,

e partitions A of m whose Ferrer's diagram fits in a
k x (n — k) box.
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g-binomials: three characterizations ) e

THM The g-binomial satisfies the g-Pascal rule:

(), G2, (%), D3
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g-binomials: three characterizations

g-binomial coefficients

THM The g-binomial satisfies the g-Pascal rule:
= q
k), k-1), k /,

THM n
(k) = number of k-dim. subspaces of Fy
q

D3

D4
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g-binomials: three characterizations ) e

THM The g-binomial satisfies the ¢g-Pascal rule:

(),- G2y, =), D3
THM (n

k> = number of k-dim. subspaces of Iy D4
q

THM Suppose yz = gxy (and that ¢ commutes with z,y). Then:

(z+y)" = é (Z) quy”"“ D5
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q-CaICUIUS g-binomial coefficients

DEF The g-derivative:
flgz) — f(z)
qr — x

Dy f(x) =

EG _ (gp)" =" ¢"—1

n—1 _
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q-CaICUIUS g-binomial coefficients

DEF The ¢-derivative: ® Dyeg =eg .
x) — T e er .Y =Y
qu(l') = w prgvidedqthat qu: qzy
— —z
q ® el - €1)q = 1
EG ) — ™ n_ 1
DqCL‘n — (q ) — q mn—l [n] xn—l
qr — q—1 g
. o~ z" >\ (z(1 — )" 1
e The ¢g-exponential: ef = = =
! ;;; [n],! nz;; (¢ Dn (z(1 - 9);0)e
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q-CaICUIUS g-binomial coefficients

DEF The ¢-derivative: ® Dyeg =eg .
z) — f(x o % .Y = ety
qu(l') = w prgvidedqthat qu: qzy
q ° eg el = 1
Dq.fl,‘n — (qm) x _ q Z‘n_l [n]q xn_l
qr — T q—1
. o~ z" >\ (z(1 — )" 1
o The g-exponential: ¢f = = =
e ! nZ:O [n],! nz;; (% D)n (1= q);q)oo
e The q—integra|: from formally inverting Dy
f@)dgz = (1-q)> q"zf(q"x)
0 n=0
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q-CaICUIUS g-binomial coefficients
DEF The ¢-derivative: ® Dyeg =eg .
x) — f(x o ¥ .Y =efTY
qu(l') = fi(q ) f( ) prgvidedqthat yacq: qry
qr — 06?617221
EG ) — ™ n_ 1
D);a5" = (g2) _ 4 " =[n] 2™t
qr — q—1 g
) — " L (z(1—g))" 1
e The ¢g-exponential: ef = = =
! ;;; [n],! nz;; (¢ Dn (z(1 - 9);0)e
e The q—integra|: from formally inverting Dy
xr o0
[ 1@ dei=0-0 > aafa)
0 n=0

e The g-gamma function: D6

s =s s 5) = Oomsflefz x
Lo+ 1) =B, Ta(s) | Tafe) | e,

o(n+ 1) = [
Can similarly define g-beta via a g-Euler integral.
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Summary: the g-binomial coefficient S e

The g-binomial coefficient has a variety of natural characterizations:

(n) N ) P (X )
k), kI =kl (@ @)e(@ On—r
e Via a g-version of Pascal’s rule

e Combinatorially, as the generating function of the element sums of
k-subsets of an n-set

* Geometrically, as the number of k-dimensional subspaces of Fy
e Algebraically, via a binomial theorem for noncommuting variables
e Analytically, via g-integral representations

e Not touched here: quantum groups arising in representation theory and
physics

Negative thinking and polynomial analogs Armin Straub 8 /40




Binomial coefficients with

integer entries

Daniel E. Loeb
Sets with a negative number of elements
Advances in Mathematics, Vol. 91, p.64-74, 1992

1989: Ph.D. at MIT (Rota)
1996+: in mathematical finance
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A function in two variables Negative binomials

— —T

This scale is also visible along the line y = 1.
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A function in two variables Negative binomials

"7l Thisis a plot of:

(w) _ T(z+1)
y) Ty+l(z—-y+1)

Defined and smooth on R\{z = —1,-2,...}.

This scale is also visible along the line y = 1.

. no evidence that the graph of C' has ever been plotted before ...
David Fowler, American Mathematical Monthly, Jan 1996

Negative thinking and polynomial analogs Armin Straub 10 / 40




A function in two variables Negative binomials

"7l Thisis a plot of:

(w) _ T(z+1)
y) Ty+l(z—-y+1)

Defined and smooth on R\{z = —1,-2,...}.

Directional limits exist at integer points:
—2+¢ 1. T(-1+¢)
= —lim ——~ =

21 e»0 (=3 +re)
(=n"1

since ['(—n+¢) = .

+0(1)

This scale is also visible along the line y = 1.

. no evidence that the graph of C' has ever been plotted before ...
David Fowler, American Mathematical Monthly, Jan 1996
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A function in two variables Negative binomials

77 /i Thisis a plot of:

(w> _ T(z+1)
y) Ty+l(z—-y+1)

Defined and smooth on R\{z = —1,-2,...}.

Directional limits exist at integer points:

hm<—2+a> 11. I'(—1+e¢)

= — lim =
e—0 \—4+re 21 e»0 (=3 +re)
-1)"1
since ['(—n+¢) = #— +0(1)
n! ¢
DEF For all z,y € Z:
2\ im Nx+1+¢)
This scale is also visible along the line y = 1. Yy T e—0 F(y —+ 1 + E)F(.’L‘ -y + 1 + E)
. no evidence that the graph of C' has ever been plotted before ...
David Fowler, American Mathematical Monthly, Jan 1996
Negative thinking and polynomial analogs Armin Straub
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Sets with a negative number of elements Negative binomials

DEF Hybrid sets and their subsets
negative multiplicity
{ ]" ]‘7 4 | 2’ 3’ 3 }

positive multiplicity
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Sets with a negative number of elements

Negative bino

mials

DEF Hybrid sets and their subsets

negative multiplicity
{1’]‘74| 2’3’3}

positive multiplicity

Y C X if one can repeatedly remove elements from X and
thus obtain Y or have removed Y.

removing = decreasing the multiplicity of an element with nonzero multiplicity

EG Subsets of {1,1,4|2,3,3} include:

(remove 4) {41}, {1,1]2,3,3}
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Sets with a negative number of elements

Negative bino

mials

DEF Hybrid sets and their subsets
negative multiplicity
{ ]" ]‘7 4 | 2’ 3’ 3 }

positive multiplicity

Y C X if one can repeatedly remove elements from X and
thus obtain Y or have removed Y.

removing = decreasing the multiplicity of an element with nonzero multiplicity

EG Subsets of {1,1,4|2,3,3} include:

(remove 4) {41}, {1,1]2,3,3}
(remove 4,2, 2) (2,2,4|}, {1,12,2,2,3,3}

Note that we cannot remove 4 again. {4,4]|} is not a subset.

Negative thinking and polynomial analogs Armin Straub
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Counting subsets of hybrid sets Negative binomials

3 elements: —4 elements:
* New sets: {24} or  {[1,2,4,5)
all multiplicities 0, 1 all multiplicities 0, —1

THM For all integers n and k, the number of k-element subsets of an
Loeb o
1992 n-element new set is ‘(Z)‘

EG A usual set like {1,2, 3|} only has the usual subsets.
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Counting subsets of hybrid sets Negative binomials

3 elements: —4 elements:
* New sets: {24} or  {[1,2,4,5)
all multiplicities 0, 1 all multiplicities 0, —1

THM For all integers n and k, the number of k-element subsets of an
Loeb o
1992 n-element new set is ‘(Z)‘

EG A usual set like {1,2, 3|} only has the usual subsets.

nEG,g o (;3>' = 6 because the 2-element subsets of {|1,2,3} are:
Ly, {21y {3l {220 {230 {33}
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Counting subsets of hybrid sets Negative binomials

3 elements: —4 elements:
* New sets: {24} or  {[1,2,4,5)
all multiplicities 0, 1 all multiplicities 0, —1

THM For all integers n and k, the number of k-element subsets of an
Loeb o
1992 n-element new set is ‘(Z)‘

EG A usual set like {1,2, 3|} only has the usual subsets.

<_23>' = 6 because the 2-element subsets of {|1,2,3} are:

{L1}, {20y {13} {22}, {23}, {331}

<_3>' = 3 because the —4-element subsets of {|1,2, 3} are:

{1,1,2,3}, {]1,2,2,3}, {|1,2,3,3}

Negative thinking and polynomial analogs Armin Straub
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The binomial theorem

Negative binomials

THM

1992

Here, we extract appropriate coefficients:

Qg

{a*}f(2) =

bx,

n

oeb  For all integers n and k, (k) = {z"}(1 + 2)™

if k>0

around z = 0O:

flz) = Z apz®

k>ko

if k<0

around z = oo:

fl@)=> bja*

k>ko

Negative thinking and polynomial analogs
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The binomial theorem Negative binomials

THM .
oeb  For all integers n and k, (n) = {z"}(1 + 2)™
1992 k
Here, we extract appropriate coefficients: around @ — O:
ap | ifk>0 f@)=>" apa*
{a"}f(a) =
b | ifk<O - :
fl@) = bja*
k>ko
EC  (1+4+2)3=1-3z+62%— 102 +152* + O(z®) asz—0
(1+z)3=23-3c7*4+6x7°4+0(z%) as & — 00
H , for inst , — _
ence, for instance 3 — 15 3 _6
4 -5

Negative thinking and polynomial analogs Armin Straub
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g-binomial coefficients with
integer entries

DEF For all integers n and k,

S. Formichella, A. Straub
Gaussian binomial coefficients with negative arguments
Annals of Combinatorics, 2019
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The g-binomial theorem

Negative g-binomials

THM
Famicela Suppose yx = qry. For n,k € Z, <Z> = {zFy"F}(z + )"
q

Again, we extract appropriate coefficients:

{aFy" Y f(m,y) =

ak

by

ifk>0

if k<0

around z = 0:

f@) = 3 araky

k>ko

around z = oo:

f(.’IZ) _ Z b_kxfkynJrk

k>ko

Negative thinking and polynomial analogs

Armin Straub
15 / 40




The g-binomial theorem

Negative g-binomials

THM
Famicela Suppose yx = qry. For n,k € Z, <Z> = {zFy"F}(z + )"
q

Again, we extract appropriate coefficients:

ak

ifk>0

{aFy" Y f(m,y) =
by

if k<0

EG

—il
=Y

(3), >

k>0

(z+y) =y ey + D7

DD @y

k>0

(71)kq—k(k+1)/2

around z = 0:

f@) = 3 araky

k>ko

around z = oo:

f(.’IZ) _ Z b_kxfkynJrk

k>ko

kE —k—1

Negative thinking and polynomial analogs

Armin Straub
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Counting subsets of hybrid sets, g-version Negative q-binomials

g Forallnkez, (1) =e3q" 0002 g
S 2019 k p =

The sum is over all k-element subsets Y of the n-element set | X,

e=1if0<k<n e=(-DFifn<0<k e=(-D" Fifk<n<o.
o {0,1,....n—=1]} fn=>=0 a(Y) :ZMy(y)y
{1-1,-2,...,n} ifn<0 yey
My (y) is the multiplicity of y in Y.

Negative thinking and polynomial analogs Armin Straub 15




Counting subsets of hybrid sets, g-version Negative q-binomials

g Forallnkez, (1) =e3q" 0002 g
S 2019 k p =

The sum is over all k-element subsets Y of the n-element set

Xn

e=1if0< k< n. e=(-)Fifn<o<k e=(—1)""Fifk<n<o.

n .

{|-1,-2,...,n} ifn<0 yey

EG The —4-element subsets of X 3 = {| — 1, -2, -3} are:

n=—3

:{{0,1,...,n—1|} ifn>0 o(V)i= 3 My(

Y)Yy

My (y) is the multiplicity of y in Y.

{1-1,-1,-2,-3}, {|-1,-2,-2,-3}, {]-1,-2,-3,-3}

o=17 oc=28 oc=9
-3 _ _ — (k=
Hence, (_4) =—(¢3+q¢g2+q71). (subtract X1 — 1)
q
Negative thinking and polynomial analogs Armin Straub
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Conventions for binomial coefficients Negative q-binomials

Option advertised here: Alternative:

™) .= lim i -Fe) (n) — if k<0
k e0D(k+1+e)l(n—k+1+¢) k
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Conventions for binomial coefficients Negative q-binomials

Option advertised here: Alternative:
™) = lim HChtth L) (n) =0 ifk<0
k e0D(k+1+e)l(n—k+1+¢) k
e Pascal’s relation if (n, k) # (0,0) e Pascal's relation for all n,k € Z

0-Go (Y
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Conventions for binomial coefficients Negative q-binomials

Option advertised here: Alternative:
™) = lim HChtth L) (n) =0 ifk<0
k e0D(k+1+e)l(n—k+1+¢) k
e Pascal’s relation if (n, k) # (0,0) e Pascal's relation for all n,k € Z
n\ (n—1 n n—1
k) \k-1 k
e used in Mathematica (at least 9+) e used in SageMath (at least 8.0+)
e used in Maple (at least 18+)

EG Binomial[-3, -5]
> 6
QBinomial [-3, -5, q]
> 0

Similarly, expand (QBinomial(n,k,q)) in Maple 18 results in a division-by-zero error.
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Application: Lucas congruences Negative g-binomials

THM Let p be prime. For integers n, k > 0,

(1) = () E)E) - ot

1878
where n;, respectively k;, are the p-adic digits of n and k.

EG 19 5 9 LHS = 75, 582
= =5.-2=
(H) (4) (1) 5.223  (mod?)

Negative thinking and polynomial analogs Armin Straub 18 / 40




Application: Lucas congruences

Negative g-binomials

THM Let p be prime. For all integers n, k,

(ZS) (Zi) (Zz) ... (modp),

1878
where n;, respectively k;, are the p-adic digits of n and k.

" NE
)=
EG 19 5 9 LHS = 75, 582
(11) = (4) (1> =5-2=3 (mod7)
EG 11 3 5 6 G LHS = 43,758
()= ()0 () (e) =002t mean

Note the (infinite) 7-adic expansions:

Ll
—11=3+5-T4+6-T+6-7 +... g

—19=24+4-T+6-T24+6-T>+...

Negative thinking and polynomial analogs

Armin Straub
18 / 40



Application: ¢-Lucas congruences

Negative g-binomials

THM Let m > 2 be an integer. For integers n, k > 0,

(Dq _ (Zg)q(z:) (mod ®,,,(q)),

n=ng+n'm
k=ko+Kkm

Désarménien
19

where

B. Adamczewski, J. P. Bell, and E. Delaygue.
Algebraic independence of G-functions and congruences "a la Lucas”
Annales Scientifiques de I'Ecole Normale Supérieure, 2016

with ng, kg € {0,1,...,77”1,—1}.
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Application: ¢-Lucas congruences

Negative g-binomials

THM Let m > 2 be an integer. For all integers n, k,

(Z>q _ (Zs)q@:) (mod ®,,,(q)),

n=ng+n'm
k=ko+Kkm

Désarménien
19

Formichella
S 2019

where with ng, ko € {0,1,...,m — 1}.

B <j€1)>q - @)q (:?))) =-2(1+q+¢°) (modds(q))

1

o LHS:W(1+q+2q2+3q3+5q4+...+q80)

® ¢ =1 reduces to (~
B. Adamczewski, J. P. Bell, and E. Delaygue.

Algebraic independence of G-functions and congruences "a la Lucas”
Annales Scientifiques de I'Ecole Normale Supérieure, 2016

Negative thinking and polynomial analogs
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Advertisement: More Lucas congruences

Negative g-binomials

Apéry’s proof of the irrationality of ((3) centers around:

am=> (1) (")

k=0

Negative thinking and polynomial analogs
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Advertisement: More Lucas congruences et T

Apéry’s proof of the irrationality of ((3) centers around:

am=> (1) (")

k=0
Pt A(n) = A(ng)A(m1) --- A(ny)  (modp),
1982

where n; are the p-adic digits of n.

o Gessel's approach generalized by Mclntosh (1992)

R. J. MclIntosh
A generalization of a congruential property of Lucas.
Amer. Math. Monthly, Vol. 99, Nr. 3, 1992, p. 231-238
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Advertisement: More Lucas congruences et T

Apéry’s proof of the irrationality of ((3) centers around:

am=> (1) (")

k=0

ot A(n) = A(ng)A(n1) -~ A(n,)  (modp),

1982

where n; are the p-adic digits of n.

o Gessel's approach generalized by Mclntosh (1992)
® 6+ 6 + 3 sporadic Apéry-like sequences are known.

THM Every (known) sporadic sequence satisfies these Lucas congruences

Malik-S 0
2015 modulo every prime.

A. Malik, A. Straub
Divisibility properties of sporadic Apéry-like numbers
Research in Number Theory, Vol. 2, Nr. 1, 2016, p. 1-26

R. J. MclIntosh
A generalization of a congruential property of Lucas.
Amer. Math. Monthly, Vol. 99, Nr. 3, 1992, p. 231-238

Negative thinking and polynomial analogs Armin Straub
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Application: Apéry number supercongruences Negative g-binomials
The Apéry numbers

n 2 2
n n+k
A =
k=0
satisfy many interesting properties, including supercongruences: > 5 prime

B Ap'm —1)=A@p"'m —1)  (modp®)
1985
P A(p'm) = A(p"'m)  (modp®")

1988

Negative thinking and polynomial analogs Armin Straub 21/ 40




Application: Apéry number supercongruences Negative g-binomials
The Apéry numbers

am=> (1) ("1

k=0
satisfy many interesting properties, including supercongruences: > 5 prime
THM —
Beukers Ap'm —1)=A@p"'m —1)  (modp®)
THM —
Coster A(p'm) = A(p"~'m)  (modp®)
2 2

e Extend A(n) to integers n: _ n\"(n+k

A= 4 k

keZ

e [t then follows that: A(=n) = A(n — 1)

Uniform proof (and explanation) of Beukers/Coster supercongruences

Negative thinking and polynomial analogs Armin Straub
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Log-concavity and binomial
coefficients

‘ ‘ So you think nothing new can be said about
the binomial coefficients? , ,
Victor H. Moll, 2008 £+ ¢
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Log-concavity of the binomial coefficients ey

DEF A sequence (a,) is log-concave if a2 > a,_1an41.

e Log-concavity (plus positivity) implies unimodality.

e Any concave nonnegative sequence is log-concave.

e Binomial coefficients (Z) are log-concave for every fixed n or fixed k.
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Log-concavity of the binomial coefficients

Log-concavity

DEF A sequence (a,) is log-concave if a2 > a,_1an41.

e Log-concavity (plus positivity) implies unimodality.
e Any concave nonnegative sequence is log-concave.

e Binomial coefficients (Z) are log-concave for every fixed n or fixed k.

250': Define the operator £ by L(a), = a2 — Ap—1Gpt1-
Moll

(ar) is k-log-concave if L™(a) > 0 for m =0,1,...,k.
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Log-concavity of the binomial coefficients ey

DEF A sequence (a,) is log-concave if a2 > a,_1an41.

e Log-concavity (plus positivity) implies unimodality.
e Any concave nonnegative sequence is log-concave.

e Binomial coefficients (Z) are log-concave for every fixed n or fixed k.

250': Define the operator £ by L(a), = a2 — an_1an41.

MU (ay,) is k-log-concave if L™(a) >0 for m =0,1,...,k.
CB?rD:J <Z> is oo-log-concave for every fixed n or fixed k.
Moll '04

e Proven for fixed n by a theorem of Brandén (2010).
e Still open for fixed k. 5-log-concavity shown by Kauers-Paule (2007).
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Real I’OOtedness (caught the typo! real rottedness) Log-concavity

M n
Newton |f the roots of p(z) = E arz® are negative, then (ay) is log-concave.
k=0
In fact: ak/(Z) is log-concave.
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Real I’OOtedness (caught the typo! real rottedness)

Log-concavity

n

M
Newton |f the roots of p(z) = Zakmk are negative, then (ay) is log-concave.

k=0

In fact: ak/(Z) is log-concave.

Conjectured by Fisk, 2008; McNamara-Sagan, 2009; Stanley, 2008:

M n
Brinden If the roots of p(z Z axx” are negative, then so are the roots of
k=0,
Lip](x Z — Qp-10k+1)T
k=0

In particular, then (ax) is co-log-concave.
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Real I’OOtedness (caught the typo! real rottedness)

Log-concavity

n

M
Newton |f the roots of p(z) = Zakmk are negative, then (ay) is log-concave.

k=0

In fact: ak/(Z) is log-concave.

Conjectured by Fisk, 2008; McNamara-Sagan, 2009; Stanley, 2008:
n

2010
k=0

n

Llp](x Z — Ap—10k+1)T

k=0

In particular, then (ax) is co-log-concave.

e Hence, (Z) is co-log-concave for fixed n

because kz_o (Z) zF =

(1+ )"

M
Brandén |f the roots of p(x Z axx” are negative, then so are the roots of

Negative thinking and polynomial analogs

Armin Straub
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q‘ IOg-ConcaVity Log-concavity

4
EG <2> =(1+¢)(1+q+¢)=1+q+2¢° +¢ +¢"
q

Coefficients are unimodal, but £(1,1,2,1,1) = (1,—1,3,—1,1).

Negative thinking and polynomial analogs Armin Straub
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q-IOg-ConcaVity Log-concavity

4
EG <2> =(1+¢)(1+q+¢)=1+q+2¢° +¢ +¢"
q

Coefficients are unimodal, but £(1,1,2,1,1) = (1,—1,3,—1,1).
DEF A sequence of polynomials fx(¢) € R[g] is ¢-log-concave if

L(f(q) = fe(@)* = fe—1(q) fe+1(q) € Rxolg].

e ¢-log-concave implies log-concavity for ¢ = 1.
e ¢-log-concave does not imply g-unimodal: 2+ 5¢q, 4+4q, 5+ 2q.
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Log-concavity

g-log-concavity

Coefficients are unimodal, but £(1,1,2,1,1) = (1,-1,3,~1,1).

DEF A sequence of polynomials fx(¢) € R[g] is ¢-log-concave if

L(f(@) = fr(@)® — fr-1(q) fe+1(q) € Rxolq].

e ¢-log-concave implies log-concavity for ¢ = 1.

e ¢-log-concave does not imply g-unimodal: 2+ 5¢q, 4+4q, 5+ 2q.

Ul <n> is g-log-concave for fixed n.
q

Butler
1988 k

EG (Z)q is not 2-fold g-log-concave for fixed n > 2. For n = 3:

1,¢+q+1,¢ +q+1,1
L: 1,0 +2¢° +2¢° +q, ¢* +2¢° +2¢° +q, 1
L2 1,q8—|—4q7—|—8q6—|—10q5—|—7q4—|—2q3—q2—q,...

Armin Straub
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g-log-concavity, cont’'d ey

CON . .
M?mJ <n> is co-fold ¢-log-concave for fixed k.
aee \k/,
EG n n=k /n n
fix k E(k) -7 (k;) <k‘ 1> € Rxolq] (g-Narayana)
o [l a NV /g
Negative thinking and polynomial analogs Armin Straub
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g-log-concavity, cont’'d ey

) <Z> is co-fold ¢-log-concave for fixed k.
q

Sagan

2009

EG n " (n n
fix k E( ) = ( > < > € ]R>0[q] (g-Narayana)
k), " T, \k) \k=1/,

e(3) - g (0 () (),

q

It is not clear that the latter is in R}O[q]. (obviously, > 0 when g = 1)
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Log-concavity

g-log-concavity, cont’'d

McNamara
Sagan

2009

CONJ <n> is co-fold ¢-log-concave for fixed k.
q

EG n—k
(ik3 & E(n) =4 (n> < " > € Rxolq] (g-Narayana)
k q [n}q k q k—1 4
2, (.60, 62
- 2
kq [n]q[n_l]q kq k-1 q k_2q
It is not clear that the latter is in R)O[q]. (obviously, > 0 when g = 1)
o )y =q""+q" P+ g = 7qq :;,1
. <n> _ (n),! _ 1 (n
klq" </€>q! <nfk>q! gk \ k 2

CONJ <n> is co-fold ¢-log-concave for fixed n as well as for fixed k.
q

McNamara
Sagan k
2009

Armin Straub
26 / 40
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Apéry numbers

CONJ 7,¢(3),¢(5), ... are algebraically independent over Q.

e Apéry (1978): ((3) is irrational
Open: ¢(5) is irrational

Open: ((3) is transcendental
Open: ((3)/m3 is irrational

o0
L
Open: Catalan's constant G =~ = is irrational
2
—(2n+1)

ROGER “'APERY
1916 5 ook

R Pt e

o7 6%,

A. Straub
Supercongruences for polynomial analogs of the Apéry numbers
Proceedings of the American Mathematical Society, Vol. 147, 2019, p. 1023-1036

Negative thinking and polynomial analogs Armin Straub
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A victory for the French peasant...” Py

e The Apéry numbers 1,5,73,1445, ...
n n 2 n—l—k 2
A=Y
. k k
satisfy k=0

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

THM ((3) = >">° | L is irrational.

Apéry '78

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.

Negative thinking and polynomial analogs Armin Straub
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A victory for the French peasant...” Py

e The Apéry numbers 1,5,73,1445, ...
n n 2 n+k 2
A=Y
. k k
satisfy k=0

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

THM ((3) = 3"°° | L is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”-integers

w2 () (1) (S5 Emdem

k=0

Then, ﬁgzg — ((3). But too fast for ((3) to be rational. O

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.
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A victory for the French peasant...”

Apéry numbers

e The Apéry numbers 1,5,73,1445, ...

-0

satisfy k=0

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

THM ((3) = 3"°° | L is irrational.

Apéry '78

After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. .. (1979)

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.
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A victory for the French peasant...”

Apéry numbers

e The Apéry numbers
n n 2 n+k 2
A(n) = Z f k:
k=0

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

satisfy

THM ¢(3) =52 . L s irrational.

Apéry'78 n=1n

After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. .. (1979)

1,5,73,1445, . ..

® HolonomicFunctions by Koutschan (Mathematica)

® Sigma by Schneider (Mathematica)

® ore_algebra by Kauers, Jaroschek, Johansson, Mezzarobba (Sage)
(These are just the ones | use on a regular basis. . .)

Nowadays, there are excellent implementations of this creative telescoping, including:

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.

Negative thinking and polynomial analogs

Armin Straub
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Zagier’s search and Apéry-like numbers Py

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?

Negative thinking and polynomial analogs Armin Straub 29 /.40




Zagier’s search and Apéry-like numbers Py

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?

e Essentially, only 14 tuples (a, b, ¢) found. (Almkvist-Zudilin)
e 4 hypergeometric and 4 Legendrian solutions (with generating functions

«@ 1 al—al —Cyuz \?
1Cz ), ———FR (" o ,
z) 1—Cz’t ( 1 lfCaz)

with a = 1 1 11 ang ©, = 24 33,26 24 . 33)

e 6 sporadic solutions

e Similar (and intertwined) story for:
e (n+ 1)Uy = (an?® + an + b)u, — en®up,_y (Beukers, Zagier)
o (n+ 13Uy = (2n+ 1)(an? + an + b)u, — n(en? + d)up—1  (Cooper)

Negative thinking and polynomial analogs Armin Straub

29 /40



The six sporadic Apéry-like numbers

Apéry numbers

(a,b,c) A(n)

(17,5,1) ; <Z>2(nzk>2
(12,4,16) Zk: <Z)2(2:>2
waon | 26 )

(7,3,81) | Y (~1)k3n3k (;{ (nzk>(,?j,€3)'

(11,5,125) Xk:(_l)k(z>3<4n3n5k>
s [ ZEO0C)

k,l

Apéry numbers

Domb numbers

Almkvist—Zudilin numbers

Negative thinking and polynomial analogs

Armin Straub
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Modularity of Apéry numbers [

0’ (27)n"(37) -3 Al ( n'2(r)n'2(67) \"
B (YD (G 12 27. 12 37
" ( = )n'(37) )
modular form modular function
1+45q¢ + 13¢% + 23¢% + O(q?) q—12¢% + 664> + O(q*)

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

Negative thinking and polynomial analogs Armin Straub

31/ 40



Modularity of Apéry numbers [

0’ (27)n"(37) -3 Al ( n'2(r)n'2(67) \"
"5 (VB (Br) 12 27. 12 37
n( = )n'(37) )
modular form modular function
1+45q¢ + 13¢% + 23¢% + O(q?) q—12¢% + 664> + O(q*)

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

e As a consequence, with z = /1 — 34x + 22,
17 — ¢ — 111

S aner - Amrme (LA
4V2(1 + 2+ 2)3/2 1,1

n=0

e Context: f(7) modular form of weight k

(1) modular function
y(z) such that y(z(7)) = f(7)
Then y(z) satisfies a linear differential equation of order k + 1.

Negative thinking and polynomial analogs Armin Straub
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Supercongruences for Apéry numbers

Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,

o Gessel (1982) proved that A(mp) = A(m)

Alp) =5 (modp?).

(mod p?).

THM The Apéry numbers satisfy the supercongruence (p > 5)
Beukers,
Coster
85, '88 A(mpr) = A(mpril) (modpg”").
Negative thinking and polynomial analogs Armin Straub 32 /40




Apéry numbers

Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).
g-e:'(el\rg The Apéry numbers satisfy the supercongruence (p=5)
Amp) = A(mp'™)  (modp™),
EG Simple combinatorics proves the congruence
G)=ZQ)GL) =1 s
For p > 5, Wolstenholme (1862) showed that, in fact,
<2§> =2 (modp?).
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Apéry numbers

Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

THM The Apéry numbers satisfy the supercongruence
(mod p°").

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88
EG Simple combinatorics proves the congruence
)" Z@6) 2
= =1+1 mod p“).
& 2. ) ——
For p > 5, Wolstenholme (1862) showed that, in fact,

2 a a
< p> =2 (modp?). (bp) = (b) (mod p?)
p Ljunggren '52

Armin Straub

p
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Supercongruences for Apéry-like numbers

e Conjecturally, supercongruences like

A(mpr) = A(mpril) (modpgr) Robert Osburn Brundaban Sahu
(University of Dublin) (NISER, India)
hold for all Apéry-like numbers. Osburn-Sahu '09

e Current state of affairs for the six sporadic sequences from earlier:

(a,b,c) | A(n)
(17,5,1) | 3, (7 (")° Beukers, Coster '87-'83
(12,4,16) | ¥, (17 (%) Osburn-Sahu-S 16
(10,4,64) | 3, (1) (3 (3=P) Osburn-Sahu '11
(7.3,81) | Sp(=DF3" () (0F) G | open
(11,5,125) | 3, (=1)%(2)* (%% Osburn-Sahu-S '16
9.3,-27) | s (0 (D (1) Gorodetsky '18
T —— i S

33 /40




Non-super congruences are abundant

Apéry numbers

a(mp”) = a(mp™™")  (modp") (G)

e realizable sequences a(n), i.e., for some map T : X — X,

aln)=#{x e X : T"x =z} “points of period n”
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, (G) characterizes realizability.

Negative thinking and polynomial analogs

Armin Straub
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Non-super congruences are abundant

Apéry numbers

a(mp”) = a(mp™™")  (modp") (G)

e realizable sequences a(n), i.e., for some map T : X — X,

aln)=#{x e X : T"x =z} “points of period n”
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, (G) characterizes realizability.

° a(n) = trace(M") Janichen '21, Schur '37; also: Arnold, Zarelua

where M is an integer matrix
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Non-super congruences are abundant Py

a(mp”) = a(mp™™")  (modp") (G)

e realizable sequences a(n), i.e., for some map T : X — X,

aln)=#{xr e X : T"x =z} “points of period n”
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

° a(n) = trace(Mn) Janichen '21, Schur '37; also: Arnold, Zarelua

where M is an integer matrix

e (G) is equivalent to exp (i a(nn)T”> € Z[[T]).
n=1

This is a natural condition in formal group theory.

Negative thinking and polynomial analogs Armin Straub
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g-congruences of Clark and Andrews

THM an a

proof Combinatorially, we have ¢-Chu-Vandermonde:

a =2
2n _ zn: n n (n—k)>2
n k n—=k 4
q -0 q q

Apéry numbers

Negative thinking and polynomial analogs Armin Straub
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g-congruences of Clark and Andrews

Apéry numbers

THM an a

proof Combinatorially, we have ¢-Chu-Vandermonde:

af2
2n -
), %
2

(), )
‘ k g\ — k q
e }qnz

=¢" +1=2 (mod @,,(q)?)
(Note that ®,,(¢q) divides (Z) unless k =0 or k =n.) O

q

e &,(1)=1if nis not a prime power.
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g-congruences of Clark and Andrews

Apéry numbers

THM /an _fa 9
B (1n),= ()0 o007

q

proof Combinatorially, we have ¢-Chu-Vandermonde:
a =2
"5
(),~2
2

(6, 2e) 8
=0 kjg\n—k/,
Jr
(Note that ®,,(¢q) divides (Z) unless k =0 or k =n.)

q

Il
ENE
3

e &,(1)=1if nis not a prime power.
e Similar results by Andrews (1999); e.g.:

(), a2 @ () tmodp;

1=[2],.2 (mod @, (¢)*)

Negative thinking and polynomial analogs

Armin Straub
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A g-analog of Ljunggren’s congruence Py

e The following answers Andrews’ question to find a ¢g-analog of
Wolstenholme's congruence.

THM an a a\ n?—1

s _ - 2 3

= — bla—b ——(¢" -1 do
2011/18 (bn)q <b>qn2 (a )(b> U (a ) (mod @,,(q)°)
EG 2
n=13 (12) =1+¢% - 14@° -1+ (L+g+...+3%)° f(9)
ez a —2 -0 — 133
where f(q) = 14 —41q +41¢> — ... + ¢**? € Z]q].

Negative thinking and polynomial analogs

Armin Straub
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A g-analog of Ljunggren’s congruence Py

e The following answers Andrews’ question to find a ¢g-analog of
Wolstenholme's congruence.

THM an a a\ n? -1
wim (3n) =(5) .~ va-0(;) e - 1" Gmodeaia))
EG 2
n=13 (12) =1+4¢% - 1U@° -1+ Q+q+...+4¢")° f(g)
ez a —2 -0 — 133
where f(q) = 14 —41q +41¢> — ... + ¢**? € Z]q].

2 _
e Note that =

Lis an integer if (n,6) = 1.
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A g-analog of Ljunggren’s congruence Py

e The following answers Andrews’ question to find a ¢g-analog of
Wolstenholme's congruence.

THM an a a\ n? -1

s _ - 2 3

= — bla—0b —— (" -1 do
2011/18 (bn)q <b>qn2 (a )<b> 2% (a ) (mod @,,(q)°)
EG 2
n=13 (12) =1+¢% - 14@° -1+ (L+g+...+3%)° f(9)
ez a —2 -0 — 133
where f(q) = 14 —41q +41¢> — ... + ¢**? € Z]q].

2 _
e Note that ”

Lis an integer if (n,6) = 1.

a

° (Zﬁ) = <b> holds modulo p3*™ where 7 is the p-adic valuation of

a b(a . b) (Z) | Jacobsthal 1952
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A g-analog of Ljunggren’s congruence Py

e The following answers Andrews’ question to find a ¢g-analog of
Wolstenholme's congruence.

THM
s

wie (1) = ;) = te-(}) S -7 @ods, @)

EG 26
n=13 (13) =1+¢% - 14@° -1+ (L+g+...+3%)° f(9)
b= f q 2 -0 133
where f(q) = 14 —41q +41¢> — ... + ¢**? € Z]q].
THM Extension of above congruence to g-analog of (»>5)
Zudilin
2019
ap a iy} 4
(bp) = (b) +ab(afb)p];% (mod p™).

Q  Creative microscoping a la Guo and Zudilin?
Extra parameter ¢ and congruences modulo, say, ®,(q)(1 — ¢q™)(c — ¢").
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A g-version of the Apéry numbers A

e A symmetric g-analog of the Apéry numbers:
n 2 2
N (n—kz)2 n n -+ k
Aty =307 (1) ("

k=0 q q

This is an explicit form of a g-analog of Krattenthaler, Rivoal and Zudilin (2006).

EG The first few values are:

A(0) =1 A 0) =1
A1) =5 A1) =1+3¢+¢°
A(2) =173 Ay(2) = 1+ 3¢+ 9¢° + 14¢° + 19¢* + 14¢°

+ 9q6 + 3q7 + q8
A(3) = 1445  A,(3) =1+ 3¢+ 9¢* + 22¢% + 43¢* + 76¢°
+117¢5 + ...+ 3¢ T+ ¢*8

Negative thinking and polynomial analogs Armin Straub



g-supercongruences for the Apéry numbers A

THM The g-analog of the Apéry numbers, defined as

S
2014/18 n 2 2
2 (n n+k
a0 =320 () (")
k=0 q q
satisfies, for any m > 0, A1) =1+3¢+¢, AQ1)=5
_ m? —1 m 2 2 3
Ag(mn) = A 2 (n) — 5 (@™ —1)*n“A1(n) (mod ®,,(q)°).
Negative thinking and polynomial analogs Armin Straub
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g-supercongruences for the Apéry numbers A

THM The g-analog of the Apéry numbers, defined as

Ag(n) = En: MOk <Z>2 (n _]: k>27

k=0 q q

s
2014/18

satisfies, for any m > 0, A,(1)=1+3¢+¢% A1) =5

m2 —1

Ag(mn) = A .2 (n) — 5

(g™ — 1)2n2A1(n) (mod <I>m(q)3).

e Gorodetsky (2018) recently proved g-congruences implying the stronger
congruences A(p"n) = A(p"~'n) modulo p*".

Q g¢-analog and congruences for Almkvist—Zudilin numbers?

P

k

(classical supercongruences still open)

Negative thinking and polynomial analogs Armin Straub



Multivariate supercongruences Py

Q g-analog and congruences for Almkvist—Zudilin numbers?

- o (3) (1158

k

(classical supercongruences still open)
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Multivariate supercongruences Py

Q g-analog and congruences for Almkvist—Zudilin numbers?

- o (3) (1158

k

(classical supercongruences still open)

EG The Almkvist—=Zudilin numbers are the diagonal Taylor coefficients of
S 2014

1
= Z(n)x™
1— (@1 4+ x2 + 23 + 24) + 2701222374 Z )

nezi,

CONJ For p > 5, we have the multivariate supercongruences
S 2014

Z(np") = Z(np™')  (modp™).

Negative thinking and polynomial analogs Armin Straub
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Multivariate supercongruences

Apéry numbers

Q g-analog and congruences for Almkvist—Zudilin numbers?

Z(n) =y (-3)" (;) (n + k) (31)!

n k!3
k

(classical supercongruences still open)
EG The Almkvist—=Zudilin numbers are the diagonal Taylor coefficients of
S 2014
1

= Z Z(n)x™
1— (@1 4+ x2 + 23 + 24) + 2701222374

nezi,

CONJ For p > 5, we have the multivariate supercongruences
S 2014

Z(np") = Z(np™')  (modp™).

CONJ Let d > 4. The following has nonnegative coefficients iff ¢ < d!.
Gillis,

Reznick, 1
Zeilberger

1983 1—(z1+ 22+ ...+ 2q) +cr122 - T4

cf. Veronika Pillwein’s talk! ‘

e Baryshnikov—Melczer-Pemantle-S (2018): asymptotic positivity for ¢ < (d — 1)¢~?
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

S. Formichella, A. Straub

Gaussian binomial coefficients with negative arguments
Annals of Combinatorics, 2019

A. Straub
A q-analog of Ljunggren’s binomial congruence
DMTCS Proceedings: FPSAC 2011, p. 897-902

A. Straub

Supercongruences for polynomial analogs of the Apéry numbers
Proceedings of the American Mathematical Society, Vol. 147, 2019, p. 1023-1036
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