Divisibility properties of sporadic **Apéry-like numbers**

Special Session on Experimental Mathematics AMS Spring Southeastern Sectional Meeting, Athens

Armin Straub

Mar 6, 2016

University of South Alabama

based on joint work with Amita Malik

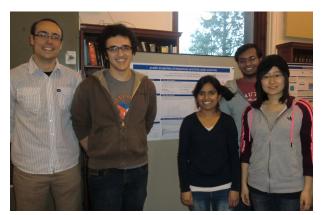
$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

 $1, 5, 73, 1445, 33001, 819005, 21460825, \dots$

Zhefan Wang Arian Daneshvar Amita Malik Pujan Dave

(Illinois Geometry Lab, UIUC, Fall 2014)

Illinois Geometry Lab, UIUC, Fall 2014



- Arian Daneshvar
- Amita Malik Zhefan Wang Pujan Dave

- semester-long project to introduce undergraduate students to research
- graduate student team leader: Amita Malik

Rough outline

- introducing Apéry-like numbers
- Lucas-type congruences
- applications

Positivity of rational functions

• Let us begin with an open problem:

CONJ Kauers-Zeilberger 2008

CONJ All Taylor coefficients of the following function are positive:

$$\frac{1}{1 - (x + y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw}.$$

Positivity of rational functions

Let us begin with an open problem:

Kauers-Zeilberger 2008

CONJ All Taylor coefficients of the following function are positive:

$$\frac{1}{1-(x+y+z+w)+2(yzw+xzw+xyw+xyz)+4xyzw}.$$

S-Zudilin 2015

PROP The diagonal coefficients of the Kauers–Zeilberger function are

$$D(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{n}^2.$$

• D(n) is an example of an Apéry-like sequence.

Positivity of rational functions

Let us begin with an open problem:

Kauers-Zeilberger 2008

CONJ All Taylor coefficients of the following function are positive:

$$\frac{1}{1-(x+y+z+w)+2(yzw+xzw+xyw+xyz)+4xyzw}.$$

S-Zudilin 2015

PROP The diagonal coefficients of the Kauers–Zeilberger function are

$$D(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{n}^2.$$

• D(n) is an example of an Apéry-like sequence.

S-Zudilin 2015

Can we conclude the conjectured positivity from the positivity of D(n) together with the (obvious) positivity of $\frac{1}{1-(x+u+z)+2xuz}$?

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers $A(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$

$$1, 5, 73, 1445, \dots$$

satisfy

$$(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$$

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers

 $1, 5, 73, 1445, \dots$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy

$$(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$$

THM $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is irrational.

proof The same recurrence is satisfied by the "near"-integers

$$B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}} \right).$$

Then, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

Zagier's search and Apéry-like numbers

- Recurrence for Apéry numbers is the case (a,b,c)=(17,5,1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Beukers, Zagier

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

Zagier's search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a,b,c)=(17,5,1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Beukers, Zagier

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

ullet Essentially, only 14 tuples (a,b,c) found.

(Almkvist-Zudilin)

• 4 hypergeometric and 4 Legendrian solutions (with generating functions

$$_{3}F_{2}\left(\begin{array}{c} \frac{1}{2},\alpha,1-\alpha\\ 1,1 \end{array}\middle| 4C_{\alpha}z\right), \qquad \frac{1}{1-C_{\alpha}z}{}_{2}F_{1}\left(\begin{array}{c} \alpha,1-\alpha\\ 1 \end{array}\middle| \frac{-C_{\alpha}z}{1-C_{\alpha}z}\right)^{2},$$

with
$$\alpha = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$$
 and $C_{\alpha} = 2^4, 3^3, 2^6, 2^4 \cdot 3^3$)

- 6 sporadic solutions
- Similar (and intertwined) story for:

• $(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}$ (Beukers, Zagier)

•
$$(n+1)^3u_{n+1}=(2n+1)(an^2+an+b)u_n-n(cn^2+d)u_{n-1}$$
 (Cooper)

The six sporadic Apéry-like numbers

(a,b,c)	A(n)	
(17, 5, 1)	$\sum_{k} \binom{n}{k}^2 \binom{n+k}{n}^2$	Apéry numbers
(12, 4, 16)	$\sum_{k} \binom{n}{k}^2 \binom{2k}{n}^2$	
(10, 4, 64)	$\sum_{k} \binom{n}{k}^{2} \binom{2k}{k} \binom{2(n-k)}{n-k}$	Domb numbers
(7, 3, 81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	Almkvist-Zudilin numbers
(11, 5, 125)	$\sum_{k} (-1)^{k} {n \choose k}^{3} \left({4n - 5k - 1 \choose 3n} + {4n \choose k} \right)$	$\begin{pmatrix} -5k \\ 3n \end{pmatrix}$
(9, 3, -27)	$\sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$	

Lucas congruences

The Apéry numbers

$$1, 5, 73, 1445, \dots$$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$

satisfy the Lucas congruences

(Gessel 1982)

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p},$$

where n_i are the p-adic digits of n.

Lucas congruences

The Apéry numbers

 $1, 5, 73, 1445, \dots$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy the Lucas congruences

(Gessel 1982)

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p},$$

where n_i are the p-adic digits of n.

• Lucas showed the beautiful congruences

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \cdots \binom{n_r}{k_r} \pmod{p}$$

where n_i , respectively k_i , are the p-adic digits of n and k.

Lucas congruences

The Apéry numbers

$$1, 5, 73, 1445, \dots$$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy the Lucas congruences

(Gessel 1982)

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p},$$

where n_i are the p-adic digits of n.

Lucas showed the beautiful congruences

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \cdots \binom{n_r}{k_r} \pmod{p},$$

where n_i , respectively k_i , are the p-adic digits of n and k.

THM Every (known) sporadic sequence satisfies these Lucas congruences modulo every prime.

Approaches to proving Lucas congruences

• Gessel's original approach (1982), generalized by McIntosh (1992), works directly with the binomial sum.

Approaches to proving Lucas congruences

- Gessel's original approach (1982), generalized by McIntosh (1992), works directly with the binomial sum.
- Samol-van Straten (2009): Lucas congruences for sequences $C(n) = \operatorname{ct} \Lambda(x_1, x_2, \ldots)^n$ with $\Lambda \in \mathbb{Z}[[x_1, x_2, \ldots]]$ a Laurent polynomial whose Newton polyhedron has the origin as its only interior integral point.

For the Apéry numbers, $\Lambda(x,y,z)=\frac{(x+y)(z+1)(x+y+z)(y+z+1)}{z+y+z+1}$ EG

Approaches to proving Lucas congruences

- Gessel's original approach (1982), generalized by McIntosh (1992), works directly with the binomial sum.
- Samol-van Straten (2009): Lucas congruences for sequences $C(n) = \operatorname{ct} \Lambda(x_1, x_2, \ldots)^n$ with $\Lambda \in \mathbb{Z}[[x_1, x_2, \ldots]]$ a Laurent polynomial whose Newton polyhedron has the origin as its only interior integral point.

For the Apéry numbers,
$$\Lambda(x,y,z) = \frac{(x+y)(z+1)(x+y+z)(y+z+1)}{xyz}$$
.

• Neither of these works for the sequence $A_n(n) = \operatorname{ct} \Lambda(x,y,z)^n$, where

$$\Lambda(x,y,z) = \left(1 - \frac{1}{xy(1+z)^5}\right) \frac{(1+x)(1+y)(1+z)^4}{z^3}.$$

A crucial ingredient of our proof is a technique used by Calkin (1998) to prove that $\sum_{k} {n \choose k}^{2a}$ is divisible by all primes p with n .

Primes not dividing Apéry numbers

Rowland-Yassawi

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n).

Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

Recall that the Apéry numbers

$$1, 5, 73, 1445, \dots$$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy the Lucas congruences

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$
.

Primes not dividing Apéry numbers

Rowland-Yassawi

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n).

Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

EG

• The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are 1, 5, 3, 3, 3, 5, 1.

Recall that the Apéry numbers

 $1, 5, 73, 1445, \ldots$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy the Lucas congruences

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$
.

Primes not dividing Apéry numbers

Rowland-Yassawi

CONJ There are infinitely many primes p such that p does not divide any Apéry number A(n).

Such as $p = 2, 3, 7, 13, 23, 29, 43, 47, \dots$

EG

- The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are 1, 5, 3, 3, 3, 5, 1.
- Hence, the Lucas congruences imply that 7 does not divide any Apéry number.
- Recall that the Apéry numbers

 $1, 5, 73, 1445, \ldots$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy the Lucas congruences

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_r) \pmod{p}$$
.

Primes not dividing Apéry numbers, cont'd

CONJ The proportion of primes not dividing any Apéry number A(n) $\begin{array}{c} {\rm DDMSW} \\ {\rm 2015} \end{array} \ {\rm is} \ e^{-1/2} \approx 60.65\%.$

Primes not dividing Apéry numbers, cont'd

CONJ The proportion of primes not dividing any Apéry number A(n) $\frac{\rm DDMSW}{\rm 2015} \ \ {\rm is} \ e^{-1/2} \approx 60.65\%.$

- Heuristically, combine Lucas congruences,
- palindromic behavior of Apéry numbers, that is

$$A(n) \equiv A(p-1-n) \pmod{p},$$

$$\bullet \ \, \text{and} \, \, e^{-1/2} = \lim_{p \to \infty} \left(1 - \frac{1}{p}\right)^{(p+1)/2}.$$

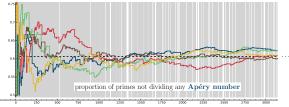
Primes not dividing Apéry numbers, cont'd

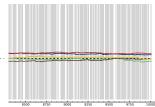
CONJ The proportion of primes not dividing any Apéry number A(n) $\frac{\rm DDMSW}{\rm 2015} \ \ {\rm is} \ e^{-1/2} \approx 60.65\%.$

- Heuristically, combine Lucas congruences,
- palindromic behavior of Apéry numbers, that is

$$A(n) \equiv A(p-1-n) \pmod{p},$$

• and $e^{-1/2} = \lim_{p \to \infty} \left(1 - \frac{1}{n}\right)^{(p+1)/2}$.





Primes not dividing Apéry numbers, cont'd²

• The primes below 100 not dividing sporadic sequences, as well as the proportion of primes below 10,000 not dividing any term

(δ)	2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97	0.6192
(η)	2, 3, 17, 19, 23, 31, 47, 53, 61	0.2897
(α)	3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89	0.5989
(ϵ)	3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89	0.6037
(ζ)	2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89	0.6046
(γ)	2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89	0.6168

Primes not dividing Apéry numbers, cont'd²

• The primes below 100 not dividing sporadic sequences, as well as the proportion of primes below 10,000 not dividing any term

(δ)	2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97	0.6192
(η)	2, 3, 17, 19, 23, 31, 47, 53, 61	0.2897
(α)	3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89	0.5989
(ϵ)	3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89	0.6037
(ζ)	2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89	0.6046
(γ)	2. 3. 7. 13. 23. 29. 43. 47. 53. 67. 71. 79. 83. 89	0.6168

Primes not dividing Apéry numbers, cont'd²

 \bullet The primes below 100 not dividing sporadic sequences, as well as the proportion of primes below 10,000 not dividing any term

(δ)	2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97	
(η)	2, 3, 17, 19, 23, 31, 47, 53, 61	0.2897
(α)	3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89	0.5989
(ϵ)	3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89	0.6037
(ζ)	2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89	
(γ)	2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89	0.6168

THM For any prime $p \neq 3$, we have that, modulo p,

$$A_{\eta}\left(\left\lfloor \frac{p}{3} \right\rfloor\right) \equiv \left\{ \begin{array}{ll} (-1)^{\lfloor p/5 \rfloor} {\binom{\lfloor p/3 \rfloor}{\lfloor p/15 \rfloor}}^3, & \text{if } p \equiv 1, 2, 4, 8 \pmod{15}, \\ 0, & \text{otherwise.} \end{array} \right.$$

• We therefore expect the proportion of primes not dividing any $A_{\eta}(n)$ to be $\frac{1}{2}e^{-1/2}\approx 30.33\%$.

Modular (super)congruences

THM Malik-S 2015

THM For any prime $p \neq 3$, we have that, modulo p,

$$A_{\eta}\left(\left\lfloor\frac{p}{3}\right\rfloor\right) \equiv \left\{ \begin{array}{ll} (-1)^{\lfloor p/5\rfloor} {\lfloor p/3\rfloor \choose \lfloor p/15\rfloor}^3, & \text{if } p \equiv 1,2,4,8 \pmod{15}, \\ 0, & \text{otherwise}. \end{array} \right.$$

Modular (super)congruences

Malik-S 2015

THM For any prime $p \neq 3$, we have that, modulo p,

$$A_{\eta}\left(\left\lfloor\frac{p}{3}\right\rfloor\right) \equiv \left\{ \begin{array}{ll} (-1)^{\lfloor p/5\rfloor} {\lfloor p/3\rfloor \choose \lfloor p/15\rfloor}^3, & \text{if } p \equiv 1,2,4,8 \pmod{15}, \\ 0, & \text{otherwise}. \end{array} \right.$$

THM Stienstra-Beukers 1985

THM For any prime $p \neq 2$, we have that, modulo p,

$$A_b\left(\left\lfloor\frac{p}{2}\right\rfloor\right) \equiv \left\{ \begin{array}{l} {\left(\lfloor\frac{p/2}{\rfloor}\right\rfloor}^2, & \text{if } p \equiv 1 \pmod{4}, \\ 0, & \text{otherwise}, \end{array} \right.$$

Modular (super)congruences

Malik-S 2015

THM For any prime $p \neq 3$, we have that, modulo p,

$$A_{\eta}\left(\left\lfloor\frac{p}{3}\right\rfloor\right) \equiv \left\{ \begin{array}{ll} (-1)^{\lfloor p/5\rfloor} {\lfloor p/3\rfloor \choose \lfloor p/15\rfloor}^3, & \text{if } p \equiv 1,2,4,8 \pmod{15}, \\ 0, & \text{otherwise}. \end{array} \right.$$

Stienstra-Beukers 1985

THM For any prime $p \neq 2$, we have that, modulo p,

$$A_b\left(\left\lfloor\frac{p}{2}\right\rfloor\right) \equiv \left\{ \begin{array}{l} \left(\left\lfloor\frac{p/2}{2}\right\rfloor\right)^2, & \text{if } p \equiv 1 \pmod{4}, \\ 0, & \text{otherwise,} \end{array} \right.$$

THM Ahlgren 2001

$$A_b\left(\left|\frac{p}{2}\right|\right) \equiv c_p \pmod{p^2},$$

where c_p are the Fourier coefficients of the modular form

$$\eta(4z)^6 := q \prod_{n=1}^{\infty} (1 - q^{4n})^6 = \sum_{n=1}^{\infty} c_n q^n, \quad q = e^{2\pi i z}.$$

Similar congruences by Ahlgren and Ono (2000) for the Apéry numbers.

Apéry-like numbers and modular forms

• The Apéry numbers A(n) satisfy

$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \quad .$$

 $1, 5, 73, 1145, \ldots$

Apéry-like numbers and modular forms

• The Apéry numbers A(n) satisfy

 $1 + 5q + 13q^2 + 23q^3 + O(q^4)$

$$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n \quad .$$
 modular form

 $q - 12q^2 + 66q^3 + O(q^4)$

FACT Not at all evidently, such a modular parametrization exists for all known Apéry-like numbers!

 $1, 5, 73, 1145, \ldots$

Apéry-like numbers and modular forms

• The Apéry numbers A(n) satisfy

$$1, 5, 73, 1145, \dots$$
 n

$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \quad .$$

$${}_{1+5q+13q^2+23q^3+O(q^4)} \qquad \qquad q-12q^2+66q^3+O(q^4) \qquad \qquad q=e^{-12q^2+66q^3+O(q^4)}$$

FACT Not at all evidently, such a modular parametrization exists for all known Apéry-like numbers!

• As a consequence, with $z = \sqrt{1 - 34x + x^2}$,

$$\sum_{n\geqslant 0} A(n)x^n = \frac{17 - x - z}{4\sqrt{2}(1 + x + z)^{3/2}} \, {}_{3}F_2\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1 \end{array} \middle| -\frac{1024x}{(1 - x + z)^4}\right).$$

Context:

 $f(\tau)$ modular form of (integral) weight k $x(\tau)$ modular function

 $y(x) \quad \text{such that } y(x(\tau)) = f(\tau)$

Then y(x) satisfies a linear differential equation of order k+1.

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$, $A(p) \equiv 5 \pmod{p^3}$.

- Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$, $A(p) \equiv 5 \pmod{p^3}$.
- Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88 $4(mm^r) = 4(mm^{r-1})$ (mod m^{3r})

$$(p \geqslant 5)$$

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88

THM The Apéry numbers satisfy the supercongruence

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

EG For primes p, simple combinatorics proves the congruence

$$\binom{2p}{p} = \sum_k \binom{p}{k} \binom{p}{p-k} \equiv 1+1 \pmod{p^2}.$$

For $p\geqslant 5$, Wolstenholme's congruence shows that, in fact,

$$\binom{2p}{p} \equiv 2 \pmod{p^3}.$$

 $(p \geqslant 5)$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

Beukers. Coster '85, '88

THM The Apéry numbers satisfy the supercongruence

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

- The congruences $a(mp^r) \equiv a(mp^{r-1})$ modulo p^r occur frequently:
 - $a(n) = \operatorname{tr} A^n$ with $A \in \mathbb{Z}^{d \times d}$

Arnold '03. Zarelua '04. . . .

 $(p \geqslant 5)$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88

The Apéry numbers satisfy the supercongruence

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

- The congruences $a(mp^r) \equiv a(mp^{r-1})$ modulo p^r occur frequently:
 - $a(n) = \operatorname{tr} A^n$ with $A \in \mathbb{Z}^{d \times d}$

Arnold '03, Zarelua '04, . . .

 $(p \geqslant 5)$

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = \#\{x \in X : T^n x = x\}$$
 "points of period n"

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88

THM The Apéry numbers satisfy the supercongruence

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

EG

Mathematica 7 miscomputes
$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$
 for $n > 5500$.

$$A(5\cdot 11^3) = 12488301... {\it about 2000 digits... about 8000 digits...} 795652125$$

Weirdly, with this wrong value, one still has

$$A(5 \cdot 11^3) \equiv A(5 \cdot 11^2) \pmod{11^6}.$$

 $(p \geqslant 5)$

Conjecturally, supercongruences like

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}$$

Robert Osburn (University of Dublin)

(NISER, India)

hold for all Apéry-like numbers.

Osburn-Sahu '09

• Current state of affairs for the six sporadic sequences from earlier:

(a,b,c)	A(n)	
(17, 5, 1)	$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$	Beukers, Coster '87-'88
	$\sum_{k} {n \choose k}^2 {2k \choose n}^2$	Osburn-Sahu-S '14
(10, 4, 64)	$\sum_{k} {n \choose k}^2 {2k \choose k} {2(n-k) \choose n-k}$	Osburn–Sahu '11
	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	open $\frac{\text{modulo }p^3}{\text{Amdeberhan-Tauraso '15}}$
	$\sum_{k} (-1)^{k} \binom{n}{k}^{3} \left(\binom{4n-5k-1}{3n} + \binom{4n-5k}{3n} \right)$	Osburn–Sahu–S '14
(9, 3, -27)	$\sum_{k,l} {n \choose k}^2 {n \choose l} {k \choose l} {k+l \choose n}$	open

Some of many open problems

- Supercongruences for all Apéry-like numbers
 - proof of all the classical ones
 - uniform explanation, proofs not relying on binomial sums
- Apéry-like numbers as diagonals
 - find minimal rational functions
 - extend supercongruences
 - any structure?
- polynomial analogs of Apéry-like numbers
 - $\bullet \ \ \mathsf{find} \ \ \mathsf{q}\text{-}\mathsf{analogs} \ \ \mathsf{(e.g., for \ Almkvist-Zudilin \ sequence)} \\$
 - q-supercongruences
 - is there a geometric picture?
- Many further questions remain.
 - is the known list complete?
 - Apéry-like numbers as diagonals and multivariate supercongruences
 - higher-order analogs, Calabi–Yau DEs
 - modular supercongruences

Beukers '87, Ahlgren-Ono '00

$$A\left(\frac{p-1}{2}\right) \equiv a(p) \pmod{p^2}, \qquad \sum_{n=1}^{\infty} a(n)q^n = \eta^4(2\tau)\eta^4(4\tau)$$

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

- A. Straub
 Multivariate Apéry numbers and supercongruences of rational functions
 Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008
- R. Osburn, B. Sahu, A. Straub
 Supercongruences for sporadic sequences
 to appear in Proceedings of the Edinburgh Mathematical Society, 2015
- Positivity of rational functions and their diagonals

 Journal of Approximation Theory (special issue dedicated to Richard Askey), Vol. 195, 2015, p. 57-69

A. Straub, W. Zudilin