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Positivity of rational functions

e Let us begin with an open problem:

CONJ All Taylor coefficients of the following function are positive:
Kauers-
Zeilberger

2008 1

1—(z+y+2+w)+2yzw + z2w + xyw + 2y2) + dryzw’
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Positivity of rational functions

e Let us begin with an open problem:

CONJ All Taylor coefficients of the following function are positive:

Kauers-
Zeilberger
2008 1

1—(z+y+2+w)+2yzw + z2w + xyw + 2y2) + dryzw’

PROP The diagonal coefficients of the Kauers—Zeilberger function are

-5 ()

2015
k=0

e D(n) is an example of an Apéry-like sequence.
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Positivity of rational functions

e Let us begin with an open problem:

CONJ All Taylor coefficients of the following function are positive:
Kauers-
Zeilberger

2008 1

1—(z+y+2+w)+2yzw + z2w + xyw + 2y2) + dryzw’

PROP The diagonal coefficients of the Kauers—Zeilberger function are

-5 ()

2015
k=0

e D(n) is an example of an Apéry-like sequence.

. Q Can we conclude the conjectured positivity from the positivity of
-Zudilin

2015 D(n) together with the (obvious) positivity of m?
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 () (1)

satisfy k=0

(n+1)3A(n+1) = 2n+1)(170* + 170 +5)A(n) — n*A(n — 1).
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...
=2 () ()
satisfy k=0

(n+1)2A(n+1) = (2n+1)(17Tn? + 17Tn + 5)A(n) — n3A(n — 1).

THM ((3) = 3> | L is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”-integers

n

- £ 1) (£ S sttt

k=0

Then, BE" — ((3). But too fast for ((3) to be rational. O
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?

e Essentially, only 14 tuples (a, b, ¢) found. (Almkvist-Zudilin)
e 4 hypergeometric and 4 Legendrian solutions (with generating functions

«@ 1 al—al —Cyuz \?
1Cz ), ———FR (" o ,
z) 1—Cz’t ( 1 lfCaz)

with a = 1 1 11 ang ©, = 24 33,26 24 . 33)

e 6 sporadic solutions

e Similar (and intertwined) story for:
e (n+ 1)Uy = (an?® + an + b)u, — en®up,_y (Beukers, Zagier)
o (n+ 13Uy = (2n+ 1)(an? + an + b)u, — n(en? + d)up—1  (Cooper)
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The six sporadic Apéry-like numbers

(a,b,c) A(n)
(17,5,1) ; <Z> i (“ Z k> i Apéry numbers
(12,4,16) Zk: <Z>2(2:)2
(10,4, 64) Xk: (’;)2(2:) (2(:__:)> ——
(7,3,81) zkj(fl)k:a"*?’k ( . (” : k) % —
| £ () (5
ea-n | S OO
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Lucas congruences

e The Apéry numbers 1,5,73,1445, . ..
" n\? (n+k\?
A =
-2 () (")
k=0
satisfy the Lucas congruences (Gessel 1982)

A(n) = A(ng)A(ny)--- A(ny)  (modp),

where n; are the p-adic digits of n.
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Lucas congruences

e The Apéry numbers 1,5,73,1445, . ..
" n\? (n+k\?
A =
-2 () (")
k=0
satisfy the Lucas congruences (Gessel 1982)

A(n) = A(ng)A(ny)--- A(ny)  (modp),

where n; are the p-adic digits of n.
e Lucas showed the beautiful congruences

(0)= () ) (&) oo

where n;, respectively k;, are the p-adic digits of n and k.
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Lucas congruences

e The Apéry numbers 1,5,73,1445, . ..
" n\? (n+k\?
A =
-2 () (")
k=0
satisfy the Lucas congruences (Gessel 1982)

A(n) = A(ng)A(ny)--- A(ny)  (modp),

where n; are the p-adic digits of n.
e Lucas showed the beautiful congruences

n ngo\ (M1 Ny
(’f) </€0> <k1> </€r> (modp).
where n;, respectively k;, are the p-adic digits of n and k.

;\lll'll'lkl\/lS Every (known) sporadic sequence satisfies these Lucas congru-
alik— .
2015 ences modulo every prime.
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Approaches to proving Lucas congruences

e Gessel's original approach (1982), generalized by McIntosh (1992),
works directly with the binomial sum.
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Approaches to proving Lucas congruences

e Gessel's original approach (1982), generalized by McIntosh (1992),
works directly with the binomial sum.

e Samol-van Straten (2009): Lucas congruences for sequences
C(n) = ct A(x1,z2,...)" with A € Z[[x1, z2,...]] a Laurent
polynomial whose Newton polyhedron has the origin as its only
interior integral point.

(z+y)(z+1) (z+y+2z)(y+z+1)

EG  For the Apéry numbers, A(z,y,z) =

ryz
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Approaches to proving Lucas congruences

e Gessel's original approach (1982), generalized by McIntosh (1992),
works directly with the binomial sum.

e Samol-van Straten (2009): Lucas congruences for sequences
C(n) = ct A(x1,z2,...)" with A € Z[[x1, z2,...]] a Laurent
polynomial whose Newton polyhedron has the origin as its only
interior integral point.

(z+y)(z+1) (z+y+2z)(y+z+1)
ryz

EG  For the Apéry numbers, A(z,y,z) =

e Neither of these works for the sequence A, (n) = ct A(z,y,2)", where

1 1+ 2)(1 14 2)?
Az, y, 2) = <1_my(1+z)5>( +z)( 1‘3y)( + 2) '

A crucial ingredient of our proof is a technique used by Calkin (1998) to

prove that ) (2)2(1 is divisible by all primes p with n < p <n+ 14 5.
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Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-

vassawi any Apéry number A(n).
Such as p = 2,3,7,13,23, 29,43, 47, . ..

e Recall that the Apéry numbers 1,5,73,1445, ...

mm:é(?;)z(”;"’)?

satisfy the Lucas congruences

A(n) = A(no)A(m1) -~ A(n,)  (modp).
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Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-

vassawi any Apéry number A(n).
Such as p = 2,3,7,13,23, 29,43, 47, . ..

EG e The values of Apéry numbers A(0), A(1),..., A(6)
modulo 7 are 1,5,3,3,3,5, 1.

e Recall that the Apéry numbers 1,5,73,1445, ...
" n\? n+k\?
A =
=2 () (")

satisfy the Lucas congruences

A(n) = A(no)A(m1) -~ A(n,)  (modp).
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Primes not dividing Apéry numbers

Rowland-

vassawi any Apéry number A(n).
Such as p = 2,3,7,13,23, 29,43, 47, . ..

CONJ There are infinitely many primes p such that p does not divide

EG e The values of Apéry numbers A(0), A(1),..., A(6)

modulo 7 are 1,5,3,3,3,5, 1.

e Hence, the Lucas congruences imply that 7 does not
divide any Apéry number.

e Recall that the Apéry numbers

n 2 2

n n+k

A =
k=0

satisfy the Lucas congruences

1,5,73,1445, ...

A(n) = A(no)A(m1) -~ A(n,)  (modp).
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Primes not dividing Apéry numbers, cont’d

DC[gnlélv-\ll The proportion of primes not dividing any Apéry number A(n)

2015 is e /2 ~ 60.65%.

Divisibility properties of sporadic Apéry-like numbers Armin Straub 10 /.17




Primes not dividing Apéry numbers, cont’d

CONJ The proportion of primes not dividing any Apéry number A(n)

DDMSW

2015 is e~ /2 = 60.65%.
e Heuristically, combine Lucas congruences,

e palindromic behavior of Apéry numbers, that is

A(n)= A(p—1-n)  (modp),

12 ) 1 (p+1)/2
e and ¢ = lim (1— - .

p—00 p
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Primes not dividing Apéry numbers, cont’d

CONJ The proportion of primes not dividing any Apéry number A(n)

DDMSW

2015 is e /2 ~ 60.65%.

Heuristically, combine Lucas congruences,
palindromic behavior of Apéry numbers, that is

A(n)= A(p—1-n)  (modp),

12 ) 1 (p+1)/2
and e = lim (1— - .

p—00 p

proportion of primes not dividing any Apéry number

nnnnn
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Primes not dividing Apéry numbers, cont’d?

e The primes below 100 not dividing sporadic sequences, as well as the
proportion of primes below 10,000 not dividing any term

(6) | 2,5,7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192
(n) | 2,3,17, 19, 23, 31, 47, 53, 61 0.2897
() | 3,5, 13,17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 | 0.5989
(e) | 3,7,13,19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037
(¢) | 2,5,7, 13,17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046
(v) | 2,3,7,13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168
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Primes not dividing Apéry numbers, cont’d?

e The primes below 100 not dividing sporadic sequences, as well as the
proportion of primes below 10,000 not dividing any term

(6) | 2,5,7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192
(n) | 2,3, 17, 19, 23, 31, 47, 53, 61 0.2897
() | 3,5, 13,17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 | 0.5989
(e) | 3,7,13,19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037
(¢) | 2,5,7, 13,17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046
(v) | 2,3,7,13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168

THM For any prime p # 3, we have that, modulo p,
Malik-S
2015

3

PN _ ) (DAY i p=1,2,4,8 (mod 15),

4, (12]) = Lp/15]
g QSJ) { 0, 8 otherwise.

e We therefore expect the proportion of primes not dividing any A, (n)
to be Je~/2 ~ 30.33%.
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Modular (super)congruences

THM For any prime p # 3, we have that, modulo p,
Malik-S
2015

3

PN _ ) ()BT p=1,2,4,8 (mod 15),

4, (15]) = Lp/15]
! Q3J> { 0, ’ otherwise.
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Modular (super)congruences

THM For any prime p # 3, we have that, modulo p,
Malik-S
2015

3

PN _ ) ()BT p=1,2,4,8 (mod 15),

4, (15]) = Lp/15]
! Q3J> { 0, ’ otherwise.

THM For any prime p # 2, we have that, modulo p,

Stienstra—

Beukers )
1985 Ab ({BJ) = (Bzﬁd) 5 ifp =1 (mod 4),
e 0, otherwise,
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Modular (super)congruences

THM For any prime p # 3, we have that, modulo p,
Malik-S
2015

= P
3

3.
A, (LQJ) _ { (—1)Lp/5] (LLP//ISSJJ) , ifp= %,274,8 (mod 15),
0, otherwise.

THM For any prime p # 2, we have that, modulo p,

Stienstra—

Beukers
IR A
a(3)=e  moas?)

2001
where ¢, are the Fourier coefficients of the modular form

) o
,,,](42,)6 =g H(l _ q4n)6 — chqn’ q= 6271'712-
n=1 n=1

Similar congruences by Ahlgren and Ono (2000) for the Apéry numbers.
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) ( 0" (m)n*? (67) )"
Prmser) 2\

I I =
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = 2™
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" (m)n*? (67) )"
Prmser) 2\

I I =
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = e27™iT

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" (m)n*? (67) )"
Prmser) 2\

I — | = L
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = e27™iT

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

e As a consequence, with z = /1 — 34z + 22,

17—z —2 1 5
An)a" = —————— " 3Fy | 27272
,,Z;; (m) 4\/5(1+x+z)3/23 2( 1,1

o Context: £(7)

modular form of (integral) weight k&
2(7) modular function

y(z) such that y(x(7)) = f(1)

Then y(z) satisfies a linear differential equation of order k + 1.
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).
e Gessel (1982) proved that A(mp) = A(m)  (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

WV
=

THM The Apéry numbers satisfy the supercongruence (p

Beukers,
(mod p°").

Coster
A(mp") = A(mp"™)

'85, '88

Armin Straub
14 /17
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

WV
=

THM The Apéry numbers satisfy the supercongruence (p

(mod p°").

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88

EG For primes p, simple combinatorics proves the congruence

)20 7)1

p k
For p > 5, Wolstenholme's congruence shows that, in fact,

<2;’) =2 (modpd).

Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

WV
=

THM The Apéry numbers satisfy the supercongruence (p

(mod p°").

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88
e The congruences a(mp”) = a(mp"~!) modulo p" occur frequently:

° a(n) = tr An Wlth A S ZdXd Arnold '03, Zarelua '04, ...

Armin Straub
14 /17
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

g-l-:M The Apéry numbers satisfy the supercongruence (p=5)
Coster‘

o A(mp") = A(mp™™")  (modp™).

e The congruences a(mp”) = a(mp"~1) modulo p" occur frequently

Arnold '03, Zarelua '04, ...

e a(n) = tr A™ with A € Zx4
e realizable sequences a(n), i.e., for some map 7 : X — X,
“points of period n”

an)=#{zr e X Tz ==z}
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05

Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

WV
=

(p

Ig‘l—:M The Apéry numbers satisfy the supercongruence
Coster‘
A(mp") = A(mp"™™1)  (mod p®").

'85, '88

EG . . "\ (n+k\?
Mathematica 7 miscomputes A(n) = Z (k) ( % ) for n > 5500.
k

=0
A(5 . 113) = 12488301. . .about 2000 digits. . .about 8000 digits. . . 1 9DOGH2125H

Weirdly, with this wrong value, one still has

A(5-113) = A(5-11%)  (mod 119).

Armin Straub

14 /17
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Supercongruences for Apéry-like numbers

e Conjecturally, supercongruences like

— -1
A(mpr) = A(mpr ) (mod p37‘) Robert Osburn Brundaban Sahu
(University of Dublin) (NISER, India)
hold for all Apéry-like numbers. Osburn-Sahu '09

e Current state of affairs for the six sporadic sequences from earlier:

(a,b,c) | A(n)
(17, 9, 1) Zk (2)2 (n:k)z Beukers, Coster '87-'88
(12,4,16) | 3, (1)° (1) Osburn-Sahu-S 14
(10,4,64) | >, (2)2 (Qkk) (2(:_}5)) Osburn—Sahu '11
(77 3’ 81) Zk( 1) 3" o (Bk:) (”:k) (27?3)' open Amdebeman-T?:::r‘i
(11,5,125) | S (=D*()* ("5 + ("5.7%)) | osburn-sahu-s ‘14
(9,3,-27) | >k, (k) (OO ED open
Divisibility properties of sporadic Apéry-like numbers Armin Straub
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Some of many open problems

Supercongruences for all Apéry-like numbers
e proof of all the classical ones
e uniform explanation, proofs not relying on binomial sums
Apéry-like numbers as diagonals
e find minimal rational functions
e extend supercongruences
e any structure?
polynomial analogs of Apéry-like numbers
e find g-analogs (e.g., for Almkvist-Zudilin sequence)
e g-supercongruences
e is there a geometric picture?
Many further questions remain.
e is the known list complete?
e Apéry-like numbers as diagonals and multivariate supercongruences
o higher-order analogs, Calabi—Yau DEs
e modular supercongruences Beukers '87, Ahlgren-Ono "00

()

a(p)  (modp®), > a(n)g" =n"(2r)n’(47)
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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