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Rough outline

• examples of special values of trigonometric Dirichlet series

• main result on special values and outline of strategy

• just a brief comment on convergence

• introduction to Eichler integrals of Eisenstein series

• open problems (possibly unimodularity, if time permits)
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Basic examples of trigonometric Dirichlet series

• Euler’s identity:

∞∑
n=1

1

n2m
= −1

2
(2πi)2m

B2m

(2m)!

• Half of the Clausen and Glaisher functions reduce, e.g.,

∞∑
n=1

cos(πnτ)

n2m
= polym(τ), poly1(τ) =

π2

12

(
3τ2 − 6τ + 2

)
.

• Ramanujan investigated trigonometric Dirichlet series of similar type.
From his first letter to Hardy:

∞∑
n=1

coth(πn)

n7
=

19π7

56700

In fact, this was already included in a general formula by Lerch.
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One of Ramanujan’s most famous formulas

For α, β > 0 such that αβ = π2 and m ∈ Z,

α−m

{
ζ(2m+ 1)

2
+
∞∑
n=1

n−2m−1

e2αn − 1

}
= (−β)−m

{
ζ(2m+ 1)

2
+
∞∑
n=1

n−2m−1

e2βn − 1

}

−22m
m+1∑
n=0

(−1)n
B2n

(2n)!

B2m−2n+2

(2m− 2n+ 2)!
αm−n+1βn.

THM
Ramanujan,
Grosswald

• In terms of
ξs(τ) =

∞∑
n=1

cot(πnτ)

ns
,

Ramanujan’s formula takes the form

1

ex − 1
= 1

2 cot(x
2 )− 1

2

τ2m−2ξ2m−1(− 1
τ )− ξ2m−1(τ) = (−1)k(2π)2k−1

k∑
s=0

B2s

(2s)!

B2k−2s
(2k − 2s)!

τ2s−1.

• Set m = 4 and τ = i to obtain
∞∑
n=1

coth(πn)

n7
=

19π7

56700
.
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Special values of trigonometric Dirichlet series

∞∑
n=0

tanh((2n+ 1)π/2)

(2n+ 1)3
=
π3

32
,

∞∑
n=1

(−1)n+1 csch(πn)

n3
=

π3

360

EG
Ramanujan

∞∑
n=1

cot
(
πn1+

√
5

2

)
n3

= − π3

45
√

5
,

∞∑
n=0

tan(π(2n+ 1)
√

5)

(2n+ 1)5
=

23π5

3456
√

5

EG
Berndt

1976-78

Let τ = (a+b
√
c)/2 for a, b, c ∈ Q with c > 0 and a2−cb2 = 4ε,

ε = ±1. If k > 1,

∞∑
n=1

cot(πnτ)

n2k−1
=

(−1)k−1(2π)2k−1

1− ετ2k−2
k∑
s=0

B2s

(2s)!

B2k−2s
(2k − 2s)!

τ2s−1.

THM
Berndt
1976

∞∑
n=1

cot2(πnζ3)

n4
= − 31

2835
π4,

∞∑
n=1

csc2(πnζ3)

n4
=

1

5670
π4

EG
Komori-

Matsumoto-
Tsumura

2013

(Here, ζ3 is the primitive third root of unity.)
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Secant zeta function

• Laĺın, Rodrigue and Rogers introduce and study

ψs(τ) =

∞∑
n=1

sec(πnτ)

ns
.

• Clearly, ψs(0) = ζ(s). In particular, ψ2(0) =
π2

6
.

ψ2(
√

2) = −π
2

3
, ψ2(

√
6) =

2π2

3

EG
LRR ’13

For positive integers m, r,

ψ2m(
√
r) ∈ Q · π2m.

CONJ
LRR ’13

• proof completed independently by Berndt–S and Charollois–Greenberg
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Special values of trigonometric Dirichlet series

∞∑
n=1

sec2(πn
√

5)

n4
=

14

135
π4

∞∑
n=1

cot2(πn
√

5)

n4
=

13

945
π4

∞∑
n=1

csc2(πn
√

11)

n4
=

8

385
π4

∞∑
n=1

sec3(πn
√

2)

n4
= −2483

5220
π4

∞∑
n=1

tan3(πn
√

6)

n5
=

35, 159

17, 820
√

6
π4

EG
S 2014

Special values of trigonometric Dirichlet series Armin Straub
7 / 17



Special values of trigonometric Dirichlet series

∞∑
n=1

sec2(πn
√

5)

n4
=

14

135
π4

∞∑
n=1

cot2(πn
√

5)

n4
=

13

945
π4

∞∑
n=1

csc2(πn
√

11)

n4
=

8

385
π4

∞∑
n=1

sec3(πn
√

2)

n4
= −2483

5220
π4

∞∑
n=1

tan3(πn
√

6)

n5
=

35, 159

17, 820
√

6
π4

EG
S 2014

Special values of trigonometric Dirichlet series Armin Straub
7 / 17



Special values of trigonometric Dirichlet series

∞∑
n=1

sec2(πn
√

5)

n4
=

14

135
π4

∞∑
n=1

cot2(πn
√

5)

n4
=

13

945
π4

∞∑
n=1

csc2(πn
√

11)

n4
=

8

385
π4

∞∑
n=1

sec3(πn
√

2)

n4
= −2483

5220
π4

∞∑
n=1

tan3(πn
√

6)

n5
=

35, 159

17, 820
√

6
π4

EG
S 2014

Special values of trigonometric Dirichlet series Armin Straub
7 / 17



Special values of trigonometric Dirichlet series

• For a, b ∈ Z, let triga,b = seca cscb be any product/quotient of
trigonometric functions.

∞∑
n=1

triga,b(πnρ)

ns
∈ πsQ(ρ)

provided that

• ρ is a real quadratic irrationality,

• s > max(a, b, 1) + 1 (so that the series converges),

• s and b have the same parity.

THM
S 2014

• If, in addition, ρ2 ∈ Q and a+ b > 0, then the value is in (πρ)sQ.

∞∑
n=1

(cos cot)(πn
√

2)

n3
=

[
1

2
− 253

360
√

2

]
π3

EG

(Here, (a, b) = (−2, 1) does not satisfy a + b > 0.)
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Strategy

• Rough strategy how to evaluate ψa,bs (ρ) =

∞∑
n=1

triga,b(πnρ)

ns
:

(triga,b = seca cscb)

• Trivial case: a 6 0 and b 6 0. If s > 1 has the same parity as b, then

ψa,b
s (τ) = πsf(τ),

where f(τ) is piecewise polynomial in τ with rational coefficients.

•sec
csc
cot
tan

Modular cases: If (a, b) is one of (1, 0), (0, 1), (−1, 1), (1,−1), then
ψa,b
s (τ) are essentially Eichler integrals of Eisenstein series.

• For the general case, we use simple reduction identities, such as

sec2(τ) csc2(τ) = sec2(τ) + csc2(τ),

and (here, a is odd)

seca(τ) =
1

(a− 1)!
(D2 + (a− 2)2)(D2 + (a− 4)2) · · · (D2 + 12) sec(τ),

to connect with the trivial and (derivatives of the) modular cases.

In terms of Bernoulli polynomials we have, for 0 < τ < 1,

∞∑
n=1

cos(2πnτ)

n2m
=

(−1)m+1

2

(2π)2m

(2m)!
B2m(τ),

∞∑
n=1

sin(2πnτ)

n2m+1
=

(−1)m+1

2

(2π)2m+1

(2m+ 1)!
B2m+1(τ).

EG
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A glance at convergence

• ψs(τ) =
∑ sec(πnτ)

ns
has singularity at rationals with even denominator

0.2 0.4 0.6 0.8 1.0

-5

5

Re ψ2(τ + εi) with ε = 1/100

0.2 0.4 0.6 0.8 1.0

-10

-5

5

10

Re ψ2(τ + εi) with ε = 1/1000

The series ψs(τ) =
∑ sec(πnτ)

ns
converges absolutely if

1 τ = p/q with q odd and s > 1,

2 τ is algebraic irrational and s > 2.

THM
Luca,
Laĺın–

Rodrigue–
Rogers
2013

• Proof uses Thue–Siegel–Roth, as well as a result of Worley when
s = 2 and τ is irrational
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Ramanujan-type transformation formulas by residues

• Obviously, ψs(τ) =
∑ sec(πnτ)

ns
satisfies ψs(τ + 2) = ψs(τ).

(1 + τ)2m−1ψ2m

(
τ

1 + τ

)
− (1− τ)2m−1ψ2m

(
τ

1− τ

)
= π2m rat(τ)

THM
LRR, BS

2013
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(
τ
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= π2m rat(τ)

THM
LRR, BS

2013

Collect residues of the integral

IC =
1

2πi

∫
C

sin (πτz)

sin(π(1 + τ)z) sin(π(1− τ)z)

dz

zs+1
.

C are appropriate circles around the origin such that IC → 0 as
radius(C)→∞.

proof
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1− τ
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sin(τz)

sin((1− τ)z) sin((1 + τ)z)

THM
LRR, BS

2013

ψ2

(
τ

2τ + 1

)
=

1

2τ + 1
ψ2(τ) + π2

τ(3τ2 + 4τ + 2)

6(2τ + 1)2

EG

• Hence, ψ2m transforms under T 2 =

(
1 2
0 1

)
and R2 =

(
1 0
2 1

)
,

• Together, with −I, these two matrices generate Γ(2).
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Special values from transformation formulas

For any positive rational r,

ψ2m(
√
r) ∈ Q · π2m.

THM
LRR, BS

2013

•
√

2 is fixed by τ 7→ 3τ + 4

2τ + 3
.

• We have the functional equation

ψ2

(
3τ + 4

2τ + 3

)
= − 1

2τ + 3
ψ2(τ)− (τ + 2)(3τ2 + 8τ + 6)

6(2τ + 3)2
π2.

• For τ =
√

2 this reduces to

ψ2(
√

2) = (2
√

2− 3)ψ2(
√

2) +
2

3
(
√

2− 2)π2.

• Hence, ψ2(
√

2) = −π
2

3
.

EG

Special values of trigonometric Dirichlet series Armin Straub
12 / 17



Special values from transformation formulas

For any positive rational r,

ψ2m(
√
r) ∈ Q · π2m.

THM
LRR, BS

2013

•
√

2 is fixed by τ 7→ 3τ + 4

2τ + 3
.

• We have the functional equation

ψ2

(
3τ + 4

2τ + 3

)
= − 1

2τ + 3
ψ2(τ)− (τ + 2)(3τ2 + 8τ + 6)

6(2τ + 3)2
π2.

• For τ =
√

2 this reduces to

ψ2(
√

2) = (2
√

2− 3)ψ2(
√

2) +
2

3
(
√

2− 2)π2.

• Hence, ψ2(
√

2) = −π
2

3
.

EG

Special values of trigonometric Dirichlet series Armin Straub
12 / 17



Special values from transformation formulas

For any positive rational r,

ψ2m(
√
r) ∈ Q · π2m.

THM
LRR, BS

2013

•
√

2 is fixed by τ 7→ 3τ + 4

2τ + 3
.

• We have the functional equation

ψ2

(
3τ + 4

2τ + 3

)
= − 1

2τ + 3
ψ2(τ)− (τ + 2)(3τ2 + 8τ + 6)

6(2τ + 3)2
π2.

• For τ =
√

2 this reduces to

ψ2(
√

2) = (2
√

2− 3)ψ2(
√

2) +
2

3
(
√

2− 2)π2.

• Hence, ψ2(
√

2) = −π
2

3
.

EG

Special values of trigonometric Dirichlet series Armin Straub
12 / 17



Special values from transformation formulas

For any positive rational r,

ψ2m(
√
r) ∈ Q · π2m.

THM
LRR, BS

2013

•
√

2 is fixed by τ 7→ 3τ + 4

2τ + 3
.

• We have the functional equation

ψ2

(
3τ + 4

2τ + 3

)
= − 1

2τ + 3
ψ2(τ)− (τ + 2)(3τ2 + 8τ + 6)

6(2τ + 3)2
π2.

• For τ =
√

2 this reduces to

ψ2(
√

2) = (2
√

2− 3)ψ2(
√

2) +
2

3
(
√

2− 2)π2.

• Hence, ψ2(
√

2) = −π
2

3
.

EG

Special values of trigonometric Dirichlet series Armin Straub
12 / 17



Special values from transformation formulas

For any positive rational r,

ψ2m(
√
r) ∈ Q · π2m.

THM
LRR, BS

2013

•
√

2 is fixed by τ 7→ 3τ + 4

2τ + 3
.

• We have the functional equation

ψ2

(
3τ + 4

2τ + 3

)
= − 1

2τ + 3
ψ2(τ)− (τ + 2)(3τ2 + 8τ + 6)

6(2τ + 3)2
π2.

• For τ =
√

2 this reduces to

ψ2(
√

2) = (2
√

2− 3)ψ2(
√

2) +
2

3
(
√

2− 2)π2.

• Hence, ψ2(
√

2) = −π
2

3
.

EG

Special values of trigonometric Dirichlet series Armin Straub
12 / 17



Modular forms

“There’s a saying attributed to Eichler that there are five funda-
mental operations of arithmetic: addition, subtraction, multipli-
cation, division, and modular forms.

Andrew Wiles (BBC Interview, “The Proof”, 1997) ”
Actions of γ =

(
a b
c d

)
∈ SL2(Z):

• on τ ∈ H by γ · τ =
aτ + b

cτ + d
,

• on f : H → C by (f |kγ)(τ) = (cτ + d)−kf(γ · τ).

DEF

A function f : H→ C is a modular form of weight k if

• f |kγ = f for all γ ∈ Γ, Γ 6 SL2(Z),

• f is holomorphic (including at the cusps).

DEF

f(τ + 1) = f(τ), τ−kf(−1/τ) = f(τ).
EG

SL2(Z)
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Eisenstein series and Eichler integrals

Eisenstein series of weight 2k:

σk(n) =
∑
d|n

dk

G2k(τ) =
∑′

m,n∈Z

1

(mτ + n)2k

= 2ζ(2k) + 2
(2πi)2k

Γ(2k)

∞∑
n=1

σ2k−1(n)qn

EG
SL2(Z)

• An Eichler integral is what we get by integrating a weight k modular
form k − 1 times. As usual, the derivative is D =

1

2πi

d

dτ
= q

d

dq
.
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SL2(Z)

• An Eichler integral is what we get by integrating a weight k modular
form k − 1 times. As usual, the derivative is D =

1

2πi

d

dτ
= q

d

dq
.

∞∑
n=1

σ2k−1(n)qn
integrate−−−−−→

∞∑
n=1

σ2k−1(n)

n2k−1
qn =

∞∑
n=1

σ1−2k(n)qn
EG

• Eichler integrals are characterized by
F |2−k(γ − 1) = poly(τ), deg poly 6 k − 2.

• poly(τ) is a period polynomial of the modular form f .
The period polynomial encodes the critical L-values of f .

Special values of trigonometric Dirichlet series Armin Straub
14 / 17



Eisenstein series and Eichler integrals

Eisenstein series of weight 2k: σk(n) =
∑
d|n

dk

G2k(τ) =
∑′

m,n∈Z

1

(mτ + n)2k
= 2ζ(2k) + 2

(2πi)2k

Γ(2k)

∞∑
n=1

σ2k−1(n)qn

EG
SL2(Z)

• An Eichler integral is what we get by integrating a weight k modular
form k − 1 times. As usual, the derivative is D =

1

2πi

d

dτ
= q

d

dq
.

∞∑
n=1

σ2k−1(n)qn
integrate−−−−−→

∞∑
n=1

σ2k−1(n)

n2k−1
qn =

∞∑
n=1

σ1−2k(n)qn
EG

• Eichler integrals are characterized by
F |2−k(γ − 1) = poly(τ), deg poly 6 k − 2.

• poly(τ) is a period polynomial of the modular form f .
The period polynomial encodes the critical L-values of f .

Special values of trigonometric Dirichlet series Armin Straub
14 / 17



Eisenstein series and Eichler integrals

Eisenstein series of weight 2k: σk(n) =
∑
d|n

dk

G2k(τ) =
∑′

m,n∈Z

1

(mτ + n)2k
= 2ζ(2k) + 2

(2πi)2k

Γ(2k)

∞∑
n=1

σ2k−1(n)qn

EG
SL2(Z)

• An Eichler integral is what we get by integrating a weight k modular
form k − 1 times. As usual, the derivative is D =

1

2πi

d

dτ
= q

d

dq
.

∞∑
n=1

σ2k−1(n)qn
integrate−−−−−→

∞∑
n=1

σ2k−1(n)

n2k−1
qn =

∞∑
n=1

σ1−2k(n)qn
EG

• Eichler integrals are characterized by
F |2−k(γ − 1) = poly(τ), deg poly 6 k − 2.

• poly(τ) is a period polynomial of the modular form f .
The period polynomial encodes the critical L-values of f .

Special values of trigonometric Dirichlet series Armin Straub
14 / 17



Eisenstein series and Eichler integrals

Eisenstein series of weight 2k: σk(n) =
∑
d|n

dk

G2k(τ) =
∑′

m,n∈Z

1

(mτ + n)2k
= 2ζ(2k) + 2

(2πi)2k

Γ(2k)

∞∑
n=1

σ2k−1(n)qn

EG
SL2(Z)

• An Eichler integral is what we get by integrating a weight k modular
form k − 1 times. As usual, the derivative is D =

1

2πi

d

dτ
= q

d

dq
.

∞∑
n=1

σ2k−1(n)qn
integrate−−−−−→

∞∑
n=1

σ2k−1(n)

n2k−1
qn =

∞∑
n=1

σ1−2k(n)qn
EG

• Eichler integrals are characterized by
F |2−k(γ − 1) = poly(τ), deg poly 6 k − 2.

• poly(τ) is a period polynomial of the modular form f .
The period polynomial encodes the critical L-values of f .

Special values of trigonometric Dirichlet series Armin Straub
14 / 17



Eisenstein series and Eichler integrals

Eisenstein series of weight 2k: σk(n) =
∑
d|n

dk

G2k(τ) =
∑′

m,n∈Z

1

(mτ + n)2k
= 2ζ(2k) + 2

(2πi)2k

Γ(2k)

∞∑
n=1

σ2k−1(n)qn

EG
SL2(Z)

• An Eichler integral is what we get by integrating a weight k modular
form k − 1 times. As usual, the derivative is D =

1

2πi

d

dτ
= q

d

dq
.

The series
∑
n>1

cot(πnτ)

n2k−1
is an Eichler integral of G2k(τ).

EG

• Differentiating the cotangent series 2k − 1 times, after using

cot(πτ) =
1

π

∑
j∈Z

1

τ + j
, lim

N→∞

N∑
j=−N

we indeed get G2k, up to a factor and the constant term.
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Ramanujan’s famous formula, again

For α, β > 0 such that αβ = π2 and m ∈ Z,

α−m

{
ζ(2m+ 1)

2
+
∞∑
n=1

n−2m−1

e2αn − 1

}
= (−β)−m

{
ζ(2m+ 1)

2
+
∞∑
n=1

n−2m−1

e2βn − 1

}

−22m
m+1∑
n=0

(−1)n
B2n

(2n)!

B2m−2n+2

(2m− 2n+ 2)!
αm−n+1βn.

THM
Ramanujan,
Grosswald

• In terms of
ξs(τ) =

∞∑
n=1

cot(πnτ)

ns
,

Ramanujan’s formula takes the form

1

ex − 1
= 1

2 cot(x
2 )− 1

2

τ2m−2ξ2m−1(− 1
τ )− ξ2m−1(τ) = (−1)k(2π)2k−1

k∑
s=0

B2s

(2s)!

B2k−2s
(2k − 2s)!

τ2s−1.

• Adjusting for the missing term in ξ2k−1, the RHS is the period
polynomial of the Eisenstein series G2k.
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Some open questions

• We have seen how to evaluate trigonometric series such as

∞∑
n=1

sec2(πn
√

5)

n4
=

14

135
π4.

• However, our method proceeds in a very recursive way. Can we give
more explicit results or proofs?

• In which cases can we evaluate more general series such as the
following?

∞∑
n=1

cot(πnτ1) · · · cot(πnτr)

ns

∞∑
n=1

(−1)n+1 csc(πnζ5) csc(πnζ25 ) · · · csc(πnζ45 )

n6
=

π6

935, 550

EG
Komori-

Matsumoto-
Tsumura

2013

(Here, ζ5 is the primitive fifth root of unity.)
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n4
=

14

135
π4.

• However, our method proceeds in a very recursive way. Can we give
more explicit results or proofs?

• In which cases can we evaluate more general series such as the
following?

∞∑
n=1

cot(πnτ1) · · · cot(πnτr)

ns

∞∑
n=1

(−1)n+1 csc(πnζ5) csc(πnζ25 ) · · · csc(πnζ45 )

n6
=

π6

935, 550

EG
Komori-

Matsumoto-
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2013

(Here, ζ5 is the primitive fifth root of unity.)
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

B. Berndt, A. Straub
On a secant Dirichlet series and Eichler integrals of Eisenstein series
Preprint, 2014

A. Straub
Special values of trigonometric Dirichlet series and Eichler integrals
The Ramanujan Journal (special issue dedicated to Marvin Knopp), 2015
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Unimodular polynomials

p(x) is unimodular if all its zeros have absolute value 1.DEF

• Kronecker: if p(x) ∈ Z[x] is monic and unimodular, hence Mahler measure 1,

then all of its roots are roots of unity.

x2 + 6
5x+ 1 =

(
x+ 3+4i

5

) (
x+ 3−4i

5

)EG

x10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1

has only the two real roots 0.850, 1.176 off the unit circle.
Lehmer’s conjecture: 1.176 . . . is the smallest Mahler measure (greater than 1)

EG
Lehmer
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Ramanujan polynomials

• Following Gun–Murty–Rath, the Ramanujan polynomials are

Rk(X) =
k∑
s=0

Bs
s!

Bk−s
(k − s)!

Xs−1.

All nonreal zeros of Rk(X) lie on the unit circle.
For k > 2, R2k(X) has exactly four real roots which approach ±2±1.

THM
Murty-
Smyth-

Wang ’11

R2k(X) +
ζ(2k − 1)

(2πi)2k−1
(X2k−2 − 1) is unimodular.

THM
Laĺın-Smyth

’13

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

R20(X)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Rfull
20 (X)
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Laĺın-Smyth

’13

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

R20(X)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Rfull
20 (X)

Special values of trigonometric Dirichlet series Armin Straub
19 / 23



Unimodularity of period polynomials

For any Hecke cusp form (for SL2(Z)), the odd part of its period
polynomial has

• trivial zeros at 0, ±2, ±1

2
,

• and all remaining zeros lie on the unit circle.

THM
Conrey-
Farmer-

Imamoglu
2012

For any Hecke eigenform (for SL2(Z)), the full period polynomial
has all zeros on the unit circle.

THM
El-Guindy–
Raji 2013

What about higher level?Q
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Generalized Ramanujan polynomials

• Consider the following generalized Ramanujan polynomials:

Rk(X;χ, ψ) =

k∑
s=0

Bs,χ
s!

Bk−s,ψ
(k − s)!

(
X − 1

M

)k−s−1
(1−Xs−1)

• Essentially, period polynomials: χ, ψ primitive, nonprincipal

Rk(LX + 1;χ, ψ) = const ·Ẽk(X; χ̄, ψ̄)|2−k(1−RL)

• For even k > 1,

Rk(X; 1, 1) =

k∑
s=0

Bs
s!

Bk−s
(k − s)!

Xs−1.

• Rk(X;χ, ψ) is self-inversive.

PROP
Berndt-S

2013

If χ, ψ are nonprincipal real, then Rk(X;χ, ψ) is unimodular.CONJ
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Generalized Ramanujan polynomials

Rk(X;χ, 1)

For χ real, conjecturally unimodular unless:

• χ = 1: R2k(X; 1, 1) has real roots approaching ±2±1

• χ = 3−: R2k+1(X; 3−, 1) has real roots approaching −2±1

EG

Rk(X; 1, ψ)
Conjecturally:

• unimodular for ψ one of
3−, 4−, 5+, 8±, 11−, 12+, 13+, 19−, 21+, 24+, . . .

• all nonreal roots on the unit circle if ψ is one of
1+, 7−, 15−, 17+, 20−, 23−, 24−, . . .

• four nonreal zeros off the unit circle if ψ is one of
35−, 59−, 83−, 131−, 155−, 179−, . . .

EG
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Generalized Ramanujan polynomials

• A second kind of generalized Ramanujan polynomials:

Rk(X) =

k∑
s=0

Bs
s!

Bk−s
(k − s)!

Xs−1

Sk(X;χ, ψ) =

k∑
s=0

Bs,χ
s!

Bk−s,ψ
(k − s)!

(
LX

M

)k−s−1
• Obviously, Sk(X; 1, 1) = Rk(X).

If χ is nonprincipal real, then Sk(X;χ, χ) is unimodular (up to
trivial zero roots).

CONJ
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