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Rough outline

e introducing Apéry-like numbers

e Lucas-type congruences

applications
o primes never dividing Apéry-like numbers
e periodicity modulo p

a little more on supercongruences (time permitting)
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Positivity of rational functions

e Let us begin with an open problem:

CONJ All Taylor coefficients of the following function are positive:
Kauers-
Zeilberger

2008 1

1—(z+y+2+w)+2yzw + z2w + xyw + 2y2) + dryzw’
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Positivity of rational functions

e Let us begin with an open problem:

CONJ All Taylor coefficients of the following function are positive:

Kauers-
Zeilberger
2008 1

1—(z+y+2+w)+2yzw + z2w + xyw + 2y2) + dryzw’

PROP The diagonal coefficients of the Kauers—Zeilberger function are

-5 ()

2015
k=0

e D(n) is an example of an Apéry-like sequence.
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Positivity of rational functions

e Let us begin with an open problem:

CONJ All Taylor coefficients of the following function are positive:
Kauers-
Zeilberger

2008 1

1—(z+y+2+w)+2yzw + z2w + xyw + 2y2) + dryzw’

PROP The diagonal coefficients of the Kauers—Zeilberger function are

-5 ()

2015
k=0

e D(n) is an example of an Apéry-like sequence.

. Q Can we conclude the conjectured positivity from the positivity of
-Zudilin

2015 D(n) together with the (obvious) positivity of m?
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The Riemann zeta function

e The Riemann zeta function is the analytic continuation of

=1 1
C(s) = § s | | 1 s
n L 1—p
n=1 p prime

e Its zeros and values are fundamental, yet mysterious to this day.

CONJ |f ¢(s) = 0 then s € {—2,—4,...} or Re(s) = L
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The Riemann zeta function

e The Riemann zeta function is the analytic continuation of

=1 1
C(s) = § s | | 1 s
n L 1—p
n=1 p prime

e Its zeros and values are fundamental, yet mysterious to this day.

CONJ |f ¢(s) = 0 then s € {—2,—4,...} or Re(s) = L

T _ _ _ (=)™ em)* By,
1734 C(Q) - Ev C(4) - %a °00g C(QTL) - 2(271)'

CONJ The values ((3),¢(5),((7),... are all transcendental.
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The Riemann zeta function

e The Riemann zeta function is the analytic continuation of

=1 1
C(s) = § s | | 1 s
n L 1—p
n=1 p prime

e Its zeros and values are fundamental, yet mysterious to this day.

CONJ |f ¢(s) = 0 then s € {—2,—4,...} or Re(s) = L

THM 2 at —1)"+1(27)2" By,
e (=T, (=0, . cem="D z(éi)? =

1734

CONJ The values ((3),¢(5),((7),... are all transcendental.

THM " (3) is irrational.

Apéry'78
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

v RO

(n+1)3A(n+1) = 2n+1)(170* + 170 +5)A(n) — n*A(n — 1).
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...
"\ n+ k)2
| a3 (0) ("4)
satisfy k=0
(n+1)2A(n+1) = (2n+1)(17Tn? + 17Tn + 5)A(n) — n3A(n — 1).

THM ((3) = 3> | L is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”-integers

n

- £ 1) (£ S sttt

k=0

Then, BE" — ((3). But too fast for ((3) to be rational. O
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+1)3u,1 = (2n 4+ 1)(an® + an + b)uy, — enuy,_g.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+1)3u,1 = (2n 4+ 1)(an® + an + b)uy, — enuy,_g.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?

e Essentially, only 14 tuples (a, b, ¢) found. (Almkvist-Zudilin)
e 4 hypergeometric and 4 Legendrian solutions (with generating functions

«@ 1 al—al —Cyuz \?
1Cz ), ———FR (" o ,
z) 1—Cz’t ( 1 lfCaz)

with a = 1 1 11 ang ©, = 24 33,26 24 . 33)

e 6 sporadic solutions

e Similar (and intertwined) story for:
e (n+ 1)Uy = (an?® + an + b)u, — en®up,_y (Beukers, Zagier)
o (n+ 13Uy = (2n+ 1)(an? + an + b)u, — n(en? + d)up—1  (Cooper)
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The six sporadic Apéry-like numbers

(a,b,c) A(n)
(17,5,1) ; <Z> i (“ Z k> i Apéry numbers
(12,4,16) Zk: <Z>2(2:)2
(10,4, 64) Xk: (’;)2(2:) (2(:__:)> ——
(7,3,81) zkj(fl)k:a"*?’k ( . (” : k) % —
| £ () (5
ea-n | S OO
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) ( 0" (m)n*? (67) )"
Prmser) 2\

I — | = L
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = 2™
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" (m)n*? (67) )"
Prmser) 2\

I — | = L
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = e27™iT

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" (m)n*? (67) )"
Prmser) 2\

I — | = L
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = 2™

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

e As a consequence, with z = /1 — 34z + 22,

17—z —2 144 1024z
L — 2)209 | UL
n;)A(n)x S VATt 3F2< 1 (1—:Jc+z)4)'
* Context: f(r) modular form of (integral) weight k

2(7) modular function
y(z) such that y(x(7)) = f(1)

Then y(z) satisfies a linear differential equation of order k + 1.
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Lucas congruences

e The Apéry numbers 1,5,73,1445, ...
"\ (n+k\?
A =
=20 (")
k=0
satisfy the Lucas congruences (Gessel 1982)

A(n) = A(ng)A(n1)--- A(n,)  (modp),

where n; are the p-adic digits of n.
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Lucas congruences

e The Apéry numbers 1,5,73,1445, ...
"\ (n+k\?
A =
=20 (")
k=0
satisfy the Lucas congruences (Gessel 1982)

A(n) = A(ng)A(n1)--- A(n,)  (modp),

where n; are the p-adic digits of n.
e Lucas showed the beautiful congruences

(1) =(2) () () man

where n;, respectively k;, are the p-adic digits of n and k.
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Lucas congruences

e The Apéry numbers 1,5,73,1445, ...
" n\? (n+ k\?
A =
-2 () (")
k=0
satisfy the Lucas congruences (Gessel 1982)

A(n) = A(ng)A(n1)--- A(n,)  (modp),

where n; are the p-adic digits of n.
e Lucas showed the beautiful congruences

n no ni Ny
= e d
()= )G () moon
where n;, respectively k;, are the p-adic digits of n and k.

THM Every sporadic sequence satisfies these Lucas congruences mod-
Malik-S E
2015 ulo every prime.
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Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-

vassawi any Apéry number A(n).
Such as p = 2,3,7,13,23, 29,43, 47, . ..

e Recall that the Apéry numbers 1,5,73,1445, ...

mm:é@(?;)z(”;k)?

satisfy the Lucas congruences

A(n) = A(no)A(m1) -~ A(n,)  (modp).
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Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-

vassawi any Apéry number A(n).
Such as p = 2,3,7,13,23, 29,43, 47, . ..

EG e The values of Apéry numbers A(0), A(1),..., A(6)
modulo 7 are 1,5,3,3,3,5, 1.

e Recall that the Apéry numbers 1,5,73,1445, ...

mm:é@(?;)z(”;k)g

satisfy the Lucas congruences

A(n) = A(no)A(m1) -~ A(n,)  (modp).
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Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide

Rowland-

vassawi any Apéry number A(n).
Such as p = 2,3,7,13,23, 29,43, 47, . ..

EG e The values of Apéry numbers A(0), A(1),..., A(6)
modulo 7 are 1,5,3,3,3,5, 1.

e Hence, the Lucas congruences imply that 7 does not
divide any Apéry number.
e Recall that the Apéry numbers
" n\? (n+ k\?
A =
=2 () (')

satisfy the Lucas congruences

1,5,73,1445, ...

A(n) = A(no)A(m1) -~ A(n,)  (modp).
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Primes not dividing Apéry numbers, cont’d

DC[gnlglv-\ll The proportion of primes not dividing any Apéry number A(n)

2015 is e /2 ~ 60.65%.
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Primes not dividing Apéry numbers, cont’d

CONJ The proportion of primes not dividing any Apéry number A(n)

DDMSW

015 is e~ 1/2 = 60.65%.
e Heuristically, combine Lucas congruences,

e palindromic behavior of Apéry numbers, that is

A(n)= A(p—1-n)  (modp),

12 ) 1 (p+1)/2
e and ¢ = lim (1— - .

p—00 p
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Primes not dividing Apéry numbers, cont’d

CONJ The proportion of primes not dividing any Apéry number A(n)

DDMSW

2015 is e /2 ~ 60.65%.

Heuristically, combine Lucas congruences,
palindromic behavior of Apéry numbers, that is

A(n)= A(p—1-n)  (modp),

12 ) 1 (p+1)/2
and e = lim (1— - .

p—00 p

proportion of primes not dividing any Apéry number

nnnnn
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Primes not dividing Apéry numbers, cont’d?

e The primes below 100 not dividing sporadic sequences, as well as the
proportion of primes below 10,000 not dividing any term
(6) | 2,5,7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192
(n) | 2,3,17, 19, 23, 31, 47, 53, 61 0.2897
() | 3,5, 13,17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 | 0.5989
(¢)
(€)
()

3,7,13,19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037
2,5,7, 13,17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046
2,3,7,13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168
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Primes not dividing Apéry numbers, cont’d?

e The primes below 100 not dividing sporadic sequences, as well as the
proportion of primes below 10,000 not dividing any term
(6) | 2,5,7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192
(n) | 2,3, 17, 19, 23, 31, 47, 53, 61 0.2897
() | 3,5, 13,17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 | 0.5989
(¢)
(€)
()

3,7,13,19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037
2,5,7, 13,17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046
2,3,7,13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168
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Primes not dividing Apéry numbers, cont’d?

e The primes below 100 not dividing sporadic sequences, as well as the
proportion of primes below 10,000 not dividing any term

(6) | 2,5,7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192
(n) | 2,3, 17, 19, 23, 31, 47, 53, 61 0.2897
() | 3,5, 13,17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 | 0.5989
(e) | 3,7,13,19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037
(¢) | 2,5,7, 13,17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046
(v) | 2,3,7,13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168

THM For any prime p # 3, we have that, modulo p,
Malik-S
2015

3

PN _ ) (DAY i p=1,2,4,8 (mod 15),

4, (12]) = Lp/15]
g QSJ) { 0, 8 otherwise.

e We therefore expect the proportion of primes not dividing any A, (n)
to be Je~/2 ~ 30.33%.
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Modular (super)congruences

THM The Apéry numbers satisfy
Ahlgren—
Ono

w A <p;1> =a(p)  (modp?)
with

> a(n)g" = n*(2r)n*(4r).

n=1

e conjectured by Beukers '87, and proved modulo p

e similar congruences modulo p for other Apéry-like numbers
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Periodicity of residues

Pt 1 (mod8), ifn even,
'82 A(n) = _
5 (mod8), if n odd.

e conjectured by Chowla—Cowles—Cowles '80
e not eventually periodic modulo 16 (Rowland—Yassawi '13)
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Periodicity of residues

Pt 1 (mod8), ifn even,
'82 A(n) = _
5 (mod8), if n odd.
e conjectured by Chowla—Cowles—Cowles '80

e not eventually periodic modulo 16 (Rowland—Yassawi '13)

PROP |f C'(n) satisfies Lucas congruences modulo p and is eventually

Gessel

82 periodic modulo p, then

C(n)=C(1)" (modp) foralln=0,1,...,p— 1.
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Periodicity of residues

Pt 1 (mod8), ifn even,
'82 A(n) = _
5 (mod8), if n odd.
e conjectured by Chowla—Cowles—Cowles '80

e not eventually periodic modulo 16 (Rowland—Yassawi '13)

PROP |f C'(n) satisfies Lucas congruences modulo p and is eventually

Gessel

82 periodic modulo p, then
C(n)=C(1)" (modp) foralln=0,1,...,p— 1.

EG For the Almkvist—Zudilin sequence

n

Z(n) =y (-3)" (3’;) (n + k) ]

n
k=0

Z(3) — Z(1)3 = 24. So can be periodic modulo p only for p = 2, 3.
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Periodicity of residues

THM The Almkvist—=Zudilin numbers

Z(n) = i(_g,)n—sk; <?3€> (n : k) %

2015
k=0

satisfy the congruences

Z(n) =

1 (mod8), ifn even,
5 (mod8), ifn odd.

e This can be proved using computer algebra in two steps.
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Periodicity of residues

THM The Almkvist—=Zudilin numbers

Z(n) = i(_g,)n—sk; <?3€> (n : k) %

2015
k=0

satisfy the congruences

Z(n) =

1 (mod8), ifn even,
5 (mod8), ifn odd.

e This can be proved using computer algebra in two steps.

LEM The Almkvist—Zudilin numbers are the diagonal coefficients of
S 2014

1
1— (21 +x2+23+24) + 2721 Tox32a

That is, Z(n) equals the coefficient of (z1zox324)".
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Diagonals

e The diagonal of a multivariate series

Flen oz = Y a(n,...ngal -

nl,...,nd>0

is the univariate function > ~qa(n,...,n)z".

e The diagonal of an algebraic function is D-finite.

nd

Gessel
Zeilberger
Lipshitz
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Diagonals

e The diagonal of a multivariate series

Flen oz = Y a(n,...ngal -

m,...,nd}O
is the univariate function > ~qa(n,...,n)z".

e The diagonal of an algebraic function is D-finite.

EG 1
1l—x—y

has diagonal coefficients (*").

nd

Gessel
Zeilberger
Lipshitz
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Diagonals

e The diagonal of a multivariate series

Flen oz = Y a(n,...ngal -

m,...,nd}O

is the univariate function > ~qa(n,...,n)z".

e The diagonal of an algebraic function is D-finite.

EG

1 o0
T =@+’
Yy k=0

has diagonal coefficients (*").

nd

Gessel
Zeilberger
Lipshitz
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Diagonals

e The diagonal of a multivariate series

F(zy,...,2q) = Z a(ni,...,ng)zt -l

m,...,nd}O
is the univariate function > ~qa(n,...,n)z".
. . . . .. Gessel
e The diagonal of an algebraic function is D-finite. Zeilberger

Lipshitz
EG ] o0 .
Too=y - 2C+Y

k=0

has diagonal coefficients (2:) The diagonal is

S

Lucas Congruences Armin Straub )
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Finite state automata

oo

(. +y)"
=0

EG 1 B
lfxfy_

n

has diagonal coefficients (27?) The diagonal is
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Finite state automata

oo

(. +y)"
=0

EG 1 B
lfxfy_

n

has diagonal coefficients (27?) The diagonal is

i 20\ o_ 1
—\n V1—4z

e The diagonal of a rational function F(z,y) is always algebraic.
F(x,2)d,

‘x/ x

. B 1
To see this, express the diagonal as 57 f\z|:s

e Not true for more than two variables.
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Finite state automata

oo

(. +y)"
=0

EG 1 B
lfxfy_

n

has diagonal coefficients (27?) The diagonal is

i 20\ o_ 1
—\n V1—4z

e The diagonal of a rational function F(z,y) is always algebraic.
F(x,2)d,

‘x/ x

. B 1
To see this, express the diagonal as 57 f\z|:s

e Not true for more than two variables. However:
(Furstenberg '67, Deligne '84 and Denef-Lipshitz '87)

THM Diagonals of algebraic functions in Zy[[z1, ..., z4]] are algebraic
over Zy(z). Equivalently, the diagonal coefficients modulo p"
are generated by a finite state automaton.
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Finite state automata

e Recall: the AZ numbers (—1)"Z(n) are the diagonal coefficients of

1
1— (21 + a2+ 23+ 24) + 27T 2973

Lucas Congruences Armin Straub
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Finite state automata

e Recall: the AZ numbers (—1)"Z(n) are the diagonal coefficients of

1
1— (21 + a2+ 23+ 24) + 27T 2973

¢ Rowland-Yassawi (2013) give an
algorithm to compute a finite state

-
automaton for these numbers X
modulo 7 (or any p").
e For instance: \\
Z(63) = Z(120pase 7) = 1 (mod 7). i
Of course, modulo primes it is easier to use Lucas congruences. /Q
456

Lucas Congruences Armin Straub 19




Finite state automata

e The Almkvist—Zudilin numbers Z(n) modulo &:

This automatically generated automaton can, of course, be simplified.

'

1

Ao T
7 R

5

Lucas Congruences Armin Straub
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Finite state automata

e The Almkvist—Zudilin numbers Z(n) modulo &:

This automatically generated automaton can, of course, be simplified.

'

1

Ao T
TR P N g

e The automaton makes it obvious that, indeed,

Z(n) = 1 (mod8), !f n even,
5 (mod8), ifn odd.

Lucas Congruences Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).
e Gessel (1982) proved that A(mp) = A(m)  (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

WV
=

THM The Apéry numbers satisfy the supercongruence (p

Beukers,
(mod p°").

Coster
A(mp") = A(mp"™)

'85, '88

Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

THM The Apéry numbers satisfy the supercongruence

(mod p°").

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88

EG For primes p, simple combinatorics proves the congruence

)20 7)1

p k
For p > 5, Wolstenholme's congruence shows that, in fact,

<2;’) =2 (modpd).

Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

WV
=

THM The Apéry numbers satisfy the supercongruence (p

Beukers,
(mod p°").

Coster
A(mp") = A(mp"™)

'85, '88

e The congruences a(mp”) = a(mp"~!) modulo p" occur frequently:

Arnold '03, Zarelua '04, ...

e a(n) = tr A™ with A € Zx4

Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

g-l-:M The Apéry numbers satisfy the supercongruence (p=5)
Coster‘

o A(mp") = A(mp™™")  (modp™).

e The congruences a(mp”) = a(mp"~!) modulo p" occur frequently:
Arnold '03, Zarelua '04, ...

e a(n) = tr A™ with A € Zx4
e realizable sequences a(n), i.e., for some map 7 : X — X,

aln) =#{zr e X : T"z =z} “points of period n"
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05

Armin Straub
21
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).
e Gessel (1982) proved that A(mp) = A(m)  (modp?).
(p>5)

THM The Apéry numbers satisfy the supercongruence

Beukers,
Coster
A(mp") = A(mp™™")  (mod p™).

85, '88
EG n
Mathematica 7 miscomputes A(n Z (n) (” + k) for n > 5500.
=0
A(5 . 113) = 12488301. . .about 2000 digits. . .about 8000 digits. . . 1 9DOGH2125H

Weirdly, with this wrong value, one still has

A(5-113) = A(5-11%)  (mod 119).

Armin Straub
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Supercongruences for Apéry-like numbers

e Conjecturally, supercongruences like

— -1
A(mpr) = A(mpr ) (mod p37‘) Robert Osburn Brundaban Sahu
(University of Dublin) (NISER, India)
hold for all Apéry-like numbers. Osburn-Sahu '09

e Current state of affairs for the six sporadic sequences from earlier:

(a,b,c) | A(n)
(17, 9, 1) Zk (2)2 (n:k)z Beukers, Coster '87-'88
(12,4,16) | 3, (1)° (1) Osburn-Sahu-S 14
(10,4,64) | >, (2)2 (Qkk) (2(:_}5)) Osburn—Sahu '11
(7’ 3, 81) Zk( 1) S (3k:) (”:k) (27?3)' open Amdebeman-T?:::r‘i
(11,5,125) | S (=D*()* ("5 + ("5.7%)) | osburn-sahu-s ‘14
9.3.-27) | £ () () open
Lucas Congruences Armin Straub
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Apéry numbers as diagonals

CONJ Every holonomic integer sequence with at most exponential
Christol . 0 E .
1990 growth is the diagonal of a rational function.
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Apéry numbers as diagonals

CONJ Every holonomic integer sequence with at most exponential
Christo

1990 growth is the diagonal of a rational function.

THM The Apéry numbers are the diagonal coefficients of
S 2014

1

(1 — 1 — 1‘2)(1 — X3 — $4) — £C1:D2$C3.Z'4.
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Apéry numbers as diagonals

CONJ Every holonomic integer sequence with at most exponential
Christo

1990 growth is the diagonal of a rational function.

THM The Apéry numbers are the diagonal coefficients of
S 2014

1

(1 — 1 — 1‘2)(1 — X3 — $4) — £C1:D2$C3.Z'4.

e Univariate generating function:

17—z -2 111
An)a" = 3 ( 27|
7; A4V2(1 + x4 2)3/2

1024x >

where z = V1 — 34z + 22.
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Apéry numbers as diagonals

CONJ Every holonomic integer sequence with at most exponential
Christo

1990 growth is the diagonal of a rational function.

THM The Apéry numbers are the diagonal coefficients of
S 2014

1
(1 — 1 — 1‘2)(1 — X3 — $4) — £C1:E2$C3.Z'4.

e Univariate generating function:

17—z -2 111
A(n)a™ = 3 2(27272 -
T; W21+ x4 2)3/2 1,1

1024z
(1—z+2)%)’

where z = V1 — 34z + 22.

e Well-developed theory of multivariate asymptotics e.g., Pemantle-Wilson
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Apéry numbers as diagonals

CONJ Every holonomic integer sequence with at most exponential
Christol . 0 E .
1990 growth is the diagonal of a rational function.

THM The Apéry numbers are the diagonal coefficients of
S 2014

1
(1 — 1 — 132)(1 — X3 — £C4) — $1:L’2$L’31’4.

e Let A(n) be the coefficient of ™ = z* - - x}*.

Then, for p > 5, we have the multivariate supercongruences

A(np") = A(np™™")  (modp™).

Lucas Congruences Armin Straub
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Apéry numbers as diagonals

CONJ Every holonomic integer sequence with at most exponential
Christol

1990 growth is the diagonal of a rational function.

THM The Apéry numbers are the diagonal coefficients of
S 2014

1
(1 — 1 — $2)(1 — X3 — £C4) — £C1:L’2$C3.1’4.

e Let A(n) be the coefficient of ™ = z* - - x}*.

Then, for p > 5, we have the multivariate supercongruences
A(np") = A(npr_l) (modpg"’).

e Numerical evidence suggests the same congruences for

1
1— (1 + a2+ 23+ 24) + 27T1 2973

Lucas Congruences Armin Straub
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Some of many open problems

Supercongruences for all Apéry-like numbers
e proof of all the classical ones
e uniform explanation, proofs not relying on binomial sums
Apéry-like numbers as diagonals
e find minimal rational functions
e extend supercongruences
e any structure?
polynomial analogs of Apéry-like numbers
e find g-analogs (e.g., for Almkvist-Zudilin sequence)
e g-supercongruences
e is there a geometric picture?
Many further questions remain.
e is the known list complete?
e Apéry-like numbers as diagonals and multivariate supercongruences
o higher-order analogs, Calabi—Yau DEs
e modular supercongruences Beukers '87, Ahlgren-Ono "00

()

a(p)  (modp®), D a(n)g" =n*(2r)n(47)
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

A. Malik, A. Straub
Divisibility properties of sporadic Apéry-like numbers
Preprint, 2015

A. Straub
Multivariate Apéry numbers and supercongruences of rational functions
Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008

R. Osburn, B. Sahu, A. Straub
Supercongruences for sporadic sequences
to appear in Proceedings of the Edinburgh Mathematical Society, 2014

A. Straub, W. Zud
Positivity of rational functions and their diagonals
Journal of Approximation Theory (special issue dedicated to Richard Askey), Vol. 195, 2015, p. 57-69
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