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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...
=2 () (1)
k=0

(n+1)3u,1 = 2n 4+ 1)(AT02 + 170+ 5)up — n3up_1.

satisfy
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 () (1)

satisfy k=0

(n+ 1)3up1 = (2n + 1) (1702 + 17n + 5)up, — nu, 1.

THM ((3) = 3> | L is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”-integers

n

- £ 1) (£ S sttt

k=0

Then, BE" — ((3). But too fast for ((3) to be rational. O
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Zagier’s search and Apéry-like numbers

o Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n + 1)3upi1 = (2n + 1)(an® + an + b)u, — cnu,_1.

Q  Avre there other tuples (a, b, c) for which the solution defined by

Beukers,

zager u_1 = 0, ug = 1 is integral?
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Zagier’s search and Apéry-like numbers

o Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n + 1)3upi1 = (2n + 1)(an® + an + b)u, — cnu,_1.

Q  Avre there other tuples (a, b, c) for which the solution defined by

Beukers,

zager u_1 = 0, ug = 1 is integral?

e Essentially, only 14 tuples (a, b, ¢) found. (Almkvist-Zudilin)

e 4 hypergeometric and 4 Legendrian solutions
e 6 sporadic solutions

e Similar (and intertwined) story for:

o (n+1)%upy1 = (an?® + an + b)u, — en®upy_q (Beukers, Zagier)
o (n+1)3upp1 = 2n+ 1)(an® + an + b)u,, — n(en? + d)uy—1  (Cooper)
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Apéry-like numbers

e Hypergeometric and Legendrian solutions have generating functions

1 2
ol —a 1 a,l—a| —Cuz
F 27 b 40 F b) «
32< 1,1 az) 1— Cn2? 1( 1 1—Caz) ’

with o = 3,2, % 1 and C, = 2%,33,26 24 . 33,
e The six sporadic solutions are:
(a,b,c) A(n)
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Modularity of Apéry-like numbers

e The Apéry numbers

satisfy

7
n'(27
7]5
I—I
modular form

1,5,73,1145, . ..
n 2
Z n
(&) (
k=0
12n
Aln < ) .

I—I
modular function

”)

n=0
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Modularity of Apéry-like numbers

e The Apéry numbers

satisfy

7
n'(27
7]5
I—I
modular form

1,5,73,1145,...
i("f(” ’“)
k=0 k
12n
A ()
n=0

I—I
modular function

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

f(7)
(1)

y(z)

e Context:

modular form of weight k
modular function

such that y(x(7)) = f(7)

Then y(x) satisfies a linear differential equation of order k + 1.
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
A(p) =5 modp®.
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
A(p) =5 modp.
e Gessel (1982) proved that A(mp) = A(m) modp?.
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
A(p) =5 modp®.

e Gessel (1982) proved that A(mp) = A(m) modp?.
g-l-:M The Apéry numbers satisfy the supercongruence (p=5)
Coster‘
85, 88 A(mp") = A(mp™™1)  modp?".
Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
A(p) =5 modp®.

e Gessel (1982) proved that A(mp) = A(m) modp?.

WV
=

THM The Apéry numbers satisfy the supercongruence (p

mod p°".

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88

2 2
n n+k
(k) ( i ) for n > 5500.

EG . . n
Mathematica 7 miscomputes A(n) = Z
k=0

A(5 . 113) = 12488301. . .about 2000 digits. . .about 8000 digits. . . 7 9DOGH2125H

Weirdly, with this wrong value, one still has

A(5-11%) = A(5-11%)  mod 11°.

Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
A(p) =5 modp.

e Gessel (1982) proved that A(mp) = A(m) modp?.

WV
=

THM The Apéry numbers satisfy the supercongruence (p

mod p°".

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88
EG Simple combinatorics proves the congruence
)26 2
= =1+1 modp”.
G)-ZH6
For p > 5, Wolstenholme's congruence shows that, in fact,

2
(p) =2 modp’.
p

Armin Straub
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Supercongruences for Apéry-like numbers

e Conjecturally, supercongruences like

A(mp") = A(mp" ™)

mod p3"

hold for all Apéry-like numbers.

Robert Osburn
(University of Dublin)

Brundaban Sahu
(NISER, India)

Osburn—Sahu '09

e Current state of affairs for the six sporadic sequences from earlier:

(a,b,c) A(n)

(7,3,81) | S(-1F3m () ("44) G opentt I
(11,5,125) | S (=D ()* (551 + ("5.7%)) | osburn-sahu-s ‘14
10,4, 64 N Osburn—Sahu '11

( )y ) Zk (2)2 (Zkk) (Q(r?fkk))

(12,4, 16) ok (2)2(2;)2 Osburn—Sahu-S '14
9.3,-27) | 30 ()7 (D (1) open

(17,5,1) Zk (2)2 (n:k)Q Beukers, Coster '87-'88
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A generalization: multivariate supercongruences

'SI'I;IOI:QI Define A(n) = A(n1,n2,n3,n4) by

! = Z A(n)x™.

1— 21 — 1— 23 —x4) —
(1 —21 —22)(1 — 23 — x4) — T1 222324 ez,

e The Apéry numbers are the diagonal coefficients.

e For p > 5, we have the multivariate supercongruences

A(np") = A(np™™')  mod p*".
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A generalization: multivariate supercongruences

'SI'I;IOI:QI Define A(n) = A(n1,n2,n3,n4) by

1

= A(n)z™.
(1 — 1 — wg)(l — X3 — 1’4) — X1X2X3T4 24 ( )
nezs,

e The Apéry numbers are the diagonal coefficients.

e For p > 5, we have the multivariate supercongruences

A(np") = A(np™™')  mod p*".

e Both A(np") and A(np"~!) have rational generating function.

The proof, however, relies on an explicit binomial sum for the coefficients.
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Short random walks

/‘

< > DM
I\///\\/\\l

joint work with:

Jon Borwein Dirk Nuyens James Wan  Wadim Zudilin
U. Newcastle, AU K.U.Leuven, BE SUTD, SG U. Newcastle, AU
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Random walks in the plane

n steps in the plane
(length 1, random direction)
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Random walks in the plane

n steps in the plane
(length 1, random direction)
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Random walks in the plane

n steps in the plane
(length 1, random direction)

e p,(x) — probability density of distance traveled

05

0.3
04
03 02
o p3(z) pa(7)
01
01
05 10 15 20 25 30 1 2 3 4
035
0.35]
o
oo
o
020
0.20
0.15 015
ps(x) pe(x)
0.05] 0.05
i 1 2 3 4 5 1 2 3 4 5 6
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Random walks in the plane

n steps in the plane
(length 1, random direction)

e p,(x) — probability density of distance traveled

05

. p3(x) pa(7)
01
01
05 10 15 20 25 30 1 2 3 4
035
035)
030
00|
025
025|
020
020)
015) 0B
010 p5 ($) 010 p6 (:L‘)
005| 005
' 1 2 3 4 5 T 2 3 4 B 6

o Wy(s) = [~ #pn(x) dz — probability moments

4
Wa(1) = —, Ws(1)
classical

328 /1N | 27223 /2
22 ez i, pCY (e
16 4 (3> R <3>

Borwein—Nuyens—S-Wan, 2010
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Moments of random walks

e The probability moments
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Moments of random walks

e The probability moments

j=0
k 2 .
2 2(k —
min =32 (5) (5) ()
NI\ k—
THM B2
Nuyers. Wh(2k) = ( >
-Wan ay,...,0n
52\[;\{0 a1+"'+an:k

Armin Straub
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Densities of random walks

N
(

p2(7) p3(z) “ pa(x) - ps(x)
(1) = ——
Tr) = —F— €as
bz ™4 — x2 y
2
2V/3 x %,% x? (97332) )
= i S | |
n = o B ( N CETk with o
) = 2 VIG—a? (555 |(16- 2?)° .
)= — —— e e new
b4 2 T a2 5.2 108x* BSWZ 2011
V5
£0) = —— T(£)D(E)T(£)T(F) ~ 0.32993
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Ramanujan-type series for 1/7

4, T 3+13 1.3 +19 1.3.5 3+
T 4\2 42 \24 43\ 2.4.6

Based on joint work with:

Mathew Rogers
(University of Montreal)
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Ramanujan’s series for 1/7

SEIFS

13
=0 n:
8 = (1/2)3 1

Starred in High School Musical,
a 2006 Disney production

Srinivasa Ramanujan
Modular equations and approximations to 7
Quart. J. Math., Vol. 45, p. 350-372, 1914

L T, 3N
- 4\ 2 42\ 2.4

19 (135 3+
43\ 2.4.6
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Ramanujan’s series for 1/7

4L T, B L3N 19 135\
T 4\ 2 42 \ 24 43 \ 2.4.6

e Starred in High School Musical,
a 2006 Disney production

Srinivasa Ramanujan
Modular equations and approximations to 7
Quart. J. Math., Vol. 45, p. 350-372, 1914
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Another one of Ramanujan’s series

1 2v2 i (4n)! 1103 4 26390n
T 9801 & nlt 3964"

e Used by R. W. Gosper in 1985 to compute
17,526,100 digits of

Correctness of first 3 million digits showed that the series sums to 1/7 in the first place.
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Another one of Ramanujan’s series

1 2v2 i (4n)! 1103 + 26390n
m 9801 nl4 3964n

e Used by R. W. Gosper in 1985 to compute
17,526,100 digits of

Correctness of first 3 million digits showed that the series sums to 1/7 in the first place.

e First proof of all of Ramanujan's 17 series for 1/m

by Borwein brothers

Jonathan M. Borwein and Peter B. Borwein

Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
Wiley, 1987
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Apéry-like numbers and series for 1/7

e Sato observed that series for % can be built from Apéry-like numbers:

EG k D 55 .
et For the Domb numbers D(n) =) (k) <2j> <2(:_jj)),

2003 §=0 J J

5 +1
ZD 7,;Gn :
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Apéry-like numbers and series for 1/7

e Sato observed that series for % can be built from Apéry-like numbers:

EG k B 608 y
et For the Domb numbers D(n) =) (k) <QJ> (2(k j))
n-Liu k —
2003 =0 J J J
1
D(n 5n + ‘
Z 26n

e Sun offered a $520 bounty for a proof the following series:

s 520 o= 1054n + 233 (2n i n\? (2k (1)
o T 480n n) &= \k) \n

n=0 k=
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Positivity of rational functions

1
1—(z4+y+2)+4zyz

Based on joint work with:

Wadim Zudilin

(University of Newcastle)
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Positivity of rational functions

CONJ

Kauers— 1
Zeilberger

l—(x4+y+z+w)+2yzw+ zzw + zyw + zyz) + deyzw

has positive Taylor coefficients.
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Positivity of rational functions

CONJ
Kauers—
Zeilberger 1

l—(x4+y+z+w)+2yzw+ zzw + zyw + zyz) + deyzw

has positive Taylor coefficients.

PROP The Kauers—Zeilberger function has diagonal coefficients

S-Zudilin
n 2 2
n 2k
dn = g .

2013
k=0
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Positivity of rational functions

CONJ

Kauers— 1
Zeilberger

l—(x4+y+z+w)+2yzw+ zzw + zyw + zyz) + deyzw

has positive Taylor coefficients.

ISDROP The Kauers—Zeilberger function has diagonal coefficients
-Zudilin

n 2 2

Z n 2k

k=0

2013
e For such rational functions, should positivity be (essentially) implied
by pOSlthlty of diagona|? assuming positivity after setting one variable to zero
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Summary and some open problems

o Apéry-like numbers are integer solutions to certain three-term
recurrences

e is the experimental list complete?
e higher-order analogs, Calabi-Yau DEs

o Apéry-like numbers have interesting properties
e modular parametrization; uniform explanation?
e supercongruences; still open in several cases

o Apéry-like numbers occur in interesting places

moments of planar random walks

series for 1/m

positivity of rational functions

counting points on algebraic varieties
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THANK YOU!

Slides for this talk will be available from my website:

http://arminstraub.com/talks

A. Straub
Multivariate Apéry numbers and supercongruences of rational functions
Preprint, 2014

R. Osburn, B. Sahu, A. Straub
Supercongruences for sporadic sequences
to appear in Proceedings of the Edinburgh Mathematical Society, 2014

A. Straub, W. Zudilin
Positivity of rational functions and their diagonals
to appear in Journal of Approximation Theory (special issue dedicated to Richard Askey), 2014

M. Rogers, A. Straub

A solution of Sun’s $520 challenge concerning 520 /7
International Journal of Number Theory, Vol. 9, Nr. 5, 2013, p. 1273-1288

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
Canadian Journal of Mathematics, Vol. 64, Nr. 5, 2012, p. 961-990
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