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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?

pn(x)  probability density
W, (s)  sth moment
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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?
pn(x)  probability density

W, (s)  sth moment

EG Wa(l) =

Armin Straub
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Random walks are only about 100 years old

e Karl Pearson asked for
pr(x) in Nature in 1905.

This famous question coined
the term random walk.

The Problem of the Random Walk,

Can any of your readers refer me to a work wherein
I should find a solution of the following problem, or fail-
ing the knowledge of any existing solution provide me
with an original one? I should be extremely grateful for
aid in the matter.

A man starts from a point O and walks I yards in a
straight line; he then turns through any angle whatever
and walks another I yards in a second straight-line. He
repeats this precess n times. I require the probability that
after these n stretches he is at a distance between 7 and
v+ 38y from his starting point, O.

The problem is one of considerable interest, but I have
only succeeded in obtaining an integrated solution for two
stretches. 1 think, however, that a solution ought to be
found, if only in the form of a series in powers of 1/,
when n is large. KarL PEARSON.

The Gables, East llsley, Berks.

Applications include:

e dispersion of mosquitoes

e random migration of
micro-organisms

e phenomenon of laser speckle
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Long random walks

THM 2x 2
Rayleigh, pn(z) = =@ /m for large n
1905 n
EG 0.06 -
Pp200 005F
0.04
0.03|
0.02
001
10 20 3‘0 40 50

The lesson of Lord Rayleigh’s solution is that in open
country the most probable place to find a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point!

Karl Pearson, 1905
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Densities of short walks
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Densities of short walks

b2 b3 P4
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07
08
06 04
06 05
03
04
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02
02 01
01
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The density of a five-step random walk

035
030f
0zsf S
020f ps(x) = / wtJo(xt)J5 () dt
F 0
015}
o10f
00sF
1 2 3 4 5
... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.
Karl Pearson, 1906
H. E. Fettis
On a conjecture of Karl Pearson
Rider Anniversary Volume, p. 39-54, 1963
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.lléoef)nnett

J. C. Kluyver
1906
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.llgo%nnett

J. C. Kluyver
1906

n=4,z=3/2
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An exact probability

THM The probability that a random walk is within one unit from its
origin after n steps is ...7?
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An exact probability

THM The probability that a random walk is within one unit from its
origin after n steps is n+1 n>1

Proof. The cumulative density function P, can be expressed as

P,(z) = /000 xJ1(xt)Jy(t) dt.

Then:
JO(O>n+1 _ 1

P,(1) = = .
n(1) n—+1 n—+1

]

e Recently: remarkably short proof by Olivier Bernardi

Arithmetic aspects of short random walks Armin Straub



The average distance traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO
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The average distance traveled in two steps

e The average distance in two steps:
1 pl ' '
Wa(1) = / / |2 4 ™| dady = ?
o Jo

1
:/0 14| dy
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The average distance traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO

’1+62wiy‘
= |1 + (cos Ty + z’sinwy)2|
= 2 cos(my)

1
:/0 14| dy

1
:/ 2 cos(my)dy
0
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The average distance traveled in two steps

e The average distance in two steps:
1 pl ' '
Wa(1) = / / |2 4 ™| dady = ?
o Jo

1
’1—}—62“3/‘ :/ |1_|_€27riy‘dy
= |1—|—(cos7ry+isin7ry)2| 0

1

= 2 cos(my) = [ 2cos(my)dy

~ 1.27324
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The average distance traveled in two steps

e The average distance in two steps:

’1—}—627”3/‘ :/ ’1+€27rzy‘dy
= |1—|—(cos7ry+isin7ry)2| 01
= 2cos(7y) = / 2 cos(my)dy
0
4
= — = 1.27324
i

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO

e Mathematica 7 and Maple 14 think the double integral is 0.

Better: Mathematica 8 and 9 just don't evaluate the double integral.
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The average distance traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO

’1—}—627”3/‘ :/ ’1+€27rzy‘dy
= |1—|—(cos7ry+isin7ry)2| 01
= 2cos(7y) = / 2 cos(my)dy
0
4
= — = 1.27324
i

e Mathematica 7 and Maple 14 think the double integral is 0.

Better: Mathematica 8 and 9 just don't evaluate the double integral.
e This is the average length of a random arc on a
unit circle.
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / 2°pp(z) da = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

Armin Straub
10 / 38
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / °pp(x) do = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

e On a desktop:

%

Ws(1) 1.57459723755189365749
Wi(1) 1.79909248
Ws(1) ~ 2.00816

%
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / °pp(x) do = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

e On a desktop:
W3(1)
Wa(1)
Ws(1)

e On a supercomputer:

Ws(1)

%

1.57459723755189365749
1.79909248
2.00816

Lawrence Berkeley National Laboratory, 256 cores

2.0081618
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / °pp(x) do = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

e On a desktop:

W5(1) =~ 1.57459723755189365749
Wa(l) ~ 1.79909248
Ws(1) ~ 2.00816
° On a Supercomputer: Lawrence Berkeley National Laboratory, 256 cores
Ws(1) ~ 2.0081618

e Hard to evaluate numerically to high precision.
Monte-Carlo integration gives approximations with an asymptotic error of
O(1/v N) where N is the number of sample points.
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 37.25
1.575 | 3.000 | 6.452 | 15.00 36.71 | 93.00 | 241.5
1.799 | 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3
2.008 | 5.000 | 14.29 | 45.00 | 152.3 | 545.0 | 2037.
2194 | 6.000 | 1891 | 66.00 | 248.8 | 996.0 | 4186.

S UL W NS
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

n

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25

3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5

4 1.799 4.000 | 10.12 28.00 82.65 | 256.0 822.3

5 2.008 5.000 | 14.29 45.00 152.3 545.0 2037.

6 2.194 6.000 | 18.91 66.00 248.8 996.0 4186.
Wy(l) =2
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

n

2 | 1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 | 37.25

3 |/1575| 3.000| 6452 |15.00 | 36.71 | 93.00 | 241.5

4 1.799\| 4.000 | 10.12 | 28.00 | 82.65 | 256.0 | 822.3

50 2.008\ 5.000|14.29 |45.00 | 152.3 | 545.0 | 2037.

6| 2.194 | 6.000 | 18.91 | 66.00 | 248.8 | 996.0 | 4186.
Wa(1) = 4 W3(1) = 1.57459723755189 . .. = ?
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

n| s= s = s=3 s = s = s = s =

2 1.273 2.000 3.395 6.000 10.87 | 20.00 37.25

3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5

4 1.799\| 4.000 | 10.12 28.00 82.65 | 256.0 822.3

5 2.008 5.000 | 14.29 | 45.00 152.3 545.0 2037.

6 2.194 | 6.000 | 18.91 66.00 248.8 996.0 | 4186.
Wh(1) = % W5(1) = 1.57459723755189... =7
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Even moments

n‘s:O‘s:2‘s:4‘s:6‘528‘5:10 Sloane's
2 1 2 6 20 70 252 A000984
3 1 3 15 93 639 4653 A002893
4 1 4 28 256 2716 31504 A002895
5 1 5 45 545 7885 | 127905 A169714
6 1 6 66 996 | 18306 | 384156 A169715
EG k 2 2
W3(2k) = > < ’ > Apéry-like
2.(;)
7=0
k 2 . .
2 2(k —
Wy (2k) = ) ( j) ( ( j)) Domb numbers
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A combinatorial formula for the even moments

e sth moment W,,(s) of the density pj,:

Wy(s) = / ’627”“ + ...+ e2mian ‘S dx
[0,1]"

THM N

e Wy (2k) = E ( )
S-Wan a17' -'7an
2010 art-tan=~k

Armin Straub
12
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A combinatorial formula for the even moments

e sth moment W,,(s) of the density pj,:

Wy(s) = / ’627”“ + ...+ e2mian ‘S dx
[0,1]"

THM k 2
Borwein- W 2k — §
Nuyens- n( ) al’ . 7an

S-Wan
2010 art-tan=~k

e W, (2k) counts the number of abelian squares: strings zy of length
2k from an alphabet with n letters such that y is a permutation of x.

e Introduced by Erd6s and studied by others.

EG acbhc ccba is an abelian square. It contributes to TW3(8).

L. B. Richmond and J. Shallit
Counting abelian squares
The Electronic Journal of Combinatorics, Vol. 16, 2009.
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Moments of a two-step walk

EG W5 (2k): abelian squares of length 2k from 2 letters

babaa abaabd
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Moments of a two-step walk

EG W5 (2k): abelian squares of length 2k from 2 letters
babaa abaab

Hence W5 (2k) = (zkk)
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Moments of a two-step walk

EG W5 (2k): abelian squares of length 2k from 2 letters
babaa abaab

Hence W5 (2k) = (zkk)

: (1 !
With k= 3: (1)) = i = 7 = =
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Moments of a two-step walk

EG W5 (2k): abelian squares of length 2k from 2 letters

babaa abaab
Hence W5 (2k) = (Qkk)
: (1 !
With k= 3: (1)) = i = 7 = =
THM If f(z) is analytic for Re (z) > 0, “nice”, and

Carlson

then f(z) = 0 identically.
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Moments of a two-step walk

EG W5 (2k): abelian squares of length 2k from 2 letters
babaa abaab
Hence W5 (2k) = (Qkk)
1 !
With k= 30 (;),) = (1/12)!2 = 73

THM If f(z) is analytic for Re (z) > 0, “

Carlson

then f(z) = 0 identically.
Ae®?l, and

<A
(zy)| < BePll for B < 7
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Moments of a two-step walk

EG W5 (2k): abelian squares of length 2k from 2 letters
babaa abaab
Hence W5 (2k) = (Qkk)
With k= 3: (1/,) = e =

THM If f(z) is analytic for Re (z) > 0, “

Carlson

then f(z) = 0 identically.

o Wi(s) is nice! 1£(2)| < Ae“ll, and
|f(iy)| < BePWl for B < 7
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Moments of a two-step walk

EG W5 (2k): abelian squares of length 2k from 2 letters
babaa abaab
Hence W5 (2k) = (Qkk)
With k= 3: (1/,) = e =

THM If f(z) is analytic for Re (z) > 0, “

Carlson

then f(z) = 0 identically.

o Wi(s) is nice! 1£(2)| < Ae“ll, and
e Indeed, W(s) = (sz). |f(iy)| < BePl for g < =
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Moments of a three-step walk

S ()
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Moments of a three-step walk

[Va(—i(s + 1)) / Va(—is)|:

e™ = 23.1407. ..
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Moments of a three-step walk

EG

THM For integers k,
Borwein-
Nuyens-
S-Wan,

1
2010 Wg(k‘) :Re 3F2 <27
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Moments of a three-step walk

S ()

=0
=:V3(2k)
THM For integers k,
Borwein-
San, 1 _k _k
2010 Wg(k)ZRegF2<2’ 121 2 4>‘
COR 3 21/3 1 27 22/3 9
w0 =357 (5) + 1 = (3)

= 1.57459723755189 . ..
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Moments of a four-step walk

e Using Meijer G-function representations and transformations:

Bora . 5111111
& o-En (i)
T 111111 - 333333
=G () e (s )
_mgn (n+ D)
4 = 46n :
mhe 31 7333111

e We have no idea about the case of five steps.
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Complex moments

THM k 2
Wn(2k) - Z <a1 ey Q >

e Inevitable recursions K- f(k) = f(k+1)

[(k+2)°K? — (10k® + 30k + 23)K + 9(k + 1)°] - W3(2k) = 0
[(k+2)°K? — (2k + 3)(10k* 4 30k + 24) K + 64(k + 1)*] - Wa(2k) =0
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Complex moments

THM k 2
Wn(2k) - Z <a1 ey Q >

e Inevitable recursions K- f(k) = f(k+1)

[(k+2)°K? — (10k® + 30k + 23)K + 9(k + 1)°] - W3(2k) = 0
[(k+2)°K? — (2k + 3)(10k* 4 30k + 24) K + 64(k + 1)*] - Wa(2k) =0

e Via Carlson’s Theorem these become functional equations
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Complex moments

e Analytic continuations:

e Wi3(s) has a simple pole at —2 with residue ﬁ
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Complex moments

e Analytic continuations:

[

—~
»

~

e Wi3(s) has a simple pole at —2 with residue ﬁ

©  Ws3(s) has simple poles at
—2k — 2 with residue

2 Ws(2k)
7'r\/§ 32k
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Complex moments

e Analytic continuations:

2 W4(S)
e Wi3(s) has a simple pole at —2 with residue ﬁ
©  Ws3(s) has simple poles at ©O© Wy(s) has double poles at
—2k — 2 with residue —2k — 2 with lowest-order term
2 Wy(2Kk) 3 Wa(2k)
7'r\/§ 32k 272 82k
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Wy(s) in the complex plane ‘
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Wy(s) in the complex plane ‘

Experimental and
computational
mathematics:

Selected writings
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Crashcourse on the Mellin transform

e Mellin transfocrx)m f(s) cggvf@): Wi(s — 1) = M [pn; 5]
Mfis]= | 2" f(x)—
0 x
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x): Wi(s — 1) = M [pn; ]
o s d$ n mny
./\/l[f;s]—/ z° f(x)—
0 x

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F(s) translate into DEs
o M[Dyf(x);s] =—(s—1)F(s— 1) for f(x)

o M[-0,f(x);s] =sF(s)
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x):

Wi(s —1) = M [pp; s]
Mifisl = [ ap@) S

0

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F'(s) translate into DEs
o M[D,f(z);s] = —(s—1)F(s — 1) for f(x)

o M[=0.f(2);s] = sF(s)
e Poles of F(s) left of strip = asymptotics of f(z) at zero

W %xm(log z)"
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Mellin approach illustrated for p,

o Wa(2k) = (%)

(s +2)Wa(s+2) —4(s+ 1)Wa(s) =
[a:2 (0, +1)— 4096] “po(x) =
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Mellin approach illustrated for p,

o Wa(2k) = (%)

(s +2)Wa(s +2) —4(s+ 1)Wa(s) =
[a:2 (0, +1)— 4096] “po(x) =

e Hence: pa(x)
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Mellin approach illustrated for p,

o Wa(2k) = (%)

k
(s +2)Wa(s +2) — 4(s + )Wa(s) = 0
[a:2 (0, +1)— 4096] “po(x) =0
e Hence: po(x) = 4€x2
Wa(s) = 71rs—1kl +0(1) as s - —1

1
po(x) = = +O(z) asz — 07"

2
T 4—x2

e Taken together: py(z) =

Arithmetic aspects of short random walks Armin Straub
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ps and its differential equation

(s +4)*S" — 4(s + 3)(55 + 30s + 48)5* + 64(s + 2)°| - Wy(s) =0
translates into A4 - pa(x) = 0 with

Ay =2 (0, + 1) — 4220,(56 + 3) + 64(0, — 1)3
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ps and its differential equation

(s +4)*S" — 4(s + 3)(55 + 30s + 48)5* + 64(s + 2)°| - Wy(s) =0
translates into A4 - pa(x) = 0 with

Ay =2 (0, + 1) — 4220,(56 + 3) + 64(0, — 1)3

"opy(z)  CV4A—x asx — 47, Thus p) is not locally integrable

Care

needed gnd does not have a Mellin transform in the classical sense.
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ps and its differential equation

(s +4)*S" — 4(s + 3)(55 + 30s + 48)5* + 64(s + 2)°| - Wy(s) =0
translates into A4 - pa(x) = 0 with
Ay =2 (0, + 1) — 4220,(56 + 3) + 64(0, — 1)3

= (z —4)(z — 2)2*(z + 2)(z + 4) D3 + 62" (2* — 10) D2
+ 2 (72" — 3227 4+ 64) D, + (2° — 8) (27 + 8)

"opy(z) ~ CV4A—x asx — 47, Thus pf is not locally integrable

Care

needed gnd does not have a Mellin transform in the classical sense.
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Densities in general

THM

Boweinm  ® 1 he density p, satisfies a DE of order n — 1.
i e py is real analytic except at 0 and the integers n,n —2,n—4, .. ..
2011

The second statement relies on an explicit recursion by Verrill (2004) as well as the
combinatorial identity

Z H(n —2m;)? = Z Hai(n +1—ay).

o<my ..., mj<n/2 =1 i<ay,..., ajén =1
my<mgq <oy —2

First proven by Djakov-Mityagin (2004).
Direct combinatorial proof by Zagier.
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Densities in general

EG n/2—1

Z (n—2m)2:2a(n+1—a)

The second statement relies on an explicit recursion by Verrill (2004) as well as the
combinatorial identity

Z H(n —2m;)? = Z Hai(n +1—ay).

o<my ..., mj<n/2 =1 i<ay,..., ajén =1
my<mgq <oy —2

First proven by Djakov-Mityagin (2004).
Direct combinatorial proof by Zagier.
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Densities in general

EG n/2—1 n
Z n—2m Z (n+1-a)
m=0 x=1

n/2—1mq—1

Z Z (n—2my)?(n — 2my)?

m1=0 m2=0 n oa1—2

=Y Y ai(n+1-a)az(n+1-a)

a;=1az=1

The second statement relies on an explicit recursion by Verrill (2004) as well as the
combinatorial identity

Z H(n —2m;)? = Z Hai(n +1—ay).

0<my,...,mj<n/2 4=1 1Sy, aj<n 4=1
my<mgq <oy —2
First proven by Djakov-Mityagin (2004).
Direct combinatorial proof by Zagier.
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ps and its asymptotics at zero

e Wa(s) has double poles:

S4,k

T 9n2 ]2k

3 Wa(2k)

S4.k i T4,k
(s+2k+2)?2 s+2k+2

W4(8) = +O(1)

oo
pa(@) = (rap — salog(z)) 2>
k=0

as s — —2k—2

for small x > 0
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ps and its asymptotics at zero

3 Wa(2k)
Sak = 775
e Wy(s) has double poles: 272 82k
Wy(s) = o4k SR O(1) ass— —2k—2
(s+2k+2)?2 s+2k+2
oo
pa(x) = Z (rar — sS4, 10g(x)) g2htl for small 2 > 0

k=0

* yo(2) == D p=0 W4 (2k)2* is the analytic solution of

[642%(0 + 1) — 22(20 + 1)(56* + 50 + 2) + 6°] - y(2) = 0. (DE)
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ps and its asymptotics at zero

3 Wa(2k)
Sak = 775
e Wy(s) has double poles: 272 82k
Wy(s) = o4k SR O(1) ass— —2k—2
(s+2k+2)?2 s+2k+2
oo
pa(x) = Z (rar — sS4, 10g(x)) g2htl for small 2 > 0

k=0

* yo(2) == D p=0 W4 (2k)2* is the analytic solution of
[642%(0 + 1) — 22(20 + 1)(56* + 50 + 2) + 6°] - y(2) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(z) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).
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Hypergeometric forms

THM Generating function for Domb numbers:

Chan-
Chan-Liu o e >
2004; 1 112 10822
Rogers k __ 37273
2009 § Wy(2k)2" = 1_ 4 3k < 11 7(1 — 42)3>
k=0 ’
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Hypergeometric forms

THM Generating function for Domb numbers:
Chan-

Chan-Liu
2004; 0 1 1 2 2
1 2,5,5| 108z
W LN = an (3 )
k=0 ’

11
e Basis at oo for the hypergeometric equation of 3Fb (3 2
22 Land t = 10820 5 o]

61 1 1-4z)3
111 2
1 —1/2 25995 |1 —2/3 3
t) . tTY2F, <25272 t) , 73 <34
6’6 3

[as @ — 4 then z =

t—1/3 F %7%7%
32| 25
376

Armin Straub

24 /38
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Hypergeometric forms

THM Generating function for Domb numbers:
Chan-

Chan-Liu
2004; 0 11 2 2
3 1 1121 108,
£ Wa(2k)z* = o <31213 (1- 42)3>
112
3’2’3

e Basis at oo for the hypergeometric equat|on of 3F% (
[as @ — 4 then z = £ — L and ¢ = (11027)} s o]

111 2
1 —1/2 25995 |1 —2/3 3
t>, t /3F2<25272 t), t /3F2<34
6’6 3

1
3

13 11
3F 323
37

[S[S1ES

THM For 2 <z <4,

Borwein-

S-Wan- 111

Zudilin 2 V16 — (EQ P (2 o0 %
——3Fy S/

2011 @) = il
pa(x) i

Armin Straub
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Hypergeometric forms

THM Generating function for Domb numbers:
Chan-

Chan-Liu
2004; 0 11 2 2
1 1121 1082
E 2 Wah: = 1= 2<31213 (1—42)3>
k=0 ’
llZ
3’2’3

e Basis at oo for the hypergeometric equat|on of 3F% (
[as @ — 4 then z = £ — L and ¢ = (11027)} s o]

1/3 5531 1/2 553 |1 2/3 2221
t 3y ( %5%° R 3by | 25272 A R sk | 2070 T
36 66 36
THM For 2 <2<70 <z <4,
Borwein-
3 Wan- o 111 2\3
o1 p4(x):Rei 16— = JF [ 2272 (16 —2?)
w2 x 5.2 1084
Armin Straub
24/ 38
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The density of a five-step random walk, again

ps(z) = 0.32993 2+0.00661672340.000262332° +0.00001411927 + O (2?)

030 ps(x) = /000 wtJo(xt)J5 () dt

025F

0.20F
0.15F
0.10}

0.05F

1 2 3 4 5

... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight

line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906
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The density of a five-step random walk, again

ps(z) = 0.32993 2+0.0066167234-0.000262332° +0.00001411927 + O (2?)
=p4(1)

030 ps(x) = /000 wtJo(xt)J5 () dt

025F

0.20F
0.15F
0.10}

0.05F

1 2 3 4 5

... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight

line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

] JF, (1/ 2’11/ Q‘A(T)) — 05(r)?

o A(r) = 1677200
Hauptmodul for I'(2).
n(r)°

e O3(1) = W is the usual Jacobi theta function.

is the elliptic lambda function, a
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e ~ (n@r)n67)\° _ (n()n(3m)*
ctie 2(7) = (n(f)n(?ﬁ))’ 1) = Gtz

= —q—6¢%> —21¢°> —68¢* + ... = 1—4qg+4¢% — 4¢° +20¢* + . ..

Here, T = (T(6), J (3 23)).
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.
e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.
o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.
e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e ~ (n@r)n67)\° _ (n()n(3m)*
=== () 0= ey

2004

= —q—6¢%> —21¢°> —68¢* + ... = 1—4qg+4¢% — 4¢° +20¢* + . ..

Here, I' = <FO(6)7 % (3 :§)> Then, in a neighborhood of ico,

F(r) = yolx(r) = Y Wa(2k)z(r)*.

k>0
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

i (1@0n(6r)\*\ _ 627 +1)
(81 (B2H0D) ) = SETED yyncanntsrinor)

=== f(r)

=4/64x(T)
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

i (1@0n(6r)\*\ _ 627 +1)
n( s (22 ) - S oo
e =v/—a(n)f(7)

e When 7 = —1 + 1,/—15, one obtains p4(1) = p;(0) as an n-product.
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

Borwein-

2 (n@rm6r)\*\ 621 +1)
n( s (22 ) - S oo
e =/ —z(7)f(7)

e When 7 = —1 + 1,/—15, one obtains p4(1) = p;(0) as an n-product.
e Applying the Chowla—Selberg formula, eventually leads to:

COR \/g
= p5(0) = —— T(E)N(Z)I(E)T(E) ~ 0.32993

—
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

Borwein-

2 (n@rm6r)\*\ 621 +1)
n( s (22 ) - S oo
e =/ —z(7)f(7)

e When 7 = —1 + 1,/—15, one obtains p4(1) = p;(0) as an n-product.
e Applying the Chowla—Selberg formula, eventually leads to:

COR , vB 4 2\ A8
— — MF(E)F(E)F(E)F(E) ~ 0.32993

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (01) /n (o2) is an algebraic number.
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Chowla—Selberg formula

ot ; Ll ()73

I YO S &

o e = g LHF<' )"
where the product is over reduced binary quadratic forms
laj, bj, ¢;] of discriminant d < 0. = 4’#%

J
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Chowla—Selberg formula

THM h 1 ] (&) 13v
owla —6 24 k
S:lel;;;g H ‘77 T] ‘ (2 |d|)6h |:H r <ﬁ) :|

= =il

where the product is over reduced binary quadratic forms
_ —bj+Vd

laj, bj, c;] of discriminant d < 0. T =

EG  Q(+/—15) has discriminant d = —15 and class number i = 2.

Q —[7174] Q2:[27
Tl =— — % %\/T5’ 7—2:%7—1
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f(1)= T)T) is a modular function.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f(r)= T)) is a modular function.
e 0 = N o1 for some non-identity N € GLy(Z).

e f(N -7) is another modular function.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f(r)= T)) is a modular function.

e 0 = N o1 for some non-identity N € GLy(Z).

e f(N -7) is another modular function.

e There is an algebraic relation ®(f(7), f(INV - 7)) = 0.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f( )= T)) is a modular function.

® 0 = N o1 for some non-identity N € GLy(Z).

f(N - T) is another modular function.
e There is an algebraic relation ®(f(7), f(N - 7)) = 0.

Then: ®(f(01), f(o1)) =0
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What we know about p; =
e Ws(s) has simple poles at —2k — 2 with residue r5 j, &

o Hence: ps(z) = Y 20 5. 22K !

THM Surprising bonus of the modularity of py:

Borwein-
S-Wan-

udilin 1 2 4 8
zzgllf - :}?4(1) _ ;/05 F(B)F(E)E(ﬁ)r(ﬁ)
’ ™
2 13 2 1
= — —_
225 0 Brirsg

5,1

e Other residues given recursively
e p5 solves the DE

[2%(0 + 1)* — (350" + 4207 + 3) + 2%(259(0 — 1)* + 104(6 — 1)?)
—(15(6 = 3)(0 = 1))*] - ps(x) = 0

Arithmetic aspects of short random walks Armin Straub
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Hypergeometric formulae summarized

05

04

03

02

o p2() - p3() : pa(x)
2
n) = e s
23 T L2192 (9—952)2
- T LF | 33 lassical
n =S Era ( U 3y with o
2 V16 — 22 L1116 —a2)?
p4($) =— ﬂ Re 3F2 25272 % new
T x 6 108z BSWZ
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(z1,...

1 1 '
11(p) ;:/ / log |p (e, ... e
0 0

St I

i) | dtydty . . . dty
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,zy):

1 1
wu(p) :== / . / log {p (62”“1, .. ,e%it”) | dt1dts ... dt,
0 0

*dt

W)= [ e
[0,1]"

EG
W 0)=pxr+...+2n) =p(l+x1+... +Tyn_1)
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,zy):

1 1
wu(p) :== / . / log {p (62”“1, .. ,e%it”) | dt1dts ... dt,
0 0

o Wa(s) = / |20 T dt
[0.1)"

EG
W 0)=pxr+...+2n) =p(l+x1+... +Tyn_1)
EG
t 3v3
“onr” p(l+z+y) = 7—Lx-3,2) = W3(0)
7¢(3
u(1+x+y+z):27(r2) = W4(0)

Lix-3,8)=1—gs+ 7 — g5+ & — ...
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Mahler measure and random walks

EG Typical conjecture (Deninger, 1997):

Zoditn, )
p(l+z+y+1/z+1/y) = (\/_715> L(f15,2) = L'(f15,0)

2011
27

where f15 is associated with an elliptic curve of conductor 15.
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Mahler measure and random walks

EG Typical conjecture (Deninger, 1997):

Rogers—
Zudilin,
2011

—15

2
p(l+z+y+1/z+1/y) = (27”) L(f15,2) = L'(f15,0)

where f15 is associated with an elliptic curve of conductor 15.

CONJ 5
odriguez- ? \V _15
R Wi(0) = ( — > 3! L(g15,4) = —L' (15, —1)

where g15 = 1n(37)3n(57)3 + n(7)3n(157)3 (weight 3, level 15).
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Mahler measure and random walks

REG Typical conjecture (Deninger, 1997):
ogers—
i1

—15

2
p(l+z+y+1/z+1/y) = (27”) L(f15,2) = L'(f15,0)

where f15 is associated with an elliptic curve of conductor 15.

CONJ 5
odriguez- ? V —15
NVilogas W5(0) = ( — ) 3! L(g15,4) = —L'(g15, —1)
where g15 = 1n(37)3n(57)3 + n(7)3n(157)3 (weight 3, level 15).
CONJ ©
odriguez- ! —6
T w02 (L) L) = -8Lge -1

where gg = n(7)?1(27)2n(37)%n(67)% (weight 4, level 6).
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A recent result of Shinder—Vlasenko

THM 3\fQ 3v5 2
Smaer W5(0) = 15L( 3,91,3,1) — mL(gz,gh?” 1) — 5L(917 1)

2012

_ Dz _ =z _ x(2122%42512—13)
where g1 = Tfy 92 = 139 9B3= = ma—3

Arithmetic aspects of short random walks Armin Straub

34 /38



A recent result of Shinder—Vlasenko

BEE 3v/503 3v5 2
Shinder. W5 (0) = QOWISL(93,91,37 1) - NTQ%SL(Q%QM?” 1) — 5[’(917 1)
2012
where gy = B2 gy = 12_g,, gy = T2 215

&6 _ (n@r)n(6r)\° _ (n(r)n(37))*
it 77) = ( n()n(37) ) - IO = e
= —q—6q¢> —21¢° —68¢* + ... = 1—4qg+4q> — 4¢° + 20¢* + ...

F(7) = yola(r)) = Y _ Wa(2k)z(r)*.

k>0
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A recent result of Shinder—Vlasenko

THM 3v/502 3v5 2
\s/:::::;; W5/(O) = 207_[_15[’(93,917371) - 10,}_{_39%5[’(92"9173’ 1) - 5[/(91,1)
2012
where gy = Zf gy = 1Z-gi, g3= —I@mﬁtiﬁ;m_w)

S € (3 VIO AN _ (n(r)n(3r))*
g 0 =-(3505) 10 ey

2004
= —q—6q¢> —21¢° —68¢* + ... =1—4q+4q¢> — 4¢> +20¢* + . ..

F(7) = yola(r)) = Y _ Wa(2k)z(r)*.

k>0
i w_n anb
e Double L-function: L(f,g,s,t)"= Z Z __Ynim
ns(n +m)t
f=2ang", g=3"bnq" n>1m>0
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Relating to the even moments

o Wy(s) = / |62mt1 +...+ e%it"}s dt
[0,1]”

o Wy (0) = 3u(pn) where pp, = (1+a1 4. 4z 1) (14 3+ 4 )

Tn—1
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Relating to the even moments

o Wy(s) = / |62mt1 +...+ e%it"}s dt
[0,1]”

o Wy (0) = 3u(pn) where pp, = (1+a1 4. 4z 1) (14 3+ 4 )

Tn—1

R;I;I;Egul:z— 1 2mity 27rity, 1 d
Villegas 0g | Pn (6 S, € ) == t
[0,1]»
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Relating to the even moments

o Wy(s) = / |62mt1 +...+ e%it"}s dt
[0,1]”

o W)(0) = u(pn) where p, = (1+z1+... 4 2p1)(1+ 1 -+t

Tn— 1)

Rodljgézf / 10g |:p (627rit1 eQTritn) 1:| dt
. n 3oy
Villegas [071]n >\

k
—log(— Z A /0 Q”itl, ey eQ”it")k dt

k>1 1]"
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Relating to the even moments

o Wy(s) = / |62mt1 +...+ e%it"}s dt
[0,1]”

o W)(0) = u(pn) where p, = (1+z1+... 4 2p1)(1+ 1 -+t

Tn— 1)

Rodljgézf / 10g |:p (627rit1 eQTritn) 1:| dt
. n 3oy
Villegas [071]n >\

k
—log(— Z A /0 Q”itl, ey eQ”it")k dt

k>1 1]"
)\k
~log(-) - Y W2k
E>1
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Relating to the even moments

o Wy(s) = / |62mt1 +...+ e%it"{s dt
[0,1]”

o W)(0) = guu(pn) where pp = (1421 +.. .+ zn 1) (14 2+, + 1)

Rodljgézf / 10g |:p (627rit1 eQTritn) 1:| dt
. n 3oy
Villegas [071]n >\

k
—log(— Z A /0 Q”itl, ey eQ”it")k dt

k>1 1]"
=] )™ k
og(— Z W o L DL
k>1 k>0
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Relating to the even moments

o Wy(s) = / |62mt1 +...+ e%it"{s dt
[0,1]”

o W)(0) = guu(pn) where pp = (1421 +.. .+ zn 1) (14 2+, + 1)

Rodljgézf / 10g |:p (627rit1 eQTritn) 1:| dt
. n 3oy
Villegas [071]n >\

k
—log(— Z A /0 Q”itl, ey eQ”it")k dt

k>1 1]"
=] )™ k
og(— Z W o L DL
k>1 k>0

Hence, analytically continuing along the negative real axis,

q1-1
4(on) = - Re [AdJ 3 W (2k)0F

k>0 A=o00
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Questions and problems

e The differential equations for n > 5 are not modular.
Can one profitably bring generalizations of modular forms into the picture?
e Given a linear differential equation automatically find its
“hypergeometric-type” solutions.
Promising work by Mark van Hoeij and his group
e More about the five step case? Average distance travelled?
Wo(1) =n [;° Ji(2)Jo ()t 4z
° Countless generalizations . ..
higher dimensions, different step sizes, ...

Arithmetic aspects of short random walks Armin Straub
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Drunken birds
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Drunken birds

A drunk man will find his way home,
but a drunk bird may get lost forever.
Shizuo Kakutani, 1911-2004
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THANK YOQU!

e Slides for this talk will be available from my website:
http://arminstraub.com/talks

J. Borwein, D. Nuyens, A. Straub, J. Wan
Some arithmetic properties of short random walk integrals
The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

J. Borwein, A. Straub, J. Wan
Three-step and four-step random walk integrals
Experimental Mathematics — to appear

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
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(Multiple) Mahler measure

DEF Multiple Mahler measure of polynomials p;(z1, ..., z,):

Kurokawa-
Lalin-
Ochiai
2mit 2mit
/‘L(pl""7pk: / Hloglp 17"‘76 n)|dt
(0,1
o 2mit 2mit
,uk(p).—/ log® ‘p( Lo...,e ")‘dt
[0,1]»
Arithmetic aspects of short random walks Armin Straub

40 / 45



(Multiple) Mahler measure

DEF Multiple Mahler measure of polynomials p;(z1, ..., z,):

Kurokawa-
Lalin-
Ochiai
M(pl,...,pk / . H]Og |p 27mt1,...,62m’t”)|dt
0,1
Mk(p) o= / log ‘p( 2mity ...’627Titn)‘ dt

[0,1]

EG

W (0) = pr(L+ 21+ ... + Tne1)
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(Multiple) Mahler measure

DEF Multiple Mahler measure of polynomials p;(z1, ..., z,):

Kurokawa-
Lalin-
Ochiai
M(pl,...,pk /[;]1] H]Og |p 27mt1,...,62m’t”)|dt
)= [ gk [p (e )t
EG

Wék)(O) = Mk(l +x1+ ...+ xn—l)

RK If the variables are independent, then

w(p1, -y on) = p(p1) - - p(pn)-
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Moments of a 3-step random walk

EG 3 2
Borwein— 1 = —1L -
oo MUY = o SZ(B)

3 2T 72
po(l+x +y) = — Lss <> + —
T 3

4
2 6 2 9 T
1 =—L — | —=Cly (=
Hs(l+z+y) T S4<3) 7TC4<3)

“ron(3)- B

7 12 2m 49 T 81 2
1 =l () -2 (f) 2 @l ([ 22
,LL4( +:c+y) - S5(3> 3 S5 3 +7TG4’1(3>
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Mahler measure and random walks

¢ Representations for W, (s) give us, for instance,

! x o x
W) =1os2) =7~ [ @ -1F - [ @

T

=log(2) —y—n /000 log(x)Jo— () J1 (z)dz.
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Derivatives of moments

e Using the residues r5 ;, = Res_g;_2 Ws:

o.9]
ps(x) = Z 75,k p?
k=0

EG 16 + 11400 (0) — 804TW(2) + 64TV (4)
50 = 225 ’
26750 — 16 — 204 (0) + 4WL(2)
= 225 ’

e Unfortunately, the Mahler measure W/(0) “cancels” out.
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A combinatorial convolution

e From the interpretation as counting abelian squares:

k

2
Wasm(@8) = 3 (1) W20 W20t - ).

J=0
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CONJ For even n,
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A combinatorial convolution

e From the interpretation as counting abelian squares:

k

2
Wasm(@8) = 3 (1) W20 W20t - ).

J=0

CONJ For even n,

True for even s

True forn =2

True for n = 4 and integer s

In general, proven up to some technical growth conditions
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p3 in hypergeometric form

e Ws(s) has simple poles at —2k — 2 with residue
2 Ws(2k)
ﬂ\/g 32k

)2k

p3($) = % ZZ‘;O W3(2k‘) (% for0<x <1
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p3 in hypergeometric form

e Ws(s) has simple poles at —2k — 2 with residue

2 Ws(2k)
ﬂ\/g 32k
pa() = 22 5 Wi(2k) (2)% for 0 <z <1
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p3 in hypergeometric form

e Ws(s) has simple poles at —2k — 2 with residue

2 Wy(2k)
ﬂ\/g 32k

p3($) = Zk —0 W3(2k‘) (%) for0<x <1

o W3(2k) = Zf:o (?)2(2]3) is an Apéry-like sequence

23 12 . a2(9-2%)°
p3<$>—7r<:m2>2F1<33 ) <3+>>

e Easy to verify once found
e Holds for 0 < x < 3
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