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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?

pn(x)  probability density
Wy (s)  sth moment
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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?

pn(x)  probability density
Wy (s)  sth moment

EG 4
Ws (1) = —
2(1) -
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History and long walks

e Karl Pearson asked for p,(z) in Nature in 1905.
This famous question coined the term random walk.

e Asymptotic answer by Lord Rayleigh:

20 _ 2
—xr/n
pn(x) = —e /
n *
EG 0.06
Pp200 005F
0.04
0.03|
0.02
0.01
10 20 30 40 50
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Densities of short walks
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Densities of short walks
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The density of a five-step random walk

035
030f
0250 S
020 ps(z) = / wtJo(xt)J5 () dt
F 0
015}
o10f
00sF
1 2 3 4 5
... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.
Karl Pearson, 1906
H. E. Fettis
On a conjecture of Karl Pearson
Rider Anniversary Volume, p. 39-54, 1963
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.lléoef)nnett

J. C. Kluyver
1906
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.llgoef)nnett

J. C. Kluyver
1906

n=4,z=3/2
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(New) Hypergeometric formulae

o p2(z) - p3(x) - pa()
(x) 2 eas

pr) = —FF—
™4 — 2 Y
2V/3 T L2 x? (9 1:2)2 .

p3(x) = — oF | 373 3 classical

T (34 $2) 1 (3 + xQ) with a spin

2 /16 — 22 111116 - 22)°

p4(x):f2 x Re 3F) 25272 ( 4) new
us T 8% 108z BSWz
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Moments of random walks

e sth moment W,,(s) of the density p,:

S

Wn(S)Z/ 2°pp () dac:/ 262”” dx
0

01" k=1
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Moments of random walks

e sth moment W,,(s) of the density p,:

S

fe'e) n
Wi(s) = / °py(z) dr = / Z eZm ekt dx
0 01 |
THM N
= men- ¥ )
S-Wan al, e ,an
2010 art-tan=Fk

e W, (2k) counts the number of abelian squares: strings zy of length

2k from an alphabet with n letters such that y is a permutation of x.

e Introduced by Erd6s and studied by others.

= Wa(2k) = (i’“)
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Even moments

n‘s:O‘s:Z‘s:él‘s:G‘328‘5210 Sloane's
2 1 2 6 20 70 252 A000984
3 1 3 15 93 639 4653 A002893
4 1 4 28 256 2716 31504 A002895
5 1 5 45 545 7885 | 127905 A169714
6 1 6 66 996 | 18306 | 384156 A169715
EG k 2 .
k 2
Ws(2k) =3 ( ) < J ) Apéry-like
—o \J J
i=
k 2 e )
k 2 2(k —
Wy (2k) = ( ) ( ]> ( ( J)) Domb numbers
NI N k=3
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Even moments

n‘s:O‘s:Z‘s:él‘s:G‘328‘5210 Sloane's
2 1 2 6 20 70 252 A000984
3 1 3 15 93 639 4653 A002893
4 1 4 28 256 2716 31504 A002895
5 1 5 45 545 7885 | 127905 A169714
6 1 6 66 996 | 18306 | 384156 A169715
EG k 2 .
k 2
Ws(2k) =3 ( ) < J ) Apéry-like
—o \J J
i=
k 2 e )
k 2 2(k —
Wy (2k) = ( ) ( ]> ( ( J)) Domb numbers
— \J J k—j
]_
e |nevitable recursions K- f(k) = f(k+1)

[(k+2)°K? — (10k® + 30k + 23)K + 9(k + 1)°] - W3(2k) = 0
[(k+2)°K? — (2k + 3)(10k* + 30k + 24) K + 64(k + 1)*] - Wa(2k) =0

e Via Carlson’s Theorem these become functional equations
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Complex moments

e Analytic continuations:

e Wi3(s) has a simple pole at —2 with residue ﬁ
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Complex moments

e Analytic continuations:

[

—~
»

~

e Wi3(s) has a simple pole at —2 with residue ﬁ

©  Ws3(s) has simple poles at
—2k — 2 with residue

2 Ws(2k)
7'r\/§ 32k
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Complex moments

e Analytic continuations:

2 W4(S)
e Wi3(s) has a simple pole at —2 with residue ﬁ
©  Ws3(s) has simple poles at ©O© Wy(s) has double poles at
—2k — 2 with residue —2k — 2 with lowest-order term
2 Wy(2Kk) 3 Wa(2k)
7'r\/§ 32k 272 82k
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Wy(s) in the complex plane ‘
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Wy(s) in the complex plane ‘

Experimental and
computational
mathematics:

Selected writings
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Crashcourse on the Mellin transform

e Mellin transfocrx)m f(s) cggvf@): Wi(s — 1) = M [pn; 5]
Mfis]= | 2" f(x)—
0 x
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x): Wi(s — 1) = M [pn; ]
o s d$ n mny
./\/l[f;s]—/ z° f(x)—
0 x

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F(s) translate into DEs
o M[Dyf(x);s] =—(s—1)F(s— 1) for f(x)

o M[-0,f(x);s] =sF(s)
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x):

Wi(s —1) = M [pp; s]
Mifisl = [ ap@) S

0

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F'(s) translate into DEs
o M[D,f(z);s] = —(s—1)F(s — 1) for f(x)

o M[=0.f(2);s] = sF(s)
e Poles of F(s) left of strip = asymptotics of f(z) at zero

W %xm(log z)"
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The differential equation for p,

[(s+4)°S" — 4(s + 3)(55> + 30s + 48)5* + 64(s +2)°| - Wy(s) =0
translates into A4 - pa(x) = 0 with

Ay =2 (0, + 1) — 4220,(50 + 3) + 64(0, — 1)3
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[(s+4)°S" — 4(s + 3)(55> + 30s + 48)5* + 64(s +2)°| - Wy(s) =0

translates into A4 - pa(x) = 0 with
Ay =2 (0, + 1) — 4220,(50 + 3) + 64(0, — 1)3
= (z —4)(z — 2)2°(z + 2)(z + 4) D3 + 62" (2* — 10) D2

+ 2 (72" — 3227 4+ 64) D, + (27 — 8) (27 + 8)

THM e The density p,, satisfies a DE of order n — 1.
Borwein- o 5 0

swan- ® P, is real analytic except at 0 and the integers
Zudilin,

2011 n,n—2,n—4,....

Armin Straub
13 / 26
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ps and its asymptotics at zero

3 Wa(2k)
Sak = 775
e Wy(s) has double poles: 272 82k
Wy(s) = o4k SR O(1) ass— —2k—2
(s+2k+2)?2 s+2k+2
oo
pa(x) = Z (rar — sS4, 10g(x)) g2htl for small 2 > 0

k=0
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3 Wa(2k)
Sak = 775
e Wy(s) has double poles: 272 82k
Wy(s) = o4k SR O(1) ass— —2k—2
(s+2k+2)?2 s+2k+2
oo
pa(x) = Z (rar — sS4, 10g(x)) g2htl for small 2 > 0

k=0

* yo(2) == D p=0 W4 (2k)2* is the analytic solution of

[642%(0 + 1) — 22(20 + 1)(56* + 50 + 2) + 6°] - y(2) = 0. (DE)
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ps and its asymptotics at zero

3 Wa(2k)
Sak = 775
e Wy(s) has double poles: 272 82k
Wy(s) = o4k SR O(1) ass— —2k—2
(s+2k+2)?2 s+2k+2
oo
pa(x) = Z (rar — sS4, 10g(x)) g2htl for small 2 > 0

k=0

* yo(2) == D p=0 W4 (2k)2* is the analytic solution of
[642%(0 + 1) — 22(20 + 1)(56* + 50 + 2) + 6°] - y(2) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(z) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).
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Hypergeometric forms

THM Generating function for Domb numbers:

Chan-
Chan-Liu o e >
2004; 1 112 10822
Rogers k __ 37273
2009 § Wy(2k)2" = 1_ 4 3k < 11 7(1 — 42)3>
k=0 ’
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Hypergeometric forms

THM Generating function for Domb numbers:

Chan-
Cg?lrtl)-tll_;lu oo 1 112 10822
W Ywens = (N )
k=0 ’
35

1
e Basis at oo for the hypergeometric equation of 3Fb (5’

2 2
2 s Landt= 71082)3 — ]

[as x — 4 then z = & — =

t—1/3 F <§7§
342 2
3

)

Armin Straub
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Hypergeometric forms

THM Generating function for Domb numbers:

Chan-

Cg?lrtl)-tll_;lu oo 1 112 10822

B Swens- o (M)
k=0 ’

11
e Basis at oo for the hypergeometric equation of 3Fb (5 2

_ a? 1 _ 1082
[aS$—>4thenZ—M%Zandt—m%m]

111 2
1 —1/2 25995 |1 —2/3 3
t>, t /3F2<25272 t), t /3F2<34
6’6 3

1
3

t—1/3 F <§7§
342 2
37

[S[S1ES

THM For 2 < x <4,

Borwein-
S-Wan- 3
Zudilin 2 /16 — 22 L1116 — 22
2011 pa(z) = 7273531;‘2 25272 % '
m T Eh 108z
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Hypergeometric forms

THM Generating function for Domb numbers:

Chan-
Cg?lrtl)-tll_;lu oo 1 112 10822
W Ywens = (N )
112
3’273

e Basis at oo for the hypergeometric equation of 3Fb (
[asx—>4thenz—ﬁﬁiandt—(1@%%o@]

1/2 333 |1 2/3 3
Y N e S T DR At Y 1

6’6 3
<

T <4,

111

—1/3 3:393 | 1

/3F2 <32353 1
36

THM For2 < +<720

Borwein-
S-Wan- 3
Zudilin 2 /16 — 22 L1 10016 — 22
2011 pa(z) = Re 727ng2 25272 ( 4) '
7r T E 108z
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The density of a five-step random walk, again

ps(z) = 0.32993 2+0.00661672340.000262332° +0.00001411927 + O (2?)

03sf o
030 ps(x) = / wtJo(xt)J5 () dt
0250 v
0200
o1sf
o10f
0osf
1 2 s 4w
... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.
Karl Pearson, 1906
An application of modular forms to short random walks Armin Straub

16 / 26



The density of a five-step random walk, again

ps(z) = 0.32993 2+0.0066167234-0.000262332° +0.00001411927 + O (2?)

=pa(1)
o.35§ o
030} ps(x) = / wtJo(xt)J5 () dt
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

] JF, (1/ 2’11/ Q‘A(T)) — 05(r)?

o A(r) = 1677200
Hauptmodul for I'(2).
n(r)°

e O3(1) = W is the usual Jacobi theta function.

is the elliptic lambda function, a
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e ~ (n@r)n67)\° _ (n()n(3m)*
ctie 2(7) = (n(f)n(?ﬁ))’ 1) = Gtz

= —q—6¢%> —21¢°> —68¢* + ... = 1—4qg+4¢% — 4¢° +20¢* + . ..

Here, T = (T(6), J (3 23)).
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.
e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.
o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.
e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e ~ (n@r)n67)\° _ (n()n(3m)*
=== () 0= ey

2004

= —q—6¢%> —21¢°> —68¢* + ... = 1—4qg+4¢% — 4¢° +20¢* + . ..

Here, I' = <FO(6)7 % (3 :§)> Then, in a neighborhood of ico,

F(r) = yolx(r) = Y Wa(2k)z(r)*.

k>0
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

i (1@0n(6r)\*\ _ 627 +1)
(81 (B2H0D) ) = SETED yyncanntsrinor)

=== f(r)

=4/64x(T)
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

i (1@0n(6r)\*\ _ 627 +1)
n( s (22 ) - S oo
e =v/—a(n)f(7)

e When 7 = —1 + 1,/—15, one obtains p4(1) = p;(0) as an n-product.
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

Borwein-

2 (n@rm6r)\*\ 621 +1)
n( s (22 ) - S oo
e =/ —z(7)f(7)

e When 7 = —1 + 1,/—15, one obtains p4(1) = p;(0) as an n-product.
e Applying the Chowla—Selberg formula, eventually leads to:

COR \/g
= p5(0) = —— T(E)N(Z)I(E)T(E) ~ 0.32993

—
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Modular parametrization of p,

THM For 7 = —1/2+ iy and y > 0:

Borwein-

2 (n@rm6r)\*\ 621 +1)
n( s (22 ) - S oo
e =/ —z(7)f(7)

e When 7 = —1 + 1,/—15, one obtains p4(1) = p;(0) as an n-product.
e Applying the Chowla—Selberg formula, eventually leads to:

COR , vB 4 2\ A8
— — MF(E)F(E)F(E)F(E) ~ 0.32993

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (01) /n (o2) is an algebraic number.
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Chowla—Selberg formula

ot ; Ll ()73

I YO S &

o e = g LHF<' )"
where the product is over reduced binary quadratic forms
laj, bj, ¢;] of discriminant d < 0. = 4’#%

J
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Chowla—Selberg formula

THM h 1 ] (&) 13v
owla —6 24 k
S:lelgb;;g H ‘77 T] ‘ (2 |d|)6h |:H r <ﬁ) :|

= =il

where the product is over reduced binary quadratic forms
_ —bj+Vd

laj, bj, c;] of discriminant d < 0. T =

EG  Q(+/—15) has discriminant A = —15 and class number h = 2.

Q —[7174] Q2:[27
Tl =— — % %\/T5’ 7—2:%7—1
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What we know about p; =
e Ws(s) has simple poles at —2k — 2 with residue r5 j, &

o Hence: ps(z) = Y 20 5. 22K !

THM Surprising bonus of the modularity of py:

Borwein-
S-Wan-

udilin 1 2 4 8
zzgllf - :}?4(1) _ ;/05 F(B)F(E)E(ﬁ)r(ﬁ)
’ ™
2 13 2 1
= — —_
225 0 Brirsg

5,1

e Other residues given recursively
e p5 solves the DE

[2%(0 + 1)* — (350" + 4207 + 3) + 2%(259(0 — 1)* + 104(6 — 1)?)
—(15(6 = 3)(0 = 1))*] - ps(x) = 0

An application of modular forms to short random walks Armin Straub
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,zy):

1 1
wu(p) :== / . / log {p (62”“1, .. ,e%it”) | dt1dts ... dt,
0 0
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Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,zy):

1 1
wu(p) :== / . / log {p (62”“1, .. ,e%it”) | dt1dts ... dt,
0 0

o Wy(s) :/ ‘e27r$1i+...—|—62mni|sdac
[0,1]"

EG
W 0)=pxr+...+2n) =p(l+x1+... +Tyn_1)

An application of modular forms to short random walks Armin Straub 21 /126




Mahler measure and random walks

DEF (Logarithmic) Mahler measure of p(x1,...,zy):

1 1
wu(p) :== / . / log {p (62”“1, .. ,e%it”) | dt1dts ... dt,
0 0

o Wy(s) :/ ‘e27r$1i+...—|—62mni|sdac
[0,1]"

EG
Wo(0) = p(z1 + ...+ 2) = p(l + 21 + ...+ Tp1)
EG
: 3v3
oot p(l+z+y) = 7—Lx-3,2) = W3(0)
7¢(3
p(l+z+y+2) 2(2) = W4(0)

Lix-3,8)=1—gs+ 7 — g5+ & — ...

An application of modular forms to short random walks

Armin Straub
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Mahler measure and random walks

EG Typical conjecture (Deninger, 1997):

Zoditn, )
p(l+z+y+1/z+1/y) = <\/_715> L(f15,2) = L'(f15,0)

2011
27

where f15 is associated with an elliptic curve of conductor 15.
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Mahler measure and random walks

EG Typical conjecture (Deninger, 1997):

Rogers—
Zudilin,
2011

—15

2
p(l+z+y+1/z+1/y) = (27”) L(f15,2) = L'(f15,0)

where f15 is associated with an elliptic curve of conductor 15.

CONJ 5
odriguez- ? \V _15
R Wi(0) = ( — > 3! L(g15,4) = —L' (15, —1)

where g15 = 1n(37)3n(57)3 + n(7)3n(157)3 (weight 3, level 15).
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Mahler measure and random walks

REG Typical conjecture (Deninger, 1997):
ogers—
i1

—15

2
p(l+z+y+1/z+1/y) = (27”) L(f15,2) = L'(f15,0)

where f15 is associated with an elliptic curve of conductor 15.

CONJ 5
odriguez- ? V —15
NVilogas W5(0) = ( — ) 3! L(g15,4) = —L'(g15, —1)
where g15 = 1n(37)3n(57)3 + n(7)3n(157)3 (weight 3, level 15).
CONJ ©
odriguez- ! —6
T w02 (L) L) = -8Lge -1

where gg = n(7)?1(27)2n(37)%n(67)% (weight 4, level 6).
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Mahler measure progress

EG

Chan- (1) — _ n(27)n(67) ¢
et (7) (77(7)77(37)>’

= —q—6q> —21¢% —68¢* + ...

f(7) = yo(z(7))

 ((n)n(3r)
1) = @)

=1-4g+4¢° —4¢> +20¢" + ...

Z Wa(2k)z(7)*.

k>0
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Mahler measure progress

£e ~ (n@n)nen)\°
i (7) = (nmn(rv) ) ’

= —q—6q> —21¢% —68¢* + ...

f(r)

e Double L-function:

f = Zanan g= anqn

 ((n)n(3r)
1) = @)

=1-4g+4¢° —4¢> +20¢" + ...
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Mahler measure progress

Gon  p(r) = (77(27)77(6T)>6 fr) = @G
or n(r)n@3r) )’ (n(21)n(67))?
= —q—6q> —21¢% —68¢* + ... =1—4g+4¢%> — 4¢° +20¢* + . ..
F@) =yo(z(r)) = > Wa(2k)a(r)*.
k>0
. o anbm
e Double L-function: L(f,g,s,t)"= Z Z e e
f = Zanan g = Z bnq" n>1m>0
THM 3v/502 3v5
Shinder - 117£(0) — 5W4(0) 207 Y L(g3,91,3,1) — WL(Q%QM 3,1)
2012 15
where
Dz x x(212z2 + 251z — 13)
g=—F g=7——09, g= 3 g1-
T 11—z (1—-=x)

An application of modular forms to short random walks Armin Straub 23 /126




The Shinder-Vlasenko starting point

o Wy(s) = / |627””1i + ...+ e2mni|s dx
[0,1]”

o Wy (0) = 3u(pn) where pp, = (1+a1 4. 4z 1) (14 3+ 4 )

Tn—1
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The Shinder-Vlasenko starting point

o Wy(s) = / |627””1i + ...+ e2mni|s dx
[0,1]”

o Wy (0) = 3u(pn) where pp, = (1+a1 4. 4z 1) (14 3+ 4 )

Tn—1

R ] 2mity it _ L d
Villegas 0g | Pn (6 S, € ) == t
[0,1]»
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The Shinder-Vlasenko starting point

o Wy(s) = / |627””1i + ...+ e2mni|s dx
[0,1]”

o W)(0) = guu(pn) where pp = (1421 +.. .+ zn 1) (14 2+, + 1)

Trick . . 1

Rodnigues log [p emit L emitn) _ } dt

Villegas /[071]n n ( ) A

k
—log(— Z A / Qm'zel7 o eQm’tn)k dt
k>1 0 1]"
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The Shinder-Vlasenko starting point

W)= [
(01"

o Wi(0) = Sp(pn) where p, = (1421 +.. 2, )(1+ 2+, + 1)
Trick . ) 1
odriguez- 2mity 27ty =
e /[071]n log [pn (e yees € ) )\} dt
Ak ) )
—log(— Z / 27”“, cey eth")k dt
k>1 0 1]"
)\k
~log(—X) = Y - Wa(2k)
k>1
An application of modular forms to short random walks Armin Straub

24 / 26



The Shinder-Vlasenko starting point

o Wy(s) = / |627””1i + ...+ e2mni|s dx
[0,1]”

o W}(0) = Lpu(p,) where p, = (1+z1 +. ..+xn,1)(1+ Tt 1)
Trick . . 1
odriguez- 2mit 27ty -
RV(ijIIcggas /[Ol]nlog |:pn (e e )_ >\:| dt
Ak ) )
—log(— Z / 27”“, cee eth")k dt
k>1 0 1]"
41!
~log(—) = 37 217, 24) = -] Zwnee
k>1 k>0
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The Shinder-Vlasenko starting point

o Wy(s) = / |627””1i + ...+ e2mni|s dx
[0,1]”

o W)(0) = guu(pn) where pp = (1421 +.. .+ zn 1) (14 2+, + 1)
Trick . . 1
odriguez- 2mity 2mitn _
e /[071]n log [pn (e yees € ) )\} dt
Ak ) )
—log(— Z / 27”“, cey eth")k dt
k>1 0 1]"
~log(— Z _ha _1ZW (2K)\F
k dA "
k>1 k>0
Hence, analytically continuing along the negative real axis,
d -1
p(pn) = —Re [A<| Y Wa(2k)AF
X —
k>0 =ee
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Questions and problems

e The differential equations for n > 5 are not modular.
Can one profitably bring vector-valued modular forms into the picture?
e Given a linear differential equation automatically find its
“hypergeometric-type” solutions.
Promising work by Mark van Hoeij and his group
e More about the five step case? Average distance travelled?
W (1) =n [ Ju(x)Jo(x)" 142
° Countless generalizations . ..
higher dimensions, different step sizes, ...
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THANK YOQU!

e Slides for this talk will be available from my website:
http://arminstraub.com/talks

J. Borwein, D. Nuyens, A. Straub, J. Wan
Some arithmetic properties of short random walk integrals
The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

J. Borwein, A. Straub, J. Wan
Three-step and four-step random walk integrals
Experimental Mathematics — to appear

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
Canadian Journal of Mathematics — to appear
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Mahler measure and random walks

¢ Representations for W, (s) give us, for instance,

! x o x
W) =1os2) =7~ [ @ -1F - [ @

T

=log(2) —y—n /000 log(x)Jo— () J1 (z)dz.
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(Multiple) Mahler measure

DEF Multiple Mahler measure of polynomials p;(x1,...,xy,):

p(p1,- -, Dk) : / Hlog Ipi (2™, ..., ™) | dt

o, 1]nz 1

pi(p) == / log" p (™., 62”“”)‘ dt
[0,1]"
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(Multiple) Mahler measure

DEF Multiple Mahler measure of polynomials p;(x1,...,xy,):

1(p1s .-y pK) / Hlog Ipi (2™, ..., ™) | dt
[o, 1]nz 1
Mk(p) ::/[Ol]n 1ng ‘p (627rit1,--.,€27rit")‘dt

EG
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Moments of a 3-step random walk

EG 3 2
Borwein- 1 = —1L -
oo 1Y) = o SZ(B)

3 2T 72
po(l+x +y) = — Lss <> + —
T 3

4
2 6 2 9 T
1 =—L — | —=Cly (=
Hs(l+z+y) T S4<3) 7TC4<3)

“ron(3)- B

2 12 2 49 s 81 2
1 L0 (2] - = Lss () + = Glaa (=
ua(l+z +y) - S5<3> 3. 55 (5 +7TG4,1(3>
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Derivatives of moments

e Using the residues r5 ;, = Res_g;_2 Ws:

o.9]
ps(x) = Z 75,k p?
k=0

EG 16 + 11400 (0) — 804TW(2) + 64TV (4)
50 = 225 ’
26750 — 16 — 204 (0) + 4WL(2)
= 225 ’

e Unfortunately, the Mahler measure W/(0) “cancels” out.
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