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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?
pn(x)  probability density

Wy (s)  sth moment
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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?
pn(x)  probability density

Wy (s)  sth moment

EG 4
Wa(1) = -
T
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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?
pn(x)  probability density

Wy (s)  sth moment

EG 4
T

EG 1/3 2/3
< - 32 (2) T ()
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History and long walks

e Karl Pearson asked for p,(z) in Nature in 1905.
This famous question coined the term random walk.

e Asymptotic answer by Lord Rayleigh:

20 _ 2
—xr/n
pn(x) = —e /
n *
EG 0.06
Pp200 005F
0.04
0.03|
0.02
0.01
10 20 30 40 50
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Densities of short walks
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Densities of short walks

b2 b3 P4
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.lléoef)nnett

J. C. Kluyver
1906
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.llgo%nnett

J. C. Kluyver
1906

n=4,z=3/2
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Moments of random walks

e sth moment W,,(s) of the density p,:

S

Wn(S)Z/ 2°pp () dac:/ 262”” dx
0

01" k=1
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Moments of random walks

e sth moment W,,(s) of the density p,:

S

fe'e) n
Wi(s) = / °py(z) dr = / Z eZm ekt dx
0 01 |
THM N
= men- ¥ )
S-Wan al, e ,an
2010 art-tan=Fk

e W, (2k) counts the number of abelian squares: strings zy of length

2k from an alphabet with n letters such that y is a permutation of x.

e Introduced by Erd6s and studied by others.

= Wa(2k) = (i’“)

An application of modular forms to short random walks Armin Straub

6/23



Even moments

n|ls=0|s=2]|s= s=6| s=81]s=10 Sloane’s
2 1 2 6 20 70 252 A000984
3 1 3 15 93 639 4653 A002893
4 1 4 28 256 2716 31504 A002895
5 1 5 45 545 | 7885 | 127905 A169714
6 1 6 66 996 | 18306 | 384156 A169715
EG k 2 .
Wa(2k) = 3 (k 2;)
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Complex moments

THM Lk 2
Wn(Qk) - Z <a1 ey Q >

e Inevitable recursions K- f(k) = f(k+1)
[(k+2)°K? — (10k? + 30k + 23) K + 9(k + 1)°] - W3(2k) = 0
[(k+2)°K? — (2k + 3)(10k* + 30k + 24) K + 64(k + 1)°] - Wa(2k) = 0
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Complex moments

THM Lk 2
Wn(Qk) - Z <a1 ey Q >

e Inevitable recursions K- f(k) = f(k+1)
[(k+2)°K? — (10k? + 30k + 23) K + 9(k + 1)°] - W3(2k) = 0
[(k+2)°K? — (2k + 3)(10k* + 30k + 24) K + 64(k + 1)°] - Wa(2k) = 0
¢ Via Carlson’s Theorem these become functional equations
e Ws(s) has a simple pole at —2 with reS|due ; others at —2k.

AT

~
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Wy(s) in the complex plane ‘
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Crashcourse on the Mellin transform

e Mellin transfocrx)m f(s) cggvf@): Wi(s — 1) = M [pn; 5]
Mfis]= | 2" f(x)—
0 x
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x): Wi(s — 1) = M [pn; ]
o s d$ n mny
./\/l[f;s]—/ z° f(x)—
0 x

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F(s) translate into DEs
o M[Dyf(x);s] =—(s—1)F(s— 1) for f(x)

o M[-0,f(x);s] =sF(s)
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x):

Wi(s —1) = M [pp; s]
Mifisl = [ ap@) S

0

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F'(s) translate into DEs
o M[D,f(z);s] = —(s—1)F(s — 1) for f(x)

o M[=0.f(2);s] = sF(s)
e Poles of F(s) left of strip = asymptotics of f(z) at zero

W %xm(log z)"
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Mellin approach illustrated for p,

o Wa(2k) = (%)

(s +2)Wa(s+2) —4(s+ 1)Wa(s) =
[a:2 (0, +1)— 4096] “po(x) =
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Mellin approach illustrated for p,

o Wa(2k) = (%)

(s +2)Wa(s +2) — 4(s + 1)Wa(s) = 0
[a:2 (0, +1)— 4096] “po(x) =0
e Hence: po(x) = 4€x2
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Mellin approach illustrated for p,

o Wa(2k) = (%)

k
(s +2)Wa(s +2) — 4(s + )Wa(s) = 0
[a:2 (0, +1)— 4096] “po(x) =0
e Hence: po(x) = 4€x2
Wa(s) = 71rs—1kl +0(1) as s - —1

1
po(x) = = +O(z) asz — 07"

2
T 4—x2

e Taken together: py(z) =
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ps and its differential equation

[(s+4)*S* — 4(s + 3)(55” + 30s + 48)5% + 64(s + 2)°] - Wu(s) =0
translates into A4 - pa(x) = 0 with

Ay =20, +1)3 — 4220,(502 + 3) + 64(0, — 1)3

RK This DE is modular. We will come back to this shortly.
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ps and its differential equation

[(s+4)*S* —4

(s +3)(55 + 30s + 48)S% + 64(s + 2)3] - Wu(s) =0

translates into A4 - pa(x) = 0 with

Ay =20, +1)3 — 4220,(502 + 3) + 64(0, — 1)3
= (z —4)(z — 2)2*(z + 2)(z + 4)D3 + 62* (+* — 10) D2
+x (7$4 — 3222 + 64) D, + (ZE2 — 8) ($2 + 8)

RK This DE

The leading coefficient for general n always factors analogously. In light of an explicit recursion
by Verrill (2004), this is embodied in the combinatorial identity

J J
2
S [e-mot- Y [lam+i-a
o<my,..., m,j<n/2 =1 1<ag, .., ajgn i=1
mi <M1 ajSajpr—2

First proven by Djakov-Mityagin (2004). Direct combinatorial proof by Zagier.
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ps and its asymptotics at zero

EG 3 1 9log2 1
W, = — o1 =7
a(s) 2772(s+2)2+ 92 s—|—2+ (1) ass—
3 9log 2 3 4
pa(z) = —ﬁxlog(az) + 52 * +0(2°) asz—0
e Wa(s) has double poles:
Wy(s) = o4k SR — O(1) ass— —2k—2

(s+2k+2)?2 s+2k+2
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ps and its asymptotics at zero

EG 3 1 9log2 1
W, = = o1 =7
1) =5aGrae T om s T O s
3 9log 2
pa(z) = —ﬁxlog(az) + 2(7)rg2 r+0(z®) asz—0"
e Wa(s) has double poles:
54,k T4,k
= ’ : 1 -2k -2
Wy(s) Grokt2? s+2k+2+0() as s — —2k
pa(x) = Z (rar — sS4 10g(x)) g2htl for small 2 >0

k=0
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ps and its asymptotics at zero

EG 3 1 9log2 1
W, = — o1 =7
1) =5aGrae T om s T O s
3 9log 2 3 4
pa(z) = —ﬁazlog(az) + 52 * +0(2°) asz—0

e Wa(s) has double poles:

S4,k T4k
= ’ ’ 1 9k —2
Wy(s) (s—|—2k—i—2)2+8+2k‘+2+0() as s — —2k
pa(x) = E (rar — sS4 10g(x)) g2htl for small 2 >0
k=0
OO k 2 . .
3 Wy(2k) k 27\ (2n —2j
= W4(2k) =
T e (e ]-Z:o <J> (j n—j

T4,% known recursively Domb numbers
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The Domb numbers

o yo(2) := Y20 Wa(2k)zF is the analytic solution of
[6422(0 +1)° — 22(20 + 1)(56° + 50 + 2) + 6°] - y(z) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(2) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).
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The Domb numbers

o yo(2) := Y20 Wa(2k)zF is the analytic solution of

[6422(0 +1)° — 22(20 + 1)(56° + 50 + 2) + 6°] - y(z) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(2) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).

THM Generating function for Domb numbers:
Chan-

Chan-Liu > & 1 112
2004; Wi(2k)z" = (323
Rog:rs kZO 4( )Z 1—4z a2 ( 1, 1

2009

10822
(1-42)3
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The Domb numbers

o yo(2) := Y20 Wa(2k)zF is the analytic solution of
[6422(0 +1)° — 22(20 + 1)(56° + 50 + 2) + 6°] - y(z) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(2) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).

THM Generating function for Domb numbers:
112

Chan- o0

Chan-Liu 1 %, = 10822
2004; Wa(2k)2* = Fy| 3223 —
2 Wulah)=" = 1= 2( 11 (1—4z)3>

11
e Basis at oo for the hypergeometric equation of 3F5 (5’5’

and t = (fﬂiijg — o]

2 :
[asx%llthenz:‘é’j%ﬁ
1 1/2 3
R 13 3F2 2§

6
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p4 in hypergeometric form

THM For 2 <z <4,

Borwein-

S-Wan-
Zudilin 2 16 — z2
- SR

pale) =

e Easily (if tediously) provable once found

Armin Straub
15/ 23
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p4 in hypergeometric form

THM For 2 < x <4,

Borwein-

S-Wan-

Zudilin 2 16 — z2
() = 5 R,

e Easily (if tediously) provable once found
e Quite marvelously, as first observed numerically:

THM For 0 < = < 4,

Borwein-

S-Wan-
Zudilin 2 /16 — z2 111
VBT pe o F (2 272

)=
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ps — starting startlingly straight

ps(z) = 0.32993 2+0.00661672340.000262332° +0.00001411927 + O (2?)

03sf o
030 ps(x) = / wtJo(xt)J5 () dt
0250 v
0200
o1sf
o10f
0osf
1 2 s 4w
... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.
Karl Pearson, 1906
An application of modular forms to short random walks Armin Straub
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ps — starting startlingly straight

ps(z) = 0.32993 2+0.0066167234-0.000262332° +0.00001411927 + O (2?)

=pa(1)
o.35§ o
030} ps(x) = / wtJo(xt)J5 () dt
0250 v
0200
o1sf
o10f
0osf
1 2 s 4w
... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.
Karl Pearson, 1906
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.
e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.
o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.
e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e Dedekind eta function: n(7) = = ¢/ H (1—4") q = 2™

e _ (n(2n)n(67)\° _ (n(m)n(37))*
citie 2(7) = (77(7)77(3T)>’ 1) = Gtz

= —q—6q¢> —21¢% —68¢* + ... = 1—4q+4¢%> —4¢> +20¢* + ...

Here, T = (To(6), 15 (2 3)).
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e Dedekind eta function: n(7) = = ¢/ H (1—4") q = 2™

e _ (n(2n)n(67)\° _ (n(m)n(37))*
citie 2(7) = (77(7)77(3T)>’ 1) = Gtz

= —q—6q¢> —21¢% —68¢* + ... = 1—4q+4¢%> —4¢> +20¢* + ...

Here, I'= <F0(6> \/g (g _3 )> Then, in a neighborhood of ico,
o

F(r) = yola(r) = Y Wa(2k)(r)"
k=0
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Modular parametrization of p,

THM For 7 = —1/2+ 4y and y > O:

Borwein-
S-Wan-

i p4( . (77(27)77(67) )3 ) _ @ n(r)n(2r)n(3r)n(67)

n()n(37) !
T =y/=a(N)f(r)
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Modular parametrization of p,

THM For 7 = —1/2+ 4y and y > O:

(s (L)) ST g o a(arncon)
: ot =y —z(7)f(7)

e When 7= —1 + +1/—15, one obtains p4(1) = p5(0) as an n-product.
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Modular parametrization of p,

THM For 7 = —1/2+ 4y and y > O:

Borwein-

2 S (n@rn6n)\* _ 6(2r +1)
p(s (2] ) - S5 otarntante)
e =V~ f(7)

e When 7= —1 + +1/—15, one obtains p4(1) = p5(0) as an n-product.
o Applying the Chowla—Selberg formula, eventually leads to:

COR i _ \/B
4074

r(%)r(%)r(%)r(%) ~ 0.32993
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Chowla—Selberg formula

THM 3w
Chowla— h 6 24 1 Idl (%)
s(;l;;;;g H 5 ’77 T3 | (27T‘d| 6h H I (\d\)

where the product is over reduced binary quadratic forms
—b]‘-i-\/a
=

laj, bj, cj] of discriminant d < 0. Further, 7; = — -
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Chowla—Selberg formula

THM 3w

Chowla— h 1 Idl

(%)
elber “Blp(r;)| = "
S1I9b67g H ’77 Tj | (27T‘d| 6h H r (‘d‘)

where the product is over reduced blnary quadratic forms
—b]'-i-\/a

2aj

[aj,bj, c;] of discriminant d < 0. Further, 7; =

EG  Q(v/—15) has discriminant A = —15 and class number h = 2.
Ql - [1)1)4]7 Q? = [271’2]

with corresponding roots

1 1./ 1
T = —5 + 5 —15, Ty = 57‘1.
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Evaluating eta-quotients

Fact |If 51,00 € H both belong to Q(v/—d), then the quotient
n(o1) /n (o2) is an algebraic number.
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Evaluating eta-quotients

Fact |If 51,00 € H both belong to Q(v/—d), then the quotient
n(o1) /n (o2) is an algebraic number.

EG
T =

1

w\»—t w\»—t

TT

m\»—‘ w\»—t

== 27t = (33)m

An application of modular forms to short random walks Armin Straub 20




Evaluating eta-quotients

Fact |If 51,00 € H both belong to Q(v/—d), then the quotient
n(o1) /n (o2) is an algebraic number.

EG

S B W
_ _1,1/798 1 1-1
™D =—5+§V-lb= =(p3) ™
12
e g(1) =38 ( ) is a modular function on F0(3)
n(t1—1) a6 [ n(T1)
We want g(7p ( 7,](TD) > = g} (7/,,7(7,17)>
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Evaluating eta-quotients

Fact |If 51,00 € H both belong to Q(v/—d), then the quotient
n(o1) /n (o2) is an algebraic number.

EG

S B W
_ _1,1/798 1 1-1
™D =—5+§V-lb= =(p3) ™
12
e g(1) =38 ( ) is a modular function on F0(3)
n(t1—1) a6 [ n(T1)
We want g(7p ( 7,](TD) > = g} (7/,,7(7,17)>

e Ntp =7p with N := (73 32)
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Evaluating eta-quotients

Fact |If 51,00 € H both belong to Q(v/—d), then the quotient
n(o1) /n (o2) is an algebraic number.

EG
T =—3+1V-15,
J— 1 1 1 1 -1
™=—j+5V-15= =(p3) ™
12
o g(r) =38 ( ) is a modular function on F0(3)
we vant g(rp) =3 (H25) " = s (3a5)”

e N7p = 1p with N':( 3 22)

* (3N (57°) =(§9) =: A, thus N € I'g(3)AT'o(3)
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Evaluating eta-quotients

Fact |If 51,00 € H both belong to Q(v/—d), then the quotient
n(o1) /n (o2) is an algebraic number.

=6 n = -1+ V=5,
A W T 1-1
™D=—53+5vV-1b= =(03 )™
12
e g(1) =38 ( ) is a modular function on F0(3)
n(t1—1) a6 [ n(T1)
We want g(7p ( 7,](TD) > = g} (7/,,7(7,17)>

e Ntp =7p with N := ( 3 22)

(LO)N (12) = (49) =: A, thus N € To(3)ATo(3)
If ®(g(7), g(47)) = 0, then (g(AT), g(r)) = 0 and
®(g(NT),9(1)) = 0.
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Evaluating eta-quotients

Fact |If 51,00 € H both belong to Q(v/—d), then the quotient
n(o1) /n (o2) is an algebraic number.

=6 n = -1+ V=5,
A W T 1-1
™D=—53+5vV-1b= =(03 )™
12
e g(1) =38 ( ) is a modular function on F0(3)
n(t1—1) a6 [ n(T1)
We want g(7p ( 7,](TD) > = g} (7/,,7(7,17)>

e Ntp =7p with N := ( 3 22)

(BON(573) =9 = A, thus N € I'g(3)AT'o(3)
If ®(g(7),9(47)) =0, then ®(g(A7),g(7)) =0 and
®(g(NT),9(7)) = 0.

e In particular, ®(g(7p),g9(mp)) = 0.

An application of modular forms to short random walks Armin Straub
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Evaluating eta-quotients

ES ®(z,y) = >yt + 2ty® + 48 2593 + 120 2%y* + 48 233"

+ ...+ 387420489 xy + 387420489 />

Modular equations such as ®(g(7), g(47)) = 0 are automatic
to prove: bound valence and test g-expansion at oc.
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£e ®(z,y) = >yt + 2ty® + 48 2593 + 120 2%y* + 48 233"

+ ...+ 387420489 xy + 387420489 />

Modular equations such as ®(g(7), g(47)) = 0 are automatic
to prove: bound valence and test g-expansion at oc.

O(x,x) = 2 (x — 27)% (2 + 812 + 729) 2
It follows that

2
g(mp) = —3° <?7(T1) >12 = 3? <1 * \/5> :

n(Tp) 2
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Some problems

e What is a computationally better way to evaluate generic eta
quotients at quadratic irrationalities?
Note that in the sample calculation we only needed ®(z, ).
e Describe the double cosets ' AT where, e.g., I' = T's(N).
For N =1 this is done by the Smith normal form.
e What more can be said about p5?
We know it satisfies a (non-modular) DE, as well as its expansion at zero.

Conjecture: pZ'(0) = %P%(O) - 51% p_gl(o)
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THANK YQU!

e Slides for this talk will be available from my website:
http://arminstraub.com/talks

J. Borwein, D. Nuyens, A. Straub, J. Wan
Some arithmetic properties of short random walk integrals
The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
Canadian Journal of Mathematics — to appear
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