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Introduction
Random walks in the plane

@ We study random walks in the
plane consisting of n steps.
Each step is of length 1 and is
taken in a randomly chosen
direction.
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Introduction
Random walks in the plane

@ We study random walks in the
plane consisting of n steps.
Each step is of length 1 and is
taken in a randomly chosen
direction.

@ We are interested in the
distance traveled in n steps.

For instance, how large is this
distance on average?
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Introduction

How the random walk got its name

The Problem of the Random Walk.
Can any of your readers refer me to a work wherein

@ Asked by Karl Pearson in I should find a solution of the following probleni, or fail-

. ing the knowledge of any existing solution provide me

Nature n 1905 with an original one? I should be extremely grateful for
aid in the matter.

A man starts from a point O and walks 1l yards in a
straight line; he then turns through any angle whatever
and walks another I yards in a second straight-line. He
repeats this process n times. I require the probability that
after these n stretches he is at a distance between # and
7+ 8y from his starting point, O.

The problem is one of considerable interest, but I have
only succeeded in obtaining an integrated solution for two
stretches. 1 think, however, that a solufion ought to be
found, if only in the form of a series in powers of 1/,
when n is large. Karr PEarson.

b <) The Gables, East llsley, Berks.

[ K. Pearson. “The random walk.” Nature, 72, 1905.
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How the random walk got its name

The Problem of the Random Walk.

. Can any of your readers refer me to a work wherein

@ Asked by Karl Pearson in I should find a solution of the following probleni, or fail-

. ing the knowledge of any existing solution provide me

Nature n 1905 with an original one? I should be extremely grateful for
aid in the matter.

A man starts from a point O and walks I yards in a
straight line; he then turns through any angle whatever
and walks another I yards in a second straight-line. He
repeats this process n times. I require the probability that
after these n stretches he is at a distance between # and

@ Asymptotic answer by
Lord Rayleigh in the same

Issue 7+ 8y from his starting point, O.

The problem is one of considerable interest, but I have
only succeeded in obtaining an integrated solution for two
stretches. 1 think, however, that a solufion ought to be

. found, if only in the form of a series in powers of 1/,
? when n is large. KarL PEaRrsoN.
VB A The Gables, East llsley, Berks.

[ K. Pearson. “The random walk.” Nature, 72, 1905.
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Introduction

How the random walk got its name

The Problem of the Random Walk.
. Can any of your readers refer me to a work wherein
@ Asked by Karl Pearson in I should find a solution of the following probleni, or fail-
. ing the knowledge of any existing solution provide me
Nature in 1905 with an original one? I should be extremely grateful for
aid in the matter.

H A man starts from a point O and walks I yards in a
° AsymptOtlc answer by straight line; he then turns through any angle whatever

H H and walks another y’irds in a second straight-line. He
Lord Raylelgh in the same repeats this process n nmes I reqmre the probab:hty that

- and
Issue ; The Problem of the Random Walk,

Trmis problem, proposed by Prof. Karl Pearson in the 2aVe
current number of NATURE, is the same as that of the ‘W0
composition of #n iso-periodic vibrations of unit ampli- be
tude and of phases distributed at random, considered in '/"’
Phil. Mag., X, P- 73, 1880; xIvii., p. 246, 1899;. (““ Scien- '+
tific Papers,”’ i., p- 491, iv., p. 370). If n be very great,
the probability sought is ’

_z.e—"/"rdr,
7z

Probably methods similar to those employed in the papers
referred to would avail for the development of an approxi-
mate expression applicable when n is only moderately

w“ great. RAYLEIGH.
[4 K. Pearson. “The ran Terling Blacs, Jilly 25,
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Introduction
Long walks

@ For long walks, the probability density is
. T 7332/”
approximately —e
n

@ For instance, for n = 200:

0.06
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Introduction

Long walks

@ For long walks, the probability density is
. T 7332/”
approximately —e
n
@ For instance, for n = 200:

0.03F

The lesson of Lord Rayleigh’s solution is that in .open
country the most probable place to find a drunken man
who is at all capable of keeping on his feet is somewhere
near his starting point! KarL PEearson.
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Introduction
Hornets gone wild

e e

T
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Introduction

Hornets gone wild

o dispersion of mosquitoes
-+ e random migration of

. micro-organisms

. @ phenomenon of laser speckle
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Hornets gone wild
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Introduction

Drunken birds
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Introduction

Drunken birds

A drunk man will find his way home,
but a drunk bird may get lost forever.

— Shizuo Kakutani

7
Armin Straub How far does a drunkard get?



Moments
Moments

@ The moments of a RV X are E(X), E(X?), E(X?), ...
e If X has probability density f(z) then

o0

B(X*) = / 2 f(z) dz

—00
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Moments
Moments

@ The moments of a RV X are E(X), E(X?), E(X?), ...
e If X has probability density f(z) then

B(X®) = / T @) de

—00

Fact
No matter how bad f(x), the moments E(X?®) are analytic in s. }

Assumption: for instance, f(x) compactly supported
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Moments
Moments

@ The moments of a RV X are E(X), E(X?), E(X?), ...
e If X has probability density f(z) then

E(X®) = / 2°f(x)dz
—00
Fact
No matter how bad f(x), the moments E(X?®) are analytic in s. }

Assumption: for instance, f(x) compactly supported

° / 251 f(z) da is called the Mellin transform of f
0
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Moments
Moments of the random walks

2mixTy,

o Represent the kth step by the complex number e

n
§ : 627Ti55k

k=1

@ The distance after n steps is
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Moments
Moments of the random walks

2mixTy,

Represent the kth step by the complex number e

n
Z 627Ti55k
k=1
@ The sth moment of the distance after n steps is:

Wy(s) := /
(0,1]™

In particular, W;,(1) is the average distance after n steps.
Trivially Wy (s) = 1.

The distance after n steps is

n

§ 627F33ki

k=1

S

dx
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Moments

Average distance traveled in two steps

o Numerically: Wa(1) ~ 1.2732395447351626862
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f l Report problems with
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Math Resources
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Average distance traveled in two steps

o Numerically: Wa(1) ~ 1.2732395447351626862
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Moments

Average distance traveled in two steps

o Numerically: Wa(1) ~ 1.2732395447351626862
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Moments

Average distance traveled in two steps

o Numerically: Wa(1) ~ 1.2732395447351626862
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Moments
The simple two-step case confirmed

@ The average distance in two steps:

1 r1
Wz(l):/ / |2 + ™| dady = 7
0 JO
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Moments
The simple two-step case confirmed

@ The average distance in two steps:

1 r1
Wz(l):/ / |2 + ™| dady = 7
0 JO

@ Mathematica 7 and Maple 14 think the answer is 0.
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Moments
The simple two-step case confirmed

@ The average distance in two steps:

1 r1
Wz(l):/ / |2 + ™| dady = 7
0 JO

@ Mathematica 7 and Maple 14 think the answer is 0.

@ There is always a 1-dimensional reduction:

4 ~ 1.27324
T

1
Wa(1) = / |1+ ™| dy =
0
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Moments

The simple two-step case confirmed

The average distance in two steps:

1 r1
Wz(l):/ / |2 + ™| dady = 7
0 JO

Mathematica 7 and Maple 14 think the answer is 0.

(]

There is always a 1-dimensional reduction:

4 ~ 1.27324
T

1
Wa(1) = / |1+ ™| dy =
0

This is the average length of a random arc on a
unit circle.
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Moments
The average distance for 3 and more steps

o Wy(s):= / ’62””1 + ... 4 e%mian ’Sd:c
(0,1]™
@ On a desktop:

W3(1) ~ 1.57459723755189365749
1.79909248
W5(1) ~ 2.00816

=
=
2

o In fact, W5(1) ~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the availability of 256 cores at the
Lawrence Berkeley National Laboratory.
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Moments
The average distance for 3 and more steps

o Wy(s):= / ’62””1 + ... 4 e2miEn ’Sd:c
[071]n
@ On a desktop:

W3(1) ~ 1.57459723755189365749
1.79909248
W5(1) ~ 2.00816

N
=
2

o In fact, W5(1) ~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the availability of 256 cores at the
Lawrence Berkeley National Laboratory.

@ Hard to evaluate numerically to high precision. For instance,

Monte-Carlo integration gives approximations with an asymptotic
error of O(1/v N) where N is the number of sample points.
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Moments
The average distance for 3 and more steps

o Wy(s):= / ’62””1 + ... 4 e2miEn ’Sd:c
[071]n
@ On a desktop:

W3(1) ~ 1.57459723755189365749
1.79909248
W5(1) ~ 2.00816

N
=
2

o In fact, W5(1) ~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the availability of 256 cores at the
Lawrence Berkeley National Laboratory.

@ Hard to evaluate numerically to high precision. For instance,
Monte-Carlo integration gives approximations with an asymptotic
error of O(1/v N) where N is the number of sample points.

@ Closed forms as in the case n = 27
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Moments

Can we guess W5(1)?

e Ws(1) = 1.57459723755189365749.. . .
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Moments

Can we guess W5(1)?

e Ws(1) = 1.57459723755189365749.. . .

Idea

If we suspect that a number xoy can be written as xo = a1x1 + ... apxy
for other numbers x; and rational a; then this can be detected!
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Moments

Can we guess W5(1)?

e Ws(1) = 1.57459723755189365749.. . .

Idea

If we suspect that a number xoy can be written as xo = a1x1 + ... apxy
for other numbers x; and rational a; then this can be detected!

e PSLQ takes numbers x = (x1,x2,...,2,) and tries to find integers
m = (my, ma,...,my,), not all zero, such that

X-m=mix+...+mux, =0.

The vector m is called an integer relation for x. In case that no
relation is found, PSLQ provides a lower bound for the norm of any
potential integer relation.
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Moments

Can we guess W5(1)?

Inl1l:= << "~/docs/math/mathematica/pslq.m"

Basic PSLQ implementation by Armin Straub
accompanying the paper "A gentle introduction to PSLO"

-- Tulane University -- Version 1.2 (2010/12/17)

In(2]:= W2 = 1.2732395447351626861510701069801148962756771659236515899813387524711743810738122807208;
W3 =1.5745972375518936574946921830765196902216661807585191701936930983018311805944543821311;

Inl4k= PSLQ[{W2, 1, 1/Pi, 1/Pin2}]

outldl= {1, 0, -4, 0}

How far does a d
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Moments

Can we guess W5(1)?

In[1l:= << "~/docs/math/mathematica/pslq.m"

Basic PSLQ implementation by Armin Straub
accompanying the paper "A gentle introduction to PSLO"

-- Tulane University -- Version 1.2 (2010/12/17)

In(2]:= W2 = 1.2732395447351626861510701069801148962756771659236515899813387524711743810738122807208;
W3 =1.5745972375518936574946921830765196902216661807585191701936930983018311805944543821311;

Inl4k= PSLQ[{W2, 1, 1/Pi, 1/Pin2}]

outldl= {1, 0, -4, 0}

ins1:= PSLO[{W3, 1, 1/Pi, 1/PiA2}]
PSLQ::lowprec : Precision too low to continue (155 iterations performed).

PSLQ:norel : No integer relation was found. The norm of any true integer relation is at least 1.3248876487095543" #~13

out[5]= {} K|
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Moments

Can we guess W5(1)?

In[1l:= << "~/docs/math/mathematica/pslq.m"

Basic PSLQ implementation by Armin Straub
accompanying the paper "A gentle introduction to PSLO"
-- Tulane University -- Version 1.2 (2010/12/17)

In(2]:= W2 = 1.2732395447351626861510701069801148962756771659236515899813387524711743810738122807208;
W3 =1.5745972375518936574946921830765196902216661807585191701936930983018311805944543821311;

Inl4k= PSLQ[{W2, 1, 1/Pi, 1/Pin2}]

outldl= {1, 0, -4, 0}

ins1:= PSLO[{W3, 1, 1/Pi, 1/PiA2}]

PSLQ:lowprec : Precision too low to continue (155 iterations performed).

PSLQ:norel : No integer relation was found. The norm of any true integer relation is at least 1.3248876487095543" #~13

out[5]= {}

Inl6):= PSLQ [N[EulerGammaARange[0, 10], 1000]]

PSLQ:norel : No integer relation was found. The norm of any true integer relation is at least 3.316965369128081" *~31

outlel= {}

Armin Strau How far does a d




Moments

Getting data: computing some moments

The sth moment of the distance after n steps:

Wo(s /[Mka

s = s = s = s=4 s=25 s = s =
1.273 | 2.000 | 3.395 | 6.000 10.87 | 20.00 37.25
1.575 | 3.000 | 6.452 | 15.00 36.71 93.00 | 241.5
1.799 | 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3
2.008 | 5.000 | 14.29 | 45.00 | 152.3 | 545.0 | 2037.
2.194 | 6.000 | 18.91 66.00 | 248.8 | 996.0 | 4186.

S

S O W N3
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Moments

Getting data: computing some moments

The sth moment of the distance after n steps:

Wo(s /[Mka

S

n| s= s = s = s=4 s=25 s = s =
2 1.273 2.000 3.395 6.000 10.87 | 20.00 37.25
3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5
4 1.799 | 4.000 | 10.12 28.00 82.65 | 256.0 822.3
5 2.008 5.000 | 14.29 | 45.00 152.3 545.0 2037.
6 2.194 | 6.000 | 18.91 66.00 248.8 996.0 | 4186.
4
Wa(1) = p

Armin Straub How far does a drunkard get?



Moments

Getting data: computing some moments

The sth moment of the distance after n steps:

W /[Mka

S

n| s= s = s=3 s=4 s=25 s = s =

2 1.273 2.000 3.395 6.000 10.87 | 20.00 37.25
3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5
4 1.799\| 4.000 | 10.12 28.00 82.65 | 256.0 822.3
5 2.008 5.000 | 14.29 | 45.00 152.3 545.0 2037.

6 2.194 | \6.000 | 18.91 66.00 248.8 996.0 | 4186.

4
Wh(1) = p Ws5(1) = 1.57459723755189. .. =
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Moments

Getting data: computing some moments

The sth moment of the distance after n steps:

W / 7T.Z’kl
o | 2=

n| s= s = s=3 s=4 s=95 s = s =

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5
4 1.799 4.000 | 10.12 28.00 82.65 | 256.0 822.3
5 2.008 5.000 | 14.29 45.00 152.3 545.0 2037.

6 2.194 6.000 | 18.91 66.00 248.8 996.0 4186.

4
Wh(1) = p Ws5(1) = 1.57459723755189. .. =
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Combinatorics
Even moments

s=4|s=6|s=8]|s=10 Sloane's

6 20 70 252 A000984

15 93 639 4653 A002893

28 256 2716 31504 A002895
45 545 | 7885 | 127905
66 996 | 18306 | 384156

D Tk W N3
S Tk W NN
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Combinatorics
Even moments

s=4|s=6|s=8]|s=10 Sloane's

6 20 70 252 A000984

15 93 639 4653 A002893

28 256 2716 31504 A002895
45 545 | 7885 | 127905
66 996 | 18306 | 384156

D Tk W N3
S Tk W NN

e Apparently: W, (2) =n
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Combinatorics
Even moments

s=4|s=6|s=8]|s=10 Sloane's

6 20 70 252 A000984

15 93 639 4653 A002893

28 256 2716 31504 A002895
45 545 | 7885 | 127905
66 996 | 18306 | 384156

D Tk W N3
S Tk W NN

e Apparently: W, (2) =n
e Also: W, (10) = n modulo 10
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Combinatorics

The integer sequence database

This site is supported by donations to The OEIS Foundation.
i S&n[/ucncé;

[t.a.28,256 3 Search Hints
(Greetings from The On-Line Encyclopedis of Integer Sequences!)

Search: seq:1,4,28,256

Displaying 1-2 of 2 results found. page 1
Sort: relevance | references | number | modified | created Format: long | short | data
A064340 Generalized Catalan numbers C(2,2; n). gz
1, 1, 4, 28, 256, 2704, 31168, 380608, 4840960, 63458560, 85139968@,
11635096576, 161396604928, 2266669453312, 32166082822144,
460531091685376, 6644185553305600, 96498260064403456,
1409750653282287616 (lst; graph; listen; history; internal Farmat)
OFFSET 0’ 3
COMMENTS See triangle AQ64879 with columns m built from C({m,m; n), m
>= 0, also for Derrida et al. and Liggett references.
FORMULA a(n)= ((4~(n-1))/(n-1))*sum{(m+1)*(m+2)*binomial(2*(n-2) -m,
n-2-m)*((1/2)~(m+1)), m=0..n-2), n >= 2, a(@) := 1=: a(l).
G.f.:(1-3fckc (4%x) )/ (1-2%xkc(4%x) )72 =
ClA*x)*¥(3+c(4*x))/(1+c(4¥x))"2 =
(1+5%x+3*c (4*x) ¥ (2%x) "2) / (1+2%x) "2 with c(x)= A(x) g.f. of
Catalan numbers ARER1O8.
CROSSREFS A0EO108 (Catalan as C(1, 1, n)).
KEYWORD nonn, easy
AUTHOR Wolfdieter Lang
(wolfdieter.lang(AT)physik.uni-karlsruhe.de), Oct 12 2001
A002895 Number of 2n-step polygons on diamond lattice. =

(Formerly M3626 N1473)




Combinatorics

The integer sequence database

A002895 Number of 2n-step polygons on diamond lattice.
(Formerly M3626 N1473)

1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624,

12046924528, 167595457792, 2359613230144, 33557651538688,

481365424895488, 6956365106016256, 101181938814289564,

1480129751586116848 (list; graph; listen; history; internal format)

OFFSET 0,2

COMMENTS a(n) is the (2n)th moment of the distance from the origin of
a 4-step random walk in the plane - Peter M.W. Gill
(peter.gill(AT)nott.ac.uk), Mar 03 2004

REFERENCES David H. Bailey, Jonathan M. Borwein, David Broadhurst and
M. L. Glasser, Elliptic integral evaluations of Bessel
moments, arXiv:0801.0891.

C. Domb, On the theory of cooperative phenomena in crystals,
Advances in Phys., 9 (1960), 149-361.

J. A. Hendrickson, Jr., On the enumeration of rectangular
(0,1)-matrices, Journal of Statistical Computation and
Simulation, 51 (1995), 291-313.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic
Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of
Integer Seguences, Academic Press, 1995 (includes this
seguence) .

LInKs Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James
Wan, Random Walk Integrals, 2010.

L. B. Richmond, J. Shallit, Counting Abelian Sguares,
arXiv:0807.5028 [Math.CO0]. [From R. J. Mathar
(mathar(AT)strw.leidenuniv.nl), Oct 30 2008]

FORMULA sum_{k=0..n} binomial(n, k)"2 binomial(2n-2k, n-k)
binomial(2k, k).

n™3*a(n) = 2%(2*n-1)*(5*n"2-5¥n+2)*a(n-1) -64*(n-1) "3*a(n-2) .
- Vladeta Jovovic (vladeta(AT)eunet.rs), Jul 16 2004

Sum {n>=0} a(n)*x™n/n!"2 = Bessell(0, 2*sgrt(x))"™4. -

How far does a drunkard get?

+20
a

Armin Stral



Combinatorics

The integer sequence database

This site is supported by donations to The OEIS Foundation

)lnf’r,éf,r choné&; ;

[T'5:45,545,7885 €| Search Hints
(Greetings Fre Search Query 12 Encyclopedia of Integer Sequences!)

Search: seq:1,5,45,545,7885
Displaying 1-1 of 1 result found. page 1
Sort: relevance | references | number | modified | created  Format: long| short | data
A169714 The function W_5(2n) (see Borwein et al. reference For definition). =
1, 5, 45, 545, 7885, 127905 (list; graph; listen; history; internal format)
OFFSET 0’2
Links Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James
Wan, Random Walk Integrals, 2010.
KEYWORD nonn
AUTHOR N. J. A. Sloane (njas(AT)research.att.com), Apr 17 201@
page 1

Search completedin 0.076 seconds

Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
More pages | Superseeker | Maintained by The OEIS Foundation Inc

Content is available under The OFIS End-User License Agreement .

Last modified March 27 11:55EDT 2011. Contains 186889 sequences.
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Combinatorics

A combinatorial formula for the even moments

Theorem (Borwein-Nuyens-S-Wan)

wen= 2 (L)

a1+-+an==k

Armin Straub How far does a drunkard get?



Combinatorics

A combinatorial formula for the even moments

Theorem (Borwein-Nuyens-S-Wan)

wen= 2 (L)

a1+-+an==k

o fn(k):= Wy,(2k) counts the number of abelian squares:
strings xy of length 2k from an alphabet with n letters such that y
is a permutation of x.

Armin Straub How far does a drunkard get?



Combinatorics

A combinatorial formula for the even moments

Theorem (Borwein-Nuyens-S-Wan)

wen= 2 (L)

ai+--+an=~k

o fn(k):= Wy,(2k) counts the number of abelian squares:
strings xy of length 2k from an alphabet with n letters such that y
is a permutation of x.

@ Introduced by Erddés and studied by others.
o Surely: fi(k) =1.

Example
acbe ccba is an abelian square. It contributes to f3(4). J

Armin Straub How far does a drunkard get?



Combinatorics

A miracle?

Example

In the case of n = 2 we count abelian squares made from two letters.

babaa abaab.

Armin Straub How far does a drunkard get?



Combinatorics
A miracle?

Example

In the case of n = 2 we count abelian squares made from two letters.

babaa abaab.

2k
It follows that fa(k) = (k: )

Armin Straub How far does a drunkard get?



Combinatorics
A miracle?

Example

In the case of n = 2 we count abelian squares made from two letters.

bab

IS
IS}

abaab.

2k
It follows that fa(k) = (k: )
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Combinatorics
A miracle?

Example
In the case of n = 2 we count abelian squares made from two letters.

babaa abaad.
2% Recall: o
It follows that fa(k) = (k: ) nl =T(n +1) = e dop

0
I(s+1)=sI(s)

o So: Wa(2k) = (2:) (1/2) = /&

Armin Straub How far does a drunkard get?



Combinatorics
A miracle?

Example
In the case of n = 2 we count abelian squares made from two letters.

babaa abaad.
2% Recall: o
It follows that fa(k) = (k: ) nl =T(n +1) = e dop
0 4
ok I(s+1)=sI(s)
e So: Wh(2k) = <l<:> I(1/2)=vm

1! 1 4

e Putting k = 1 we obtain Ly =
EF =5 1/2) ~ (1j2)12 T T2(3/2)

Armin Straub How far does a drunkard get?



Combinatorics
A miracle?

Example

In the case of n = 2 we count abelian squares made from two letters.

babaa abaad.
2% Recall: o
It follows that fa(k) = (k: ) nl=T(n+1) = / e do

0
I(s+1)=sI(s)

o So: Wa(2k) = (2:) (1/2) = /&

o Putting k£ = 1 we obtain 1 = 1t - 1 _ é
e RS 1/2) — (1/2)2  I2(3/2)
o Indeed: Wa(s) = (;2>

Armin Straub How far does a drunkard get?




Consequences
Other combinatorial consequences

@ Convolutions:

k 2
i ®) =3 (£) 1) it~ .
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Consequences
Other combinatorial consequences

@ Convolutions:
k k 2
i ®) =3 (£) 1) it~ .

@ Recursions by Sister Celine, e.g.:

(k4 2)? f3(k +2) — (10k? + 30k + 23) f3(k + 1)
+9(k +1)2f3(k) = 0.

Armin Straub How far does a drunkard get?



Consequences
Functional equations

@ For integers k > 0,

(k 4 2)°W3(2k 4 4) — (10k* 4 30k + 23)W3(2k + 2)
+9(k + 1)2W3(2k) = 0.

Armin Straub How far does a drunkard get?



COI'ISquIEnCES
Functional equations

@ For integers k > 0,

(k 4 2)°W3(2k 4 4) — (10k* 4 30k + 23)W3(2k + 2)
+9(k + 1)2W3(2k) = 0.

Theorem (Carlson)
If f(2) is analytic for Re (z) > 0, “nice”, and

then f(z) = 0 identically.

Armin Straub How far does a drunkard get?



COI'ISquIEnCES
Functional equations

@ For integers k > 0,

(k 4 2)°W3(2k 4 4) — (10k* 4 30k + 23)W3(2k + 2)
+9(k + 1)2W3(2k) = 0.

Theorem (Carlson)
If f(2) is analytic for Re (z) > 0, “nice”, and

then f(z) = 0 identically.

|7(2)] < Ae®l and
|f(iy)| < BeP¥l for B < 7

Armin Straub How far does a drunkard get?




COI'ISquIEnCES
Functional equations

@ For integers k > 0,

(k 4 2)°W3(2k 4 4) — (10k* 4 30k + 23)W3(2k + 2)
+9(k + 1)2W3(2k) = 0.

Theorem (Carlson)
If f(2) is analytic for Re (z) > 0, “nice”, and

then f(z) = 0 identically.

.
o W,(s) is nice! 1£(2)] < Ae®!. and
<

|f(iy)] < Be®W! for B < =

Armin Straub How far does a drunkard get?




Consequences

Functional Equations for W, (s)

@ So we get complex functional equations like

(54+4)°W3(s+4) —2(55> +305+46)W3(s+2) +9(s4+2)?W3(s) = 0.

Armin Straub How far does a drunkard get?



Consequences

Functional Equations for W, (s)

@ So we get complex functional equations like
(54+4)°W3(s+4) —2(55> +305+46)W3(s+2) +9(s4+2)?W3(s) = 0.

@ This gives analytic continuations of W,,(s) to the complex plane,
with poles at certain negative integers.

< L

1F

_2F

_3F

W4(S)

Armin Straub How far does a drunkard get?




Consequences

Wy(s) in the complex plane

Armin Straub How far does a drunkard get?



(s) in the complex plane

Consequences

Armin Straub

How far does a drunkard get?

Experimental and
computational
mathematics:
Selected writings




W3(1) = 1.57459723755189 ... =7

o Easy: Wa(2k) = <2:> In fact, Wa(s) = < y )

s/2




W3(1) = 1.57459723755189 ... =7

o Easy: Wa(2k) = <2:> In fact, Wa(s) = <;2>.

@ In the case n = 3,

=32 ;) ()

J




W3(1) = 1.57459723755189 ... =7

o Easy: Wa(2k) = <2:> In fact, Wa(s) = <882>.

@ In the case n = 3,
k 2 .
k 2
Ws(2k) = Z (.7) <jj>

=0

@ ldea: again, replace k by a complex variable

Armin Straub How far does a drunkard get?



Interlude: hypergeometric functions

@ The hypergeometric function:
ar,...,0p

F,
pra (bl,...,bq

o (a)p,=a(a+1)---(a+n—1) is the Pochhammer symbol

Armin Straub How far does a drunkard get?



ar,...,0p
pFQ<b b
1;,-+-50q

o (a)p,=a(a+1)---(a+n—1) is the Pochhammer symbol

o Why hypergeometric?

[o@)
. Cn+1
Geometric: E ¢, Where g
n=0 Cn
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ar,...,0p
pFQ<b b
1;,-+-50q

o (a)p,=a(a+1)---(a+n—1) is the Pochhammer symbol

o Why hypergeometric?

[o@)
. Cn+1
Geometric: E ¢, where ol g
n=0 Cn

. c

Hypergeometric: E ¢n where —+1 =r(n)
Cn

n=0
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Interlude: hypergeometric functions

@ The hypergeometric function:
ar,...,0p

F,
pra (bl,...,bq

o (a)p,=a(a+1)---(a+n—1) is the Pochhammer symbol

o Why hypergeometric?

[o@)
. Cn+1
Geometric: E ¢, Where g
Cn
n=0
o0

. Cn+1
Hypergeometric: ¢n, Where =r(n)
r(n) = (n+ai) --(n+ap) =
(n+b1)---(n+by) n+1

Armin Straub How far does a drunkard get?




W3(1) = 1.57459723755189 ... =7

o Easy: Wa(2k) = (if) In fact, Wa(s) = (;2)

@ In the case n = 3,

i =3: ;) ()

J




W3(1) = 1.57459723755189 ... =7

o Easy: Wa(2k) = (if) In fact, Wa(s) = (;2)

@ In the case n = 3,

v -5 (0 () - (4

J

-~

=:V3(2k)




W3(1) = 1.57459723755189 ... =7

o Easy: Wa(2k) = (if) In fact, Wa(s) = (;2)

@ In the case n = 3,

v -5 (0 () - (4

J

@ So by Carlson's Theorem W3(s) = V3(s), nol?!??
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W3(1) = 1.57459723755189 ... =7

@ Here's Re (W5(s) — Va(s)):




W3(1) = 1.57459723755189 ... =7

@ Here's Re (W5(s) — Va(s)):

e™ = 23.1407...

Armin Straub How far does a drunkard get?



W3(1) = 1.57459723755189 ... =7

@ Here's Re (W5(s) — Va(s)):

e™ = 23.1407...
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W3(1) = 1.57459723755189 ... =7

@ Here's Re (W5(s) — Va(s)):

e™ = 23.1407...

a0 60 80 100 120 140

e Numerically: P
Va(1) ~ 1.574597 — .126027i

Armin Straub How far does a drunkard get?



Theorem (Borwein-Nuyens-S-Wan)

Y

For integers k we have W3(k) = Re 3F> (

Armin Straub How far does a drunkard get?



Corollary (Borwein-Nuyens-S-Wan)

3 21/3 6

(-

27223
4 4

W3(1) = 6 4

o€
3

)

@ Similar formulas for W5(3), W5(5),. ..

Armin Straub How far does a drunkard get?



Densities

Densities

o
o
o
o
o
o
0
o pa2(x) ps3(x) o pa(x)
- 3 4
05 10 15 20 ' 05 10 15 20 25 30 " 1 2 3 4
035 030
o
030 0.25]
o
o
o
0.15) 015
p5(7) pe(7) pr(x)
' 1 2 3 4 5 ' 1 2 3 4 5 6 ' 1 2 3 4 5 6 7
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Densities

Densities

o
o
o
o
o
o
o pa2(x) o ps3(x) o pa(x)
o
05 10 15 20 05 10 15 20 25 30 " 1 2 3 4
035 030
o
030 0.25]
o
o
o
-

@ p4 and ps are C°
@ pg and py are C!

@ Dop+4, Pon+5 are c"

Armin Straub How far does a drunkard get?



Densities
Densities

o
o
o
o
o
o
0
o pa2(x) ps3(x) o pa(x)
- 3 4
05 10 15 20 ' 05 10 15 20 25 30 " 1 2 3 4
035 030
o
030 0.25]
o
o
o
0.15) 015
ps(x) pe(7) pr(x)
1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7

@ p4 and ps are C°
@ pg and py are C!
® Poni4, Pants are C" -
() :/0 xtJo(xt)Jy (t) dt
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Densities
Densities

E p2() . p3(x) - pa()
- oo0s
Zj: 0002
“/ ps(w) S
PPV,
—0.002 -
@ p4 and ps are C° n=4,r=2
—0.004 -
@ pg and py are C!

® pon+td, pan+s are C" -
pn(x) = / xtJo(xt)Jy (t) dt
0

Armin Straub How far does a drunkard get?



Densities
Hypergeometric formulae

o
o
0
o
o
o
o pa2(x) o p3(x) " pa(x)
o

Tr) = —F—= eas
o) = Y

Armin Straub How far does a drunkard get?



Densities
Hypergeometric formulae

2
T)= —F— eas
) = = Y
2v/3 12122 (9 - 42)°
p3(z) = i ° oFy | 373 il Gl 3) classical
™ (3+5L‘2) 1 (3+$2) with a spin
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Densities
Hypergeometric formulae

2
T)= —F—— eas
) = = Y
2v/3 12122 (9 - 42)°
p3(z) = i * oFy | 373 M classical
m (3 + CL‘Z) 1 (3 + mz) with a spin
2 V16 — 22 111116 — 22)3
pa(r) = 2 L Re 3 F> (25272 (108954) new, BSWZ
6°6

Armin Straub How far does a drunkard get?



Densities

A straight line?

0,105, ps(z) = /0 - wtJo(xt)J5 (t) dt

Armin Straub How far does a drunkard get?



Densities

A straight line?

“the graphical construction, however carefully
reinvestigated, did not permit of our consider-
ing the curve to be anything but a straight
E line. .. Even if it is not absolutely true, it exem-
030F plifies the extraordinary power of such integrals
. of J products to give extremely close approxima-

- tions to such simple forms as horizontal lines.”
o — Karl Pearson, 1906

015} .

010k = /0 wtJo(xt)J5 (t) dt
005}
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Densities

A straight line?

“the graphical construction, however carefully
reinvestigated, did not permit of our consider-
ing the curve to be anything but a straight
E line. .. Even if it is not absolutely true, it exem-
030F plifies the extraordinary power of such integrals
. of J products to give extremely close approxima-

- tions to such simple forms as horizontal lines.”
o — Karl Pearson, 1906

015} .

010k = /0 wtJo(xt)J5 (t) dt
005}

ps(x) = 0.329932+0.00661672°4+0.000262332°+0.0000141192"+O (")
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Densities

Relation between densities and moments

o _ [T s Mellin transform F'(s) of f(x):
Wuts) = [ apuo)ds iy SR
e Or: Wy,(s—1) =M |py;s] I
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Densities

Relation between densities and moments

o Wy(s) = /OO 25p,(z) dz Mellin transfon;n F(s) of f(x):
0

e Or: Wy,(s—1) =M |py;s] M(f;s] = /0 * L f(z)dw
e Functional equations for W,,(s) e M [z¥f(x);s] = F(s+ u)
translate into DEs for p,(z). e M[D,f(x);s] =—(s—1)F(s—1)
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Densities

Relation between densities and moments

o Wi(s) = /oo z°py () do Mellin transfo;gn F(s) of f(z):
0

e Or: Wy,(s—1) =M [pn; 9] Mf;s] = 0 27 f(z) do
e Functional equations for W, (s) e M [z¥f(x);s] = F(s + )
translate into DEs for p,(z). e M[D,f(x);s] =—(s—1)F(s—1)

Example
(5+4)3Wy(s+4)—4(5+3) (552 +305+48) Wy (s5+2)+64(s+2)>Wy(s) = 0
translates into Ay - py(x) = 0 where Ay is

(x — 4)(x — 2)23(z + 2)(z + 4) D3 + 624 (:E2 )
z (72" — 322% 4 64) D, + (27 — 8) (2? +8)
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Densities

Relation between densities and moments

o Wi(s) = /oo z°py () do Mellin transfoggn F(s) of f(z):
0

e Or: Wy,(s—1) =M |py;s] Mf;s] :/0 2" f(x) da
e Functional equations for W, (s) e M [z¥f(x);s] = F(s + )
translate into DEs for p,(z). e M[D,f(x);s] =—(s—1)F(s—1)

Example

Pole structure of W, (s) determines p,(x) at x = 0: Va(s) =0
3 1 9log2 1
=— O(1 o
Wals) 2772(5+2)2+ 272 s+2+ (1) ass
+
implies 3)
9log 2
pa(x) = —%xlog(m) + %J; +0(x%) asz—0
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Densities

Densities in general

Theorem

@ The density p,, satisfies a DE of order n — 1.

o Letn < 1000. Ifn is even (odd) then p, is real analytic except at 0
and the even (odd) integers m < n.

Armin Straub How far does a drunkard get?



Densities
Densities in general

Theorem

@ The density p,, satisfies a DE of order n — 1.

o Letn < 1000. Ifn is even (odd) then p, is real analytic except at 0
and the even (odd) integers m < n.

Conjecture (confirmed, e.g., for n < 1000)

Z H(n—?mi)Qz Z Hal n+1—a).

o<my ..., mj<n/2 =1 1<a1 ..... <n =1
mg<mgq a; 0‘1+1 —2
”
Example
n/2—1 n
n+2
E (n —2m)* = E an+1—a)= ( 5 )

m=0 a=1

v
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Densities

Densities in generg
n/2—1 m1—1

Theorem Z Z (n— 2m1)2(n - 2m2)2

m1=0 ma=0

@ The density p,, sati

n oa;—2
o Letn < 1000. Ifn L
&S , _ 1_ 1_
and the even (odd, Zl Zl ai(n + o )az(n + )
a1=1 as= U

Conjecture (confirmed, e.g., for n < 1000)

o<my ..., mj<n/2 =1 €@ gos0y a; <n =1
my<myq @S] =2
Example
n/2—1 n
/ 9 n+2
E (n —2m) :E an+1—a)= 3
m=0 a=1

Armin Straub How far does a drunkard get?



Densities
Outlook: Mahler measure

e Mahler measure of p(z1,...,xy):

1 1
wu(p) = / . / log !p (62”’51, . ,62””") ! dt1dts ... dt,
0 0

Armin Straub How far does a drunkard get?



Densities
Outlook: Mahler measure

e Mahler measure of p(z1,...,xy):

1 1
wu(p) = / . / log !p (62”’51, . ,62””") ! dt1dts ... dt,
0 0

o W(0)=p(z1+...+xp)=p(l+z1+ ... +20_1)
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Densities
Outlook: Mahler measure

e Mahler measure of p(z1,...,xy):

1 1
wu(p) = / . / log !p (62”’51, . ,62””") ! dt1dts ... dt,
0 0

o W(0)=p(z1+...+xp)=p(l+z1+ ... +20_1)
@ Rediscovered the classical results:

w(l+ 21 + x0) = %LSQ (g)

7¢(3)

p(l+z1+ 22 +73) = ——
2w
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Densities

Outlook: Log-sine integrals

@ Generalized log-sine integral:

Ls) (o) := —/ % logn—1=F
0

0
2 sin—| df
sm2‘
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Densities

Outlook: Log-sine integrals

@ Generalized log-sine integral:

Ls) (o) := —/ % logn—1=F
0

@ Automatic evaluation polylogarithmic terms: e.g.

0
2 sin—| df
sm2‘

. 1 3
~Lsg!) () = 24 Lig11(=1) — 18Li5a(~1) + 3((3)* = 1557
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Densities

Outlook: Log-sine integrals

@ Generalized log-sine integral:

Ls) (o) := —/ % logn—1=F
0

@ Automatic evaluation polylogarithmic terms: e.g.

0
2 sin—| df
sm2’

3
—Ls{" () = 24 Lis 1 11(—1) — 18 Lis 1 (—1) + 3¢(3)? 6

~ 55"
@ Appear in the evaluation of Feynman diagrams:
o h
ai
P 4>< as
az
N Py
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Densities
Pizza!

THANK YOU!

@ Moments of random walks:
http://www.carma.newcastle.edu.au/~jb616/walks.pdf,
http://www.carma.newcastle.edu.au/~jb616/walks2.pdf

@ Densities of random walks:
arXiv:1103.2995

@ Mahler measures and log-sine integrals:
arXiv:1103.3893, arXiv:1103.3035, arXiv:1103.4298

Armin Straub How far does a drunkard get?


http://www.carma.newcastle.edu.au/~jb616/walks.pdf
http://www.carma.newcastle.edu.au/~jb616/walks2.pdf
http://arxiv.org/abs/1103.2995
http://arxiv.org/abs/1103.3893
http://arxiv.org/abs/1103.3035
http://arxiv.org/abs/1103.4298

A generating function

@ Recall:
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A generating function

@ Recall:

@ Therefore:
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Ramanujan’s Master Theorem

Theorem (Ramanujan’s Master Theorem)

For “nice” analytic functions ¢,

(9] X 1\k
/0 xv 1 <Z ( kll) cp(k)wk> dz =T'(v)p(—v).

k=0
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Ramanujan’s Master Theorem

Theorem (Ramanujan’s Master Theorem)

For “nice” analytic functions ¢,

(9] X 1\k
/0 xv 1 <Z ( kll) cp(k)wk> dz =T'(v)p(—v).

k=0

@ Begs to be applied to

(%S) o k
k=0
by setting p(k) = Wnk('%)
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Ramanujan’s Master Theorem

e We find:

—5) = 1*SM ooxsfl (Y do
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Ramanujan’s Master Theorem

e We find:

—5) = 1*SM ooxsfl (Y do

@ A 1-dimensional representation!
Useful for symbolical computations
as well as for high-precision integration
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Ramanujan’s Master Theorem

e We find:

T =s/2) [~ .
W _ :21 sS”\N" "Ir=’ S IJTL d
A(~9) o e ) da
@ A 1-dimensional representation!

Useful for symbolical computations

as well as for high-precision integration

@ First and more inspiredly found by David Broadhurst
building on work of J.C. Kluyver

[ David Broadhurst. “Bessel moments, random walks and
Calabi-Yau equations.” Preprint, Nov 2009.

[ J.C. Kluyver. "A local probability problem.” Nederl. Acad.
Wetensch. Proc., 8, 341-350, 1906.
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A convolution formula

Conjecture

For even n,
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A convolution formula

Conjecture
For even n,

Wi(s) = i (S/?)zwn_l(s —2j).

=0 N

@ Inspired by the combinatorial convolution for f, (k) = W,,(2k):

k

2
frim) =3 (;“‘) Ful) Fnll — 5)

J=0
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A convolution formula

Conjecture
For even n,

Wi(s) = i (S/?)zwn_l(s —2j).

=0 N

Inspired by the combinatorial convolution for f, (k) = W,,(2k):

k 2
frim) =3 (f) 1) il — )
§=0
@ True for even s
@ True for n =2
@ True for n = 4 and integer s
@ In general, proven up to some technical growth conditions
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