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Our first ¢g-analogs

e The natural number n has the g-analog:

1
M, =L =1+qg+...¢""

In the limit ¢ — 1 a g-analog reduces to the classical object.
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Our first ¢g-analogs

e The natural number n has the g-analog:

1
M, =L =1+qg+...¢""
In the limit ¢ — 1 a g-analog reduces to the classical object.

o The g-factorial:
[y} = [nly[n = 1], [,

o The g-binomial coefficient:

(0),=wnmy= ("), D1
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A ¢-binomial coefficient

Example

(6) A+ g+ P+ +P) A+ g+ P+ P+ 4t
q

2 1+g¢
=(1-¢+PA)A+a+d")(1+a++4" +q*)
B3, ~Bl,

o Let us understand the first term a bit better!
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Cyclotomic polynomials

The nth cyclotomic polynomial:

®u(g) = ] (a-¢M) where ¢ = >7'/"
1<k<n
(kyn)=1

o This is an irreducible polynomial with integer coefficients.
irreducibility due to Gauss — nontrivial
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Cyclotomic polynomials

The nth cyclotomic polynomial:

(@)= ] (a-¢M where ¢ = ¢*™/"
1<k<n
(kyn)=1

o This is an irreducible polynomial with integer coefficients.
irreducibility due to Gauss — nontrivial

n
—1
° [n]q = qq 1 = 1E (I)d(q) For primes: [p]q =®,(q)
<n
din
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Cyclotomic polynomials

The nth cyclotomic polynomial:

(@)= ] (a-¢M where ¢ = ¢*™/"
1<k<n
(kyn)=1

o This is an irreducible polynomial with integer coefficients.
irreducibility due to Gauss — nontrivial

n
—1
° [n]q = qq 1 = 1Q1:I< (I)d(q) For primes: [p]q =®,(q)
<n
din

o An irreducible monic integral polynomial is cyclotomic if and only if
its Mahler measure Hmax(|a|, 1) is 1.
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Some cyclotomic polynomials exhibited

Example o q’mn(‘]) = @n(qm) if m[n
o Po,(q) = ¥, (—q) for odd n > 1
Dy(q) =q+1 e )_
5 o ®,(q) is palindromic
P3(q) =¢ +q+1
®6(q) =¢* —q+1
D(q) =" +¢*+1
(g) =¢”—¢"+¢ -+ - ¢+ —q+1

B1o0(q) = g2+ — ¢ — B+ 1 ¢P — B2 1 g gV
PR LGRS L PR E ST - (S S SR S DO |
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Some cyclotomic polynomials exhibited

Example
Da(q) =q+1
P3(q)=q*+q+1

@105((]) — q48 + q47 + q46
_|_q34+q33 +q32 +q31
+q15 +q14 +q13 _,’_q12

g-binomial coefficient congruences

> Boun(g) = Pulg™) if min
o ®o,(q) = Pp(—¢q) for odd n > 1

o ®,(q) is palindromic

—*+-¢"+¢—q+1

_ gt gt gt _ A0 _ 39 4 36 L 35
B 222 20 AT 16
"= -2¢" - -+ +q+1
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Back to ¢-binomials

_a-1_
b [n]q_ q—l _1Q1d1< Qd(Q)
<n
dn

(1) <l bk
6, W, k-1, T,

o How often does ®,4(q) appear in this?

It nl_n=k) |k ti
o It appears | - 7 7 | times
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Back to ¢-binomials

_a-1_
b [n]q_ q—l _1£ Qd(Q)
<n
dn

o(n> :[n]q[n—l]q-'-[n—k:-i-l]q
k/, [klq [k =14+ [1],
o How often does ®,4(q) appear in this?

It nl_n=k) |k ti
o It appears | - 7 7 | times

o Obviously nonnegative: the g-binomials are indeed polynomials
o Also at most one: square-free

° (Z) always contains ®,,(¢) if 0 < k < n.
q

o Good way to compute g-binomials

and even get them factorized for free

g-binomial coefficien c Armin Straub




The coefficients of ¢g-binomial coefficients

o Here's some ¢-binomials in expanded form:
Example
6
(2) =¢®+q¢ +2¢°+2¢° +3¢" +2¢° +2¢° + ¢ + 1
q

9
(3) :q18+q17+2q16+3q15+4q14+5q13+7q12+7q11+8q10
q

+8¢” +8¢° + 7¢" + 7¢° + 5¢° + 4¢* +3¢> +2¢* + ¢ + 1

What is the degree of the
g-binomial?

o All coefficients are positive!

g-binomial coefficient congruences Armin Straub




The coefficients of ¢g-binomial coefficients

o Here's some ¢-binomials in expanded form:
Example
6
(2) =¢®+q¢ +2¢°+2¢° +3¢" +2¢° +2¢° + ¢ + 1
q

9
(3) :q18+q17+2q16+3q15+4q14+5q13+7q12+7q11+8q10
q

+8¢” +8¢° + 7¢" + 7¢° + 5¢° + 4¢* +3¢> +2¢* + ¢ + 1

What is the degree of the
g-binomial? Itis (n — k)k.

o All coefficients are positive!
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The coefficients of ¢g-binomial coefficients

o Here's some ¢-binomials in expanded form:

Example

6
(2) =+ +2+2 +3¢* +2 + 242 + g+ 1
q

9
(3) :q18+q17+2q16+3q15+4q14+5q13+7q12+7q11+8q10
q

+8¢” +8¢° + 7¢" + 7¢° + 5¢° + 4¢* +3¢> +2¢* + ¢ + 1

o All coefficients are positive!

o In fact, the coefficients are unimodal.

g-binomial coefficient congruences

What is the degree of the
g-binomial? It is (n — k)k.

Sylvester, 1878
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g-binomials: Pascal’s triangle

Define the g-binomials via the g-Pascal rule:

(). =G0, ("2, D2
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g-binomials: Pascal’s triangle

Define the g-binomials via the g-Pascal rule:

(). =G0, ("2, D2

1 1+¢q 1
1 14+q(1+q (1+q+¢ 1
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g-binomials: Pascal’s triangle

Define the g-binomials via the g-Pascal rule:
(), G0), (%)
k), k—-1/, k- /,
1 1+¢q 1

1 14+q(1+q (1+q+¢ 1

Example

4
(2) =1+q++F1+q+®) =1+q+2¢+¢* +¢*
q

D2
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g-binomials: combinatorial

7" where w(S) = Zsj —3
J

(:),-

)

D3

‘ w(S) = “normalized sum of S” ‘
Example
4
0200 00 ey pg ey (5) —lrer e
—0 —1 —2 —2 —3 —4 q
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g-binomials: combinatorial

(:),-

¢ where w(9) = Zs- —3
Ss-i D3

)
‘ w(S) = “normalized sum of S” ‘
Example
4
0200 00 ey pg ey (5) —lrer e
—0 —1 —2 —2 —3 —4 q

The coefficient of ¢ in (k) counts the number of
q
o k-element subsets of n whose normalized sum is m
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g-binomials: combinatorial

(:),-

¢ where w(9) = Zs- —3
Ss-i D3

)
‘ w(S) = “normalized sum of S” ‘
Example
4
0200 00 ey pg ey (5) —lrer e
—0 —1 —2 —2 —3 —4 q

The coefficient of ¢ in (k) counts the number of
q
o k-element subsets of n whose normalized sum is m

o words made from k ones and n — k twos which have m inversions
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g-binomials: combinatorial

¢ where w(9) = Zs- —3
Ss-i D3

b).- %,

‘ w(S) = “normalized sum of S” ‘
Example
4
0200 00 ey pg ey (5) —lrer e
—0 —1 —2 —2 —3 —4 q

The coefficient of ¢ in (k) counts the number of
q
o k-element subsets of n whose normalized sum is m

o words made from k ones and n — k twos which have m inversions

o partitions A of m whose Ferrer's diagram fits in a k& x (n — k) box

g-binomial coefficient congruences
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¢-Chu-Vandermonde

Different representations make different properties apparent!

S [m+n . m n
o Chu-Vandermonde: ( i >_Z<j><k—j>

J
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¢-Chu-Vandermonde

Different representations make different properties apparent!

S [m+n . m n
o Chu-Vandermonde: ( i >_Zj:<j><k—j>

o Purely from the combinatorial representation:

m+mny\ S—k(k+1)/2
< k >q_ 2, -

se("y")
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¢-Chu-Vandermonde

Different representations make different properties apparent!

S [m+n . m n
o Chu-Vandermonde: ( i >_Zj:<j><k—j>

o Purely from the combinatorial representation:

m+mny\ S—k(k+1)/2
< k >q_ 2, -

se("y")

=T Y (ESHE Sk mok()/2
J
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¢-Chu-Vandermonde

Different representations make different properties apparent!

S [m+n . m n
o Chu-Vandermonde: ( i >_Zj:<j><k—j>

o Purely from the combinatorial representation:

m+n> g% S—k(kt1)/2
("), 2

se(™m)

=T Y (ESHE Sk mok()/2

7 sie(r) se(,)

-y <m> ( n ) £ 3)
AV
j J q q
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utomatic proving of ¢-ident

In1= << " ~/docs/mat h/mat hemat i ca/packages/qZeil . nt';

- Zei | berger Package by Axel Riese —© RISC Linz —V 2.42 (02/18/05)

2= gZeil [gBinomial [m j, gl gBinonmial [n, k-j, g1 g ((m-j) (k-j)), {j, 0, me«n}, k, 1]

(1-gkemn) SUM[-1 + k]

outiz)= SUM[K] ==
1-gX

P. Paule and A. Riese

A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to
g-Hypergeometric Telescoping

Fields Inst. Commun., Vol. 14, 1997
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Automatic proving of g-identities

In1= << " ~/docs/mat h/mat hemat i ca/packages/qZeil . nt';

- Zei | berger Package by Axel Riese —© RISC Linz —V 2.42 (02/18/05)

2= gZeil [gBinomial [m j, gl gBinonmial [n, k-j, g1 g ((m-j) (k-j)), {j, 0, me«n}, k, 1]

(1-gkemn) SUM[-1 + k]
outiz)= SUM[K] ==

1-gk

o Encoded implementation in Mathematica at risk of bit rot?

last version of qZeil by Alex Riese from 2005 — many examples don't work in MMA7 anymore. . .

o Sage as a solution?

P. Paule and A. Riese

A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to
g-Hypergeometric Telescoping

Fields Inst. Commun., Vol. 14, 1997

Armin S




g-binomials: algebraic

Let ¢ be a prime power.

n
= number of k-dim. subspaces of F7
(&), Y

g-binomial coefficien g Armin Straub




g-binomials: algebraic

Let ¢ be a prime power.

(Z) = number of k-dim. subspaces of IFZ
q

D4

o Number of ways to choose k linearly independent vectors in Fy:

(@ =" =) (" ="
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g-binomials: algebraic

Let ¢ be a prime power.

n
= number of k-dim. subspaces of F7
(&), i D4

o Number of ways to choose k linearly independent vectors in Fy:

(@ =" =) (" ="

o Hence the number of k-dim. subspaces of Fy is:

(¢" = 1)(q"—q)(¢" —d"") _ (”)

(" —1)(¢* —q)--- (" —g*1)
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g-binomials: noncommuting variables

Suppose yx = qxy where ¢ commutes with x,y. Then:

(@ )" = z () v D5
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g-binomials: noncommuting variables

Suppose yx = qxy where ¢ commutes with x,y. Then:

n
(x+y)" = Z (n) xdy" I
i=0 /g

Example
4
( 2) a:2y2 = xzxyy + ryry + ryyxr + yrry + yryxr + yyre
q

=(1+g+¢+¢+¢+qh)a?y?

D5
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g-binomials: noncommuting variables

Suppose yx = qxy where ¢ commutes with x,y. Then:

n
(x+y)" = Z (n) xdy" I
i=0 /g

Example

4
( 2) a:2y2 = xzxyy + ryry + ryyxr + yrry + yryxr + yyre
q

=(1+q+¢+¢+¢ +q")r%y?

o Let X - f(z) =xf(z) and Q- f(z) = f(qx). Then:
QX - f(z) = quf(gz) = ¢XQ - f(x)

D5
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g-calculus

It all starts with the g-derivative:

flqz) — f(=)

qr — T

Dyf(z) =
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g-calculus

It all starts with the g-derivative:

fgz) — f(x)
D =77 s/
of (%) qC —=
Example
(qx)s _ 78 qs -1 1 o
ID)ar” = e T =¢, 2
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g-calculus

It all starts with the g-derivative:

flqz) — f(=)

D,f(x) =
of @) = T =
Example
z)® — xf S—1
DqSL‘S — (q ) — q s—1 _ [S] xs—l
qr — q—1 g
T __ X
° quq =,
el T el o Tty
o Define e* = Z ° €€ 7 €
q [n] | unless yz = qzy
n=0 ! a8 —x
° € -el/q =1

g-binomial coefficient congruences Armin Straub




g-calculus

It all starts with the g-derivative:

flgz) — f(x)
Dyf(z) = ———
qr — T
Example
DqSL‘S — (qx)s -z _ qs —1 s—1 _ [8] xs—l
qr — q—1 g
N ° quz = eg
n
o Define e* = Z r ° e ey F egﬂ/
q oy [’n]q' unless yxr = qzy
o Homework: Define cosy(x), sing(z), ... ° € 6171; =1

and develop some g-trigonometry.
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g-calculus: the g-integral

o Formally inverting D F(z) = f(z) gives:

F(z) = /0 Cf() gz = (1 - ) S " f(q")

n=0

g-binomial coefficient congruences Armin Straub




g-calculus: the g-integral

o Formally inverting D F(x) = f(x) gives:
F@) = [ fadgei= 1= Y ¢ (")
0 n=0

Theorem (Fundamental theorem of g-calculus)

Let0 < g< 1. Then
D,F(x) = f(2).

F(z) is the unique such function continuous at 0 with F'(0) = 0.

Fineprint: one needs for instance that | f (x)x ™| is bounded on some (0, a].

g-binomial coefficient congruences
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g-calculus: special functions

o Define the g-gamma function as

T _ * s—1 —qxd ° Fq =
q(s) = o Cyg da® o Tg(n+1) = [n],!
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g-calculus: special functions

o Define the g-gamma function as

Fq(s):/o xs_lel_/qqxdqx

¢(n+1) = [n]!
g-beta function: D6
9= [ o101 = gzt dgo Dy () (s)
Bq(t, )—/0 (1 q )q dq ) Bq(t, 5) = m
o By(t,s) = By(s,t)

o Here, (z — a)y is defined by:

Fla) = Zwmww
n=0 q’

Explicitly: (z — G)ZL =(z—a)(xz —qa) - (z — qnfl

a)
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Summary: the ¢-binomial coefficient

o The g-binomial coefficient:

(),

e Via a g-version of Pascal’s rule

o Combinatorially, as the generating function of the element sums of
k-subsets of an n-set

o Algebraically, as the number of k-dimensional subspaces of Fy
o Via a binomial theorem for noncommuting variables
o Analytically, via g-integral representations

o We have not touched: quantum groups arising in representation
theory and physics
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Classical binomial congruences

John Wilson (1773, Lagrange): (p—1)!'=-1 modp @
2p—1 > N
Charles Babbage (1819): <;_ L) = 1 modp? @
2p—1 3 /
Joseph Wolstenholme (1862): L) = 1 modp
p= -]
-1 e
James W.L. Glaisher (1900): (mp L) =1 mody? %
b 13
Wilhelm Ljunggren (1952): <ap) = (a) mod p?
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Wilson’s congruence

Wilson’s congruence (Lagrange, 1773)
(p—1DI'=-1 modp

e known to Ibn al-Haytham, ca. 1000 AD
o This congruence holds if and only if p is a prime.

o Not great as a practical primality test though. ..

‘ ‘ The problem of distinguishing prime numbers from com-
posite numbers . ..is known to be one of the most im-
portant and useful in arithmetic. ... The dignity of the
science itself seems to require that every possible means
be explored for the solution of a problem so elegant and
so celebrated. , ,

C. F. Gauss, Disquisitiones Arithmeticae, 1801

g-binomial co es Armin Straub




Babbage’s congruence

(n —1)! + 1 is divisible by n if and only if n is a prime number

In attempting to discover some analogous expression which
should be divisible by n?, whenever n is a prime, but not divisible
if n is a composite number ... Charles Babbage is led to:

Theorem (Babbage, 1819)

2p —1
(p )El mod p?
p—1

For primes p > 3:
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Babbage’s congruence

(n —1)! + 1 is divisible by n if and only if n is a prime number

In attempting to discover some analogous expression which
should be divisible by n?, whenever n is a prime, but not divisible
if n is a composite number ... Charles Babbage is led to:

Theorem (Babbage, 1819)

For primes p > 3:
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Babbage’s congruence

(n —1)! + 1 is divisible by n if and only if n is a prime number

In attempting to discover some analogous expression which
should be divisible by n?, whenever n is a prime, but not divisible
if n is a composite number ... Charles Babbage is led to:

Theorem (Babbage, 1819)

For primes p > 3:

2p —1
P )El mod p?
p—1

2n—1\  (n+1)(n+2)---(2n—1)
*\n-1)" 1-2--(n—1)
o Does not quite characterize primes! n = 168432
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A simple combinatorial proof

o We have

(=320

o Note that p divides <Z> unless k =0 or k = p.
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A simple combinatorial proof

o We have

o Note that p divides <Z> unless k =0 or k = p.
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A simple combinatorial proof

o We have

o Note that p divides <Z> unless k =0 or k = p.

2p—1 1/2
o (P — 2 (“P) which is only trouble when p = 2
p—1 2\p
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A ¢-analog of Babbage’s congruence

o Using ¢-Chu-Vandermonde

(), 720,60

=¢ +1 mod [p]?

o Again, [p], divides (i) unless k =0 or k = p.
q
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A ¢-analog of Babbage’s congruence

o Using ¢-Chu-Vandermonde

(), 720,60

=¢ +1 mod [p]?

o Again, [p], divides (Z) unless k =0 or k = p.
q

Theorem

(2;’) = 2,0 mod o]
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Extending the ¢-analog

o Actually, the same argument shows:

Theorem (W. Edwin Clark, 1995)

(), = 5, mo
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Extending the ¢-analog

o Actually, the same argument shows:

Theorem (W. Edwin Clark, 1995)
(), =G, ot
b/, b/ 4

o Sketch of the corresponding classical congruence:

()= 2 (0) ()

k1+...+ka=bp

= <Z> mod p?

o We get a contribution whenever b of the a many k's are p.
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Extending the ¢-analog

o Actually, the same argument shows: No restriction on p —

the argument is com-
Theorem (W. Edwin Clark, 1995) binatorial.

(), = 5, mo

o Sketch of the corresponding classical congruence:

()= 2 (0) ()

ki+4...+kqa=bp

= <Z> mod p?

o We get a contribution whenever b of the a many k's are p.
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Extending the ¢-analog

o Actually, the same argument shows: No restriction on p —

the argument is com-
Theorem (W. Edwin Clark, 1995) binatorial.

(), = 5, mo

Similar results by Andrews; e.g.:

(), o

George Andrews D
q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher
Discrete Mathematics 204, 1999

@ Vve get a contribution whenever b or the a many K's are p.
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Wolstenholme and Ljunggren

o Amazingly, the congruences hold modulo p?!

Theorem (Wolstenholme, 1862)

p—1

2p — 1
For primes p > 5: < v ) =1 modp®

‘ ‘ ... for several cases, in testing numerically a result of certain
investigations, and after some trouble succeeded in proving it to , ,
hold universally . ..

g-binomial coefficien ce Armin Straub




Wolstenholme and Ljunggren .

o Amazingly, the congruences hold modulo p?!

Theorem (Wolstenholme, 1862)

2p — 1
For primes p > 5: ( v 1 ) =1 modp®
p pe—

... for several cases, in testing numerically a result of certain
investigations, and after some trouble succeeded in proving it to
hold universally . ..

Theorem (Ljunggren, 1952)

For primes p > 5: (ap)
bp

= (Z) mod p?

o Note the restriction on p — proofs are algebraic.

g-binomial coefficient congruences
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Proof of Wolstenholme’s congruence

<2p—1> _@2p-1)2p—-2)---(p+1)
p—1/) 1-2---(p—1)

cr (-1
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Proof of Wolstenholme’s congruence

<2p—1> _@2p-1)2p—-2)---(p+1)
p—1/) 1-2---(p—1)

cr (-

El—2ng+4p2 Z % mod p®

0<i<p 0<i<g<p
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Proof of Wolstenholme’s congruence

<2p—1> _@2p-1)2p—-2)---(p+1)
p—1/) 1-2---(p—1)

cr (-

El—2ng+4p2 Z % mod p®

0<i<p 0<i<g<p
2
1 ) 1 ) 1
:1_2172—.‘1'210 Z—. —2p Z_Z
0<i<p L 0<i<p t 0<i<p L
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Proof of Wolstenholme’s congruence

o1y @-DE-2--p+) | _[[rEE-R
<p—1>‘ 12 (p-1) o PR

p—1
le(l——) :H(l‘i‘%)
k=1
El—2ng+4p2 Z % mod p®

0<i<p 0<i<j<p
2
1 9 1 5 1
:1_2172—.‘1'210 Z—. —2p Z_Z
0<i<p L 0<i<p t 0<i<p L
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Proof of Wolstenholme’s congruence ||

o Wolstenholme's congruence therefore follows from the fractional

congruences
p—1 1
E - =0 modp?, (1)
=1 ¢
p—1 1
E - =0 modp
i
=1

g-binomial coefficient cong Armin Straub




Proof of Wolstenholme’s congruence ||

o Wolstenholme's congruence therefore follows from the fractional

congruences
p—1 1
E —~ =0 modp? (1)
=1 ¢
p—1 1
E - =0 modp
i
=1

o If n is not a multiple of p — 1 then, using a primitive root g,

Z "= Z(gi)”zg" Z =0 modp

0<i<p 0<i<p 0<i<p
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Proof of Wolstenholme’s congruence ||

o Wolstenholme's congruence therefore follows from the fractional

congruences
p—1 1
E —~ =0 modp? (1)
=1 ¢
p—1 1
E - =0 modp
i
=1

o If n is not a multiple of p — 1 then, using a primitive root g,

Z "= Z(gé)”zg" Z =0 modp

0<i<p 0<i<p 0<i<p

o Comparing the p? residues on the previous slide now shows (1).
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Congruences for g-harmonic numbers

Theorem (Shi-Pan, 2007)

p—1 _ _
> =ty 5
i=1 14

51 (p-1)(p-5)
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Congruences for g-harmonic numbers

Theorem (Shi-Pan, 2007)

-1

p 1 p-1 P —1
;@:_T(q_l)_’_ 24 (q_l)Q[P]q mod[p]g
p—1 B B
;ﬁz_w(q_l)z mod [p],

Example (p = 5)

— [l (@+1)2 (> +1)* (2 +q+1)°

Zi (*+P+P+q+1) (¢°+3¢° +7¢* +9¢° + 11¢* + 6q + 4)
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Congruences for g-harmonic numbers

Theorem (Shi-Pan, 2007)

p—1 _ 2

> =D+ a1, modl
i=1 "9

p—1

I A mod 7]

Example (p = 5)

— [l (@+1)2 (> +1)* (2 +q+1)°

Zi (*+P+P+q+1) (¢°+3¢° +7¢* +9¢° + 11¢* + 6q + 4)

p—1 4
. . q
o Equivalent congruences can be given for —_—

n
This choice actually appears a bit more natural [Z]

=1 q
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An exemplatory proof

o We wish to prove

o= T2 gp? mod p),

Ling-Ling Shi and Hao Pan
A g-Analogue of Wolstenholme’s Harmonic Series Congruence
The American Mathematical Monthly, 144(6), 2007
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An exemplatory proof

o We wish to prove

p—1 ql p2 -1
2 =8 "1 -_¢? d
o Write: p—1l p—1 i
q 2 q
e =0-q)
22 2 gy
N——
=:G(q)

Ling-Ling Shi and Hao Pan
A g-Analogue of Wolstenholme’s Harmonic Series Congruence
The American Mathematical Monthly, 144(6), 2007
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An exemplatory proof

o We wish to prove

p—1 ql p2 1
Y om= (1-q)° mod [p],

— [i]2 12
o Write: p—1 p—1 i
q 2 q
p—1 = lilg ) zz—; (1-¢)?
pl, = [J(@—¢™ =G(a)
m=1
)

—1
o Hence we need to prove: G(¢™) = b 13 form=1,2,...,p—1

Ling-Ling Shi and Hao Pan

A g-Analogue of Wolstenholme’s Harmonic Series Congruence
The American Mathematical Monthly, 144(6), 2007

Armin Straub
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An exemplatory proof

o We wish to prove

p—1 ql p2 1
= =_ (1-— q) mod [p]
ZZ_; [i]2 12 a
o Write: p—1 p—1 i
q 2 q
p—1 = g ) zz—; (1—q)?
pl, =TI (a—¢™ —Ci(q)
m=1
p*—1
o Hence we need to prove: G((™) = — 13 form=1,2,...,p—1
p—1 i p—1 i
my ¢ ¢
G(C ) - ; (1 _ ij>2 - ; (1 _ Cj)Q - G(C)

Ling-Ling Shi and Hao Pan
A g-Analogue of Wolstenholme’s Harmonic Series Congruence
Mathematical Monthly, 144(6), 2007

The Ameri
Armin Straub
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An exemplatory proof Il

p—1 i
. q
o Define G(q,z2) = Z s
— (1-q¢'2)

o We need G((,1) = 5
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An exemplatory proof Il

p—1 i
. q
o Define G(q,z2) = Z s
— (12— q'z)
-1
o We need G((,1) = P 5

Zczc’“km
=1
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An exemplatory proof Il

p—1 i
. q
o Define G(q,Z) = ; m
2
-1
o We need G((,1) = P 5
p—1 [e%s)
G(C2)=> ¢ > ¢Flk+1)2
i=1 k=0
o) p—1
— Z kiZk_l Z Ckz
k=1 i=1
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An exemplatory proof Il

p—1 i
. q
] Deflne G(q,Z) = Z m
i=1
2 p—1 .
pe—1 ki p—1 ifplk
We need G((,1) = — ¢ =
° (G1) 12 ;C {—1 otherwise
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An exemplatory proof Il

p—1 i
. q
] Deflne G(q,Z) = Z m
i=1
2 p—1 .
pe—1 ki p—1 ifplk
We need G((,1) = — ¢ =
° (G1) 12 ;C {—1 otherwise

g-binomial coefficient congruences Armin Straub



An exemplatory proof Il

p—1 i

. q
o Define G(q,z2) = Z s
—~ (1—-q'2)

o We need G(g,l):_p ZCkZ: pl 1 if plk
i=1 -

12 otherwise

p22p—1 1 asz— 1 p2 -1
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An exemplatory proof Il

p—1 i
. q
] Deflne G(q,Z) = Z m
i=1
2 p—1 .
pe—1 ki p—1 ifplk
We need G((,1) = — ¢ =
° (G1) 12 ;C {—1 otherwise
p—1 [e%s)

G(Gz)=) ¢y (ot

i—1  kr—o This is beautifully generalized in:

o Karl Dilcher
_ k; k—1 Determinant expressions for g-harmonic
- z congruences and degenerate Bernoulli numbers
k=1 Electronic Journal of Combinatorics 15, 2008
oo o
k—1 k—1
=D E pkz kz
k=1 k=1
2 p—1 2
p 2P 1 as z — 1 P — 1
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A ¢-analog of Ljunggren’s congruence

Theorem (S, 2010)

For primes p > 5:

(bﬁ) - (b) o (bi 1) (b; 1) p21; @ -1 mod ol

g-binomial coefficient congruences Armin Straub




A ¢-analog of Ljunggren’s congruence

Theorem (S, 2010)
For primes p > 5:

()= (5) .~ (20) (3 ) @ = o

Example
Choosing p =13, a =2, and b = 1, we have

26
(13> =14¢"% —14(¢® - 12+ 1 +q+... +¢2)3f(g)
q

where f(q) = 14 — 41¢ + 41¢*> — ... + ¢"3? is an irreducible polynomial

with integer coefficients.

Armin Straub
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A ¢-analog of Ljunggren’s

congruence

woe 0 ceetoe L,
- o
Theore - ..
Forpri - os| osf
4 "\
ap i I
bl 7;.0 4‘).5 0‘5 1‘.0 710 7(‘15 0‘.5 1‘.0
\ B
" /
.“ -05F -051
Examp! ",
" .
Choos DL F SN BRI
26

(

13

) =1+4+¢"% - 14(¢® - 12+ 1 +q+...+¢H3f (g
q

where f(q) = 14 — 41¢ + 41¢*> — ... + ¢"3? is an irreducible polynomial

with integer coefficients.

Armin Straub
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ap\ _ (a [ a b+1\p?—1 b 1\2 3
(), 7 (), (2 (5 ) e v i

o Ernst Jacobsthal (1952) proved that Ljunggren’s classical congruence
holds modulo p®*" where r is the p-adic valuation of

a0 (%) =2, ) (1),

o It would be interesting to see if this generalization has a nice analog
in the g-world.
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What happens for composite numbers?
ap\ _ [a a b+1\p? —1 ) ;
(bp)q N (b) q? a (b + 1) ( 2 > 12 (qp - 1) mod [p]q

Example (n =12, a =2, b = 1)

24 143 1
g T2 20 11— g2 4t
(12)q +q 5 (q ) +12( @ +q")°f(q)

@12(q)

where f(q) = 143+12¢+453¢*+. . .+12¢"3! is an irreducible polynomial
with integer coefficients.

g-binomial coefficient congruences Armin Straub




What happens for composite numbers?
ap\ _ [a a b+1\p? —1 ) ;
(bp)q N (b) q? a (b + 1) ( 2 > 12 (qp - 1) mod [p]q

Example (n =12, a =2, b = 1)

24 143 1
( ) =1+¢"—— (" -1+ =1 -+¢")f9
q %,—/

12 12 12
@12(q)

where f(q) = 143+12¢+453¢*+. . .+12¢"3! is an irreducible polynomial
with integer coefficients.

o Ljunggren’s g-congruence holds modulo ®,,(q)? if (n,6) = 1

over integer coefficient polynomials! — otherwise we get rational coefficients
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Can we do better than modulo p*?

o Are there primes p such that
2p—1
( P ) =1 modp*?
p—1
o Such primes are called Wolstenholme primes.
o The only two known are 16843 and 2124679. Mcintosh, 1995: up to 10°

C. Helou and G. Terjanian
On Wolstenholme’s theorem and its converse
Journal of Number Theory 128, 2008
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Can we do better than modulo p*?

o Are there primes p such that

2p—1
(p )El mod p*?
p—1

o Such primes are called Wolstenholme primes.

o The only two known are 16843 and 2124679. Mcintosh, 1995: up to 10°

o Infinitely many Wolstenholme primes are conjectured to exist.
However, no primes are conjectured to exist for modulo p°.

C. Helou and G. Terjanian
On Wolstenholme's theorem and its converse
Journal of Number Theory 128, 2008
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Can we do better than modulo p*?

o Are there primes p such that

2p—1
(p )51 mod p*?
p—1

Such primes are called Wolstenholme primes.
o The only two known are 16843 and 2124679. Mcintosh, 1995: up to 10°

o Infinitely many Wolstenholme primes are conjectured to exist.
However, no primes are conjectured to exist for modulo p°.
o Conjecturally, Wolstenholme’s congruence characterizes primes:

2n —1
(n 1)51 modn® <= nis prime
n_

C. Helou and G. Terjanian
On Wolstenholme's theorem and its converse
Journal of Number Theory 128, 2008
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Some open problems

o Extension to Jacobsthal's result?

o Extension to

()= -sestine] o

and insight into Wolstenholme primes?

o Is there a nice g-analog for Gauss' congruence?

(o= ya) =2 s

where p = a? 4+ b? and @ = 1 mod 4.

Generalized to p2 and p3 by Chowla-Dwork-Evans (1986) and by Cosgrave-Dilcher (2010)
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THANK YOQU!

o Slides for this talk will be available from my website:
http://arminstraub.com/talks

Victor Kac and Pokman Cheung
Quantum Calculus
Springer, 2002

Armin Straub

A g-analog of Ljunggren’s binomial congruence
Proceedings of FPSAC, 2011

q-binomi
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