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Abstract

We study the moments of the distance traveled by a walk in the plane with unit
steps in random directions. While this historically interesting random walk is well un-
derstood from a modern probabilistic point of view, our own interest is in determining
explicit closed forms for the moment functions and their arithmetic values at integers
when only a small number of steps is taken. As a consequence of a more general
evaluation, a closed form is obtained for the average distance traveled in three steps.
This evaluation, as well as its proof, rely on explicit combinatorial properties, such as
recurrence equations of the even moments (which are lifted to functional equations).
The corresponding general combinatorial and analytic features are collected and made
explicit in the case of 3 and 4 steps. Explicit hypergeometric expressions are given for
the moments of a 3-step and 4-step walk and a general conjecture for even length walks
is made.

1 Introduction, history and preliminaries

We consider, for various values of s, the n-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πixk

∣∣∣∣∣
s

dx (1)

which occurs in the theory of uniform random walks in the plane, where at each step a
unit-step is taken in a random direction, see Figure 1. As such, the integral (1) expresses
the s-th moment of the distance to the origin after n steps. Our interest in these integrals
is from the point of view of (symbolic) computation. In particular, we seek explicit closed
forms of the moment functions Wn(s) for small n as well as closed form evaluations of
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these functions at integer arguments. Of special interest is the case Wn(1) of the expected
distance after n steps.

While the general structure of the moments and densities of the random walks studied
here is well-known from a modern probabilistic point of view (for instance, the characteristic
function of the distance after n steps is simply the Bessel function Jn0 —a fact reflected in
(14) and (28)), there has been little research on the question of closed forms. This is
exemplified by the fact that W3(1) has apparently not been evaluated in the literature
before (in contrast the case W2(1) = 4

π is easy). As a consequence of a more general result
we show in Section 5 that

W3(1) =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
(2)

where Γ is the gamma function.

(a) Several 4-step walks (b) A 500-step walk

Figure 1: Random walks in the plane.

A related second motivation for our work is of a numerical nature. In fact, more
than 70 years after the problem was posed, [Merz79] remarks that for the densities of 4,
5 and 6-steps walks, “it has remained difficult to obtain reliable values”. One challenge
lies in the difficulty of computing the involved integrals, such as (28) which is highly
oscillatory, to reasonably high precision. This is not straightforward, and so some comments
on obtaining high precision numerical evaluations of Wn(s) are given in Appendix A.2. A
more comprehensive study of the numerics of such multiple-integrations is conducted in
[BB10].

The term “random walk” first appears in a question by Karl Pearson in Nature in
1905 [Pea1905]. He asked for the probability density of a two-dimensional random walk
couched in the language of how far a “rambler” (hill walker) might walk. This triggered
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a response by Lord Rayleigh [Ray1905] just one week later. Rayleigh replied that he had
considered the problem earlier in the context of the composition of vibrations of random
phases, and gave the probability distribution 2x

n e
−x2/n for large n. This quickly leads to a

good approximation for Wn(s) for large n and fixed s = 1, 2, 3, . . . .
Another week later, Pearson again wrote in Nature, see [Pea1905b], to note that G. J.

Bennett had given a solution for the probability distribution for n = 3 which can be written
in terms of the complete elliptic integral of the first kind K. This density function can be
written as

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
, (3)

see, e.g., [Hug95] and [Pea1906]. Pearson concluded that there was still great interest in the
case of small n which, as he had noted, is dramatically different from that of large n. This
is illustrated in Figure 2: while p8 is visually almost indistinguishable from the smooth
limiting form (shown in superimposed dotted lines) given by Rayleigh, the densities p3, p4
and p5 have remarkable features of their own.
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Figure 2: Densities p3, p4, p5 and, for contrast, p8.

The results obtained here, as well as in a follow-up study in [BSW10], have been crucial
in the discovery ([BSWZ11]) of a closed form for the density p4 of the distance traveled in 4
steps. Additionally, an improved hypergeometric evaluation of p3 is obtained in [BSWZ11].
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For the convenience of the reader, the closed forms obtained in [BSWZ11] are:

p3(x) =
2
√

3

π

x

(3 + x2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣x2
(
9− x2

)2
(3 + x2)3

)
, (4)

p4(x) =
2

π2

√
16− x2
x

Re 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
, (5)

for 0 6 x 6 3 and 0 6 x 6 4 respectively.
It should be noted that the progress we make here (and in [BSW10, BSWZ11]) on the

question of closed forms rely on techniques, for instance analysis of Meijer G-functions and
their relationship with generalized hypergeometric series, that were fully developed only
much later in the 20th century.

We remark that much has been done in generalizing the problem posed by Pearson.
For instance, in further response to Pearson, Kluyver [Klu1906] made a lovely analysis of
the cumulative distribution function of the distance traveled by a rambler in the plane
for various choices of step length. Other generalizations include allowing walks in three
dimensions (where the analysis is actually simpler, see [Wat41, §49]), confining the walks
to different kinds of lattices, or calculating whether and when the walker would return to
the origin. An excellent source of this sort of results is [Hug95].

Applications of two-dimensional random walks are numerous and well-known; for in-
stance, [Hug95] mentions that they may be used to model the random migration of an
organism possessing flagella; analysing the superposition of waves (e.g., from a laser beam
bouncing off an irregular surface); and vibrations of arbitrary frequencies. The subject also
finds use in Brownian motion and quantum chemistry.

We learned of the special case for s = 1 of (1) from the whiteboard in the common room
at the University of New South Wales. It had been written down by Peter Donovan as a
generalization of a discrete cryptographic problem, as discussed in [Don09]. Some numerical
values of Wn evaluated at integers are shown in Tables 1 and 2. One immediately notices
the apparent integrality of the sequences for the even moments—which are the moments
of the squared expected distance, and where the square root for s = 2 gives the root-mean-
square distance

√
n. For n = 2, 3, 4 these sequences were found in the Online Encyclopedia

of Integer Sequences [Slo09]—the cases n = 5, 6 are in the database as a consequence of
this paper.

By numerical observation, experimentation and some sketchy arguments we quickly
conjectured and strongly believed that, for k a nonnegative integer

W3(k) = Re 3F2

( 1
2 ,−

k
2 ,−

k
2

1, 1

∣∣∣∣4) . (6)

The evaluation (2) of W3(1) can be deduced from (6). Based on results in Sections 2 and 3,
the evaluation (6) is established in Section 5.
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n s = 2 s = 4 s = 6 s = 8 s = 10 [Slo09]

2 2 6 20 70 252 A000984

3 3 15 93 639 4653 A002893

4 4 28 256 2716 31504 A002895

5 5 45 545 7885 127905 A169714

6 6 66 996 18306 384156 A169715

Table 1: Wn(s) at even integers.

n s = 1 s = 3 s = 5 s = 7 s = 9

2 1.27324 3.39531 10.8650 37.2514 132.449
3 1.57460 6.45168 36.7052 241.544 1714.62
4 1.79909 10.1207 82.6515 822.273 9169.62
5 2.00816 14.2896 152.316 2037.14 31393.1
6 2.19386 18.9133 248.759 4186.19 82718.9

Table 2: Wn(s) at odd integers.

In Section 2 we observe that the even moments Wn(2k) are given by integer sequences
and study the combinatorial features of fn(k) := Wn(2k), k a nonnegative integer. We
show that there is a recurrence relation for the numbers fn(k) and confirm an observation
from Table 1 that the last digit in the column for s = 10 is always n mod 10. The discovery
of (6) was precipitated by the form of f3 given in (12).

In Section 3 some analytic results are collected, and the recursions for fn(k) are lifted to
Wn(s) by the use of Carlson’s theorem. The recursions for n = 2, 3, 4, 5 are given explicitly
as an example. These recursions then give further information regarding the pole structure
of Wn(s). Plots of the analytic continuation of Wn(s) on the negative real axis are given
in Figure 3. Inspired by a more general combinatorial convolution given in Section 2 we
conjecture, for n = 1, 2, . . ., the recursion

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j),

which has been partially resolved in [BSW10].

2 The even moments and their combinatorial features

In the case s = 2k the square root implicit in the definition (1) of Wn(s) disappears, re-
sulting in the fact that the even moments Wn(2k) are integers. In this section we collect
several of the combinatorial features of these moments which, while sometimes in principle
routine, provide important guidance and foundation. For instance, the combinatorial ex-
pression for W3(2k) will eventually lead to the evaluation of all integer moments W3(k) in

5



-6 -4 -2 2

-3

-2

-1

1

2

3

4

(a) W3

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(b) W4

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(c) W5

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(d) W6

Figure 3: Various Wn and their analytic continuations.

Section 5. As a second example, the recurrence equation, in its explicit form, for W4(2k)
is at the heart of the derivation of the closed form (5) in [BSWZ11].

In fact, the even moments are given as sums of squares of multinomials—as is detailed
next. While this result may be readily obtained from general probabilistic principles start-
ing with the observation that the characteristic function of the distance traveled in n steps
is given by the Bessel function Jn0 (see Section 4), we prefer to give an elementary derivation
starting from the integral definition (1) of Wn(s).

Proposition 1. For nonnegative integers k and n,

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

.

Proof. In the spirit of the residue theorem of complex analysis, if f(x1, . . . , xn) has a
Laurent expansion around the origin then

ct f(x1, . . . , xn) =

∫
[0,1]n

f(e2πix1 , . . . , e2πixn) dx, (7)

where ‘ct’ denotes the operator which extracts from an expression the constant term of its
Laurent expansion. In light of (7), the integral definition (1) of Wn(s) may be restated as

Wn(s) = ct ((x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))s/2 , (8)
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see also Appendix A.1. In the case s = 2k the right-hand side may be finitely expanded to
yield the claim: on using the multinomial theorem,

(x1+ · · ·+ xn)k (1/x1 + · · ·+ 1/xn)k

=
∑

a1+···+an=k

(
k

a1, . . . , an

)
xa11 · · ·x

an
n

∑
b1+···+bn=k

(
k

b1, . . . , bn

)
x−b11 · · ·x−bnn ,

and the constant term is now obtained by matching a1 = b1, . . . , an = bn.

Remark 1. In the case that s is not an even integer, the right-hand side of (8) may still
be expanded, say, when Re s > 0 to obtain the series evaluation

Wn(s) = ns
∑
m>0

(−1)m
(
s/2

m

) m∑
k=0

(−1)k

n2k

(
m

k

) ∑
a1+···+an=k

(
k

a1, . . . , an

)2

. (9)

An alternative elementary proof of this expansion is given in Appendix A.1. We include
this alternative proof, which chronologically was our first one, because, as a side-product,
it yields other interesting integral evaluations. ♦

In light of Proposition 1, we consider the combinatorial sums

fn(k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (10)

of multinomial coefficients squared. These numbers also appear in [RS09] in the following
way: fn(k) counts the number of abelian squares of length 2k over an alphabet with n
letters (that is strings xx′ of length 2k from an alphabet with n letters such that x′ is a
permutation of x). It is not hard to see that

fn1+n2(k) =

k∑
j=0

(
k

j

)2

fn1(j) fn2(k − j), (11)

for two non-overlapping alphabets with n1 and n2 letters. In particular, we may use (11)
to obtain f1(k) = 1, f2(k) =

(
2k
k

)
, as well as

f3(k) =
k∑
j=0

(
k

j

)2(2j

j

)
= 3F2

( 1
2 ,−k,−k

1, 1

∣∣∣∣4) =

(
2k

k

)
3F2

(
−k,−k,−k
1,−k + 1

2

∣∣∣∣14
)
, (12)

f4(k) =

k∑
j=0

(
k

j

)2(2j

j

)(
2(k − j)
k − j

)
=

(
2k

k

)
4F3

(
1
2 ,−k,−k,−k
1, 1,−k + 1

2

∣∣∣∣1
)
. (13)

7



Here and below pFq notates the generalised hypergeometric function. In general, (11) can
be used to write fn as a sum with at most dn/2e − 1 summation indices.

We recall a generating function for (fn(k))∞k=0 used in [BBBG08]. Let In(z) denote the
modified Bessel function of the first kind. Then

∑
k>0

fn(k)
zk

(k!)2
=

∑
k>0

zk

(k!)2

n

= 0F1(1; z)n = I0(2
√
z)n. (14)

It can be anticipated from (10) that, for fixed n, the sequence fn(k) will satisfy a linear
recurrence with polynomial coefficients. A procedure for constructing these recurrences
has been given in [Bar64]; in particular, that paper gives the recursions for 3 6 n 6 6
explicitly. Moreover, an explicit general formula for the recurrences is given in [Ver04]:

Theorem 1. For fixed n > 2, the sequence fn(k) satisfies a recurrence of order λ = dn/2e
with polynomial coefficients of degree n− 1:

∑
j>0

kn−1 ∑
α1,...,αj

j∏
i=1

−αi(n+ 1− αi)
(

k − i
k − i+ 1

)αi−1 fn(k − j) = 0. (15)

Here, the sum is over all sequences α1, . . . , αj such that 0 6 αi 6 n and αi+1 6 αi − 2.

The recursions for n = 2, 3, 4, 5 are listed in Example 1 in Section 3.3, formulated in
terms of Wn(s) as per Theorem 4. As a consequence of Theorem 1 we obtain:

Theorem 2. For fixed n > 2, the sequence fn(k) satisfies a recurrence of order λ = dn/2e
with polynomial coefficients of degree n− 1:

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0 (16)

where

cn,0(k) = (−1)λ (n!!)2
(
k +

n

4

)n+1−2λ λ−1∏
j=1

(k + j)2 , (17)

and cn,λ(k) = (k + λ)n−1. Here n!! =
∏λ−1
i=0 (n− 2i) is the double factorial.

Proof. The claim for cn,λ follows straight from (15). By (15), cn,0 is given by

cn,0(k − λ) =

[
kn−1

∑
α1,...,αλ

λ∏
i=1

−αi(n+ 1− αi)
(

k − i
k − i+ 1

)αi−1]
(18)

where the sum is again over all sequences α1, . . . , αλ such that 0 6 αi 6 n and αi+1 6 αi−2.

8



If n is odd then there is only one such sequence, namely {n, n − 2, n − 4, . . .}, and it
follows that

cn,0(k − λ) = (−1)λ (n!!)2
λ−1∏
j=1

(k − j)2 (19)

in accordance with (17).
When n = 2λ is even, there are λ+ 1 sequences, namely α0 = {n, n− 2, n− 4, . . . , 2},

and αi for 1 6 i 6 λ, where αi is constructed from α0 by subtracting all elements by 1
starting from the (λ+ 1− i)th position.

Now by (18), we have

cn,0(k − λ) = (−1)λ

(
λ−1∏
i=1

(k − i)2
)

λ∑
j=0

(
λ∏
i=1

aji (n+ 1− aji )

)
(k − λ+ j), (20)

where aji denotes the ith element of aj .
We make the key observation that the sum in (20) is symmetric, so writing it backwards

and adding that to itself, we factor out the term involving k:

2

λ∑
j=0

(
λ∏
i=1

aji (n+ 1− aji )

)
(k − λ+ j) = (2k − λ)

λ∑
j=0

λ∏
i=1

aji (n+ 1− aji ). (21)

As we know the sequences aj explicitly, the product on the right of (21) simplifies to

(2λ)!

(
2j
j

)(
2λ−2j
λ−j

)(
2λ
λ

) .

Hence the sum on the right of (21) is

λ∑
j=0

(2λ)!

(
2j
j

)(
2λ−2j
λ−j

)(
2λ
λ

) = 22λλ!2, (22)

which can be verified, for instance, using the snake oil method ([Wil93]). Substituting this
into (20) gives (17) for even n.

Remark 2. For fixed k, the map n 7→ fn(k) can be given by the evaluation of a polynomial
in n of degree k. This follows from

fn(k) =
k∑
j=0

(
n

j

) ∑
a1+···+aj=k

ai>0

(
k

a1, . . . , aj

)2

, (23)
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because the right-hand side is a linear combination (with positive coefficients only depend-

ing on k) of the polynomials
(
n
j

)
= n(n−1)···(n−j+1)

j! in n of degree j for j = 0, 1, . . . , k.

From (23) the coefficient of
(
n
k

)
is seen to be (k!)2. We therefore formally obtain the

first-order approximationWn(s) ≈n ns/2Γ(s/2+1) for n going to infinity, see also [Klu1906].
In particular, Wn(1) ≈n

√
nπ/2. Similarly, the coefficient of

(
n
k−1
)

is k−1
4 (k!)2 which gives

rise to the second-order approximation

(k!)2
(
n

k

)
+
k − 1

4
(k!)2

(
n

k − 1

)
= k!nk − k(k − 1)

4
k!nk−1 +O(nk−2)

of fn(k). We therefore obtain

Wn(s) ≈n ns/2−1
{(

n− 1

2

)
Γ
(s

2
+ 1
)

+ Γ
(s

2
+ 2
)
− 1

4
Γ
(s

2
+ 3
)}

,

which is exact for s = 0, 2, 4. In particular, Wn(1) ≈n
√
nπ/2 +

√
π/n/32. More general

approximations are given in [Cra09]. ♦

Remark 3. It follows straight from (10) that, for primes p, fn(p) ≡ n modulo p. Further,
for k > 1, fn(k) ≡ n modulo 2. This may be derived inductively from the recurrence (11)
since, assuming that fn(k) ≡ n modulo 2 for some n and all k > 1,

fn+1(k) =

k∑
j=0

(
k

j

)2

fn(j) ≡ 1 +

k∑
j=1

(
k

j

)
n = 1 + n(2k − 1) ≡ n+ 1 (mod 2).

Hence for odd primes p,
fn(p) ≡ n (mod 2p). (24)

The congruence (24) also holds for p = 2 since fn(2) = (2n − 1)n, compare (23). In
particular, (24) confirms that indeed the last digit in the column for s = 10 is always
n mod 10—an observation from Table 1. ♦

Remark 4. The integers f3(k) (respectively f4(k)) also arise in physics, see for instance
[BBBG08], and are referred to as hexagonal (respectively diamond) lattice integers. The
corresponding entries in Sloane’s online encyclopedia [Slo09] are A002893 and A002895.
We recall the following formulae [BBBG08, (186)–(188)], relating these sequences in non-
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obvious ways: ∑
k>0

f3(k)(−x)k

2

=
∑
k>0

f2(k)3
x3k

((1 + x)3(1 + 9x))k+
1
2

=
∑
k>0

f2(k)f3(k)
(−x(1 + x)(1 + 9x))k

((1− 3x)(1 + 3x))2k+1

=
∑
k>0

f4(k)
xk

((1 + x)(1 + 9x))k+1
.

It would be instructive to similarly engage f5(k) for which we have

f5(k) =

(
2 k

k

) k∑
j=0

(
k
j

)4(
2 k
2 j

) 3F2

(
−j,−j,−j

1, 12 − j

∣∣∣∣14
)
,

as follows from (11). ♦

3 Analytic features of the moments

This section collects analytic features of the moments Wn(s) as a function in s. In particu-
lar, it is shown that the recurrences for the even moments Wn(2k), described in Section 2,
extend to functional equations. This is deduced in the usual way from Carlson’s theorem.
Still we find it instructive to give the details, especially as the explicit form of the func-
tional equations and the resulting pole structures were crucial for discovery and proof of
the closed forms in the cases n = 3, 4, 5 obtained in here and in [BSW10, BSWZ11], as was
true for the results in Section 2.

3.1 Analyticity

We start with a preliminary investigation of the analyticity of Wn(s) for a given n. This
analyticity also follows from the general principle that the moment functions of bounded
random variables are always analytic in a strip of the complex plane containing the right
half-plane—but again we prefer to give a short direct proof.

Proposition 2. Wn(s) is analytic at least for Re s > 0.

Proof. Let s0 be a real number such that the integral in (1) converges for s = s0. Then
we claim that Wn(s) is analytic in s for Re s > s0. To this end, let s be such that
s0 < Re s 6 s0 + λ for some real λ > 0. For any real 0 6 a 6 n,

|as| = aRe s 6 nλas0 ,
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and therefore

sup
s0<Re s6s0+λ

∫
[0,1]n

∣∣∣∣∣
∣∣∣∣ n∑
k=1

e2πixk
∣∣∣∣s
∣∣∣∣∣ dx 6 nλWn(s0) <∞.

This local boundedness implies, see for instance [Mat01], that Wn(s) as defined by the
integral in (1) is analytic in s for Re s > s0. Since the integral clearly converges for s = 0,
the claim follows.

This result will be extended in Theorem 5 and Corollary 1.

3.2 n = 1 and n = 2

It follows straight from the integral definition (1) that W1(s) = 1. In the case n = 2, direct
integration of (40) with n = 2 yields

W2(s) = 2s+1

∫ 1/2

0
cos(πt)sdt =

(
s

s/2

)
, (25)

which may also be obtained using (9). In particular, W2(1) = 4/π. It may be worth noting
that neither Maple 14 nor Mathematica 7 can evaluate W2(1) if it is entered naively in form
of the defining (1) (or expanded as the square root of a sum of squares), each returning
the symbolic answer ‘0’.

3.3 Functional equations

We may lift the recursive structure of fn, defined in Section 2, to Wn to a fair degree on
appealing to Carlson’s theorem [Tit39, 5.81]. We recall that a function f is of exponential
type in a region if |f(z)| 6Mec|z| for some constants M and c.

Theorem 3 (Carlson). Let f be analytic in the right half-plane Re z > 0 and of exponential
type with the additional requirement that

|f(z)| 6Med|z|

for some d < π on the imaginary axis Re z = 0. If f(k) = 0 for k = 0, 1, 2, . . . then
f(z) = 0 identically.

Theorem 4. Given that fn(k) satisfies a recurrence

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0

with polynomial coefficients cn,j(k) (see Theorem 2) then Wn(s) satisfies the corresponding
functional equation

cn,0(s/2)Wn(s) + · · ·+ cn,λ(s/2)Wn(s+ 2λ) = 0,

for Re s > 0.
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Proof. Let
Un(s) := cn,0(s)Wn(2s) + · · ·+ cn,λ(s)Wn(2s+ 2λ).

Since fn(k) = Wn(2k) by Proposition 1, Un(s) vanishes at the nonnegative integers by
assumption. Consequently, Un(s) is zero throughout the right half-plane and we are done—
once we confirm that Theorem 3 applies. By Proposition 2, Wn(s) is analytic for Re s > 0.
Clearly, |Wn(s)| 6 nRe s. Thus

|Un(s)| 6
(
|cn,0(s)|+ |cn,1(s)|n2 + · · ·+ |cn,λ(s)|n2λ

)
n2Re s.

In particular, Un(s) is of exponential type. Further, Un(s) is polynomially bounded on the
imaginary axis Re s = 0. Thus Un satisfies the growth conditions of Theorem 3.

Example 1. For n = 2, 3, 4, 5 we find

(s+ 2)W2(s+ 2)− 4(s+ 1)W2(s) = 0,

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0,

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0,

and

(s+ 6)4W5(s+ 6)− (35(s+ 5)4 + 42(s+ 5)2 + 3)W5(s+ 4) +

(s+ 4)2(259(s+ 4)2 + 104)W5(s+ 2)− 225(s+ 4)2(s+ 2)2W5(s) = 0.

♦

We note that in each case the recursion lets us determine significant information about
the nature and position of any poles of Wn(s). We exploit this in the next theorem for
n > 3. The case n = 2 is transparent since as determined above W2(s) =

(
s
s/2

)
which has

simple poles at the negative odd integers.

Theorem 5. Let an integer n > 3 be given. The recursion guaranteed by Theorem 4
provides an analytic continuation of Wn(s) to all of the complex plane with poles of at
most order two at certain negative integers.

Proof. Proposition 2 proves analyticity in the right halfplane. It is clear that the recursion
given by Theorem 4 ensures an analytic continuation with poles only possible at negative
integer values compatible with the recursion. Indeed, with λ = dn/2e we have

Wn(s) = −
cn,1(s/2)Wn(s+ 2) + · · ·+ cn,λ(s/2)Wn(s+ 2λ)

cn,0(s/2)
(26)

with the cn,j as in (16). We observe that the right side of (26) only involves Wn(s + 2k)
for k > 1. Therefore the least negative pole can only occur at a zero of cn,0(s/2) which
is explicitly given in (17). We then note that the recursion forces poles to be simple or of
order two, and to be replicated as claimed.

13



Corollary 1. If n > 3 then Wn(s), as given by (1), is analytic for Re s > −2.

Proof. This follows directly from Theorem 5, the fact that cn,0(s/2) given in (17) has no
zero for s = −1, and the proof of Proposition 2.

In Figure 3, on page 6, the analytic continuations for each of W3, W4, W5, and W6 are
plotted on the real line.

Example 2. Using the recurrence given in Example 1 we find that W3(s) has simple poles
at s = −2,−4,−6, . . ., compare Figure 3(a). Moreover, the residue at s = −2 is given
by Res−2(W3) = 2/(

√
3π), and all other residues of W3 are rational multiples thereof.

This may be obtained from the integral representation given in (29) observing that, at s a
negative even integer, the residue contributions are entirely from the first term. ♦

Example 3. Similarly, we find that W4 has double poles at −2,−4,−6, . . ., compare
Figure 3(b). With more work, or using a more sophisticated analysis as in [BSWZ11], it is
possible to show that

lim
s→−2

(s+ 2)2W4(s) =
3

2π2
,

and in similar fashion the complete structure of W4(s) is thus accessible. ♦

Remark 5. More generally, it would appear that Theorem 5 can be extended to show that

• for n odd Wn has simple poles at −2p for p = 1, 2, 3, . . ., while

• for n even Wn has simple poles at −2p and 2(1 − p) − n/2 for p = 1, 2, 3, . . . which
will overlap when 4|n.

This conjecture is further investigated in [BSW10]. ♦

We close this section by remarking that the knowledge about the poles of Wn for
instance reveals the asymptotic behaviour of the densities pn at 0. This is detailed in
[BSWZ11] where closed forms for the densities are investigated, with particular emphasis
on n = 3, 4, 5. It is worth noting that p5 was first proven rigorously not to be linear on
[0, 1] in [Fet63].

3.4 Convolution series

Our attempt to lift the convolution sum (11) to Wn(s) resulted in the following conjecture:

Conjecture 1. For positive integers n and complex s,

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (27)

14



It is understood that the right-hand side of (27) refers to the analytic continuation of
Wn as guaranteed by Theorem 5. Conjecture 1, which is consistent with the pole structure
described in Remark 5, has been confirmed by David Broadhurst [Bro09] using a Bessel
integral representation for Wn, given in (28), for n = 2, 3, 4, 5 and odd integers s < 50 to
a precision of 50 digits. By (11) the conjecture clearly holds for s an even positive integer.
For n = 1 it is confirmed next.

Example 4. For n = 1 we obtain from (27) using W1(s) = 1,

W2(s) =
∑
j>0

(
s/2

j

)2

=

(
s

s/2

)
which agrees with (25). ♦

We remark that a partial resolution of Conjecture 1 is obtained in [BSWZ11].

4 Bessel integral representations

As noted in the introduction, Kluyver [Klu1906] made a lovely analysis of the cumulative
distribution function of the distance traveled by a “rambler” in the plane for various fixed
step lengths. In particular, for our uniform walk Kluyver provides the Bessel function
representation

Pn(t) = t

∫ ∞
0

J1(xt) J
n
0 (x) dx.

Thus, Wn(s) =
∫ n
0 t

s pn(t) dt, where pn = P ′n. From here, Broadhurst [Bro09] obtains

Wn(s) = 2s+1−k Γ(1 + s
2)

Γ(k − s
2)

∫ ∞
0

x2k−s−1
(
−1

x

d

dx

)k
Jn0 (x) dx (28)

for real s and is valid as long as 2k > s > max(−2,−n
2 ).

Remark 6. For n = 3, 4, symbolic integration in Mathematica of (28) leads to interesting
analytic continuations [Cra09] such as

W3(s) =
1

22s+1
tan

(πs
2

)( s
s−1
2

)2

3F2

(
1
2 ,

1
2 ,

1
2

s+3
2 , s+3

2

∣∣∣∣14
)

+

(
s
s
2

)
3F2

(
− s

2 ,−
s
2 ,−

s
2

1,− s−1
2

∣∣∣∣14
)
, (29)

and

W4(s) =
1

22s
tan

(πs
2

)( s
s−1
2

)3

4F3

(
1
2 ,

1
2 ,

1
2 ,

s
2 + 1

s+3
2 , s+3

2 , s+3
2

∣∣∣∣1
)

+

(
s
s
2

)
4F3

(
1
2 ,−

s
2 ,−

s
2 ,−

s
2

1, 1,− s−1
2

∣∣∣∣1
)
.

(30)
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We note that for s = 2k = 0, 2, 4, . . . the first term in (29) (resp. (30)) is zero and
the second is a formula given in (12) (resp. (13)). Thence, one can in principle prove (29)
and (30) by applying Carlson’s theorem—after showing the singularities at 1, 3, 5, . . . are
removable. A rigorous proof, along with extensions and more details, appears in [BSW10].

♦

5 The odd moments of a three-step walk

In this section, we combine the results of the previous sections to finally prove the hyper-
geometric evaluation (6) of the moments W3(k) in Theorem 6.

It is elementary to express the distance y of an (n+1)-step walk conditioned on a given
distance x of an n-step walk. By a simple application of the cosine rule we find

y2 = x2 + 1 + 2x cos(θ),

where θ is the outside angle of the triangle with sides of lengths x, 1, and y:

\θx

yjjjjjjjjjjjjj

jjjjjjjjjjjjj 1
�����

�����

It follows that the s-th moment of an (n+ 1)-step walk conditioned on a given distance x
of an n-step walk is

gs(x) :=
1

π

∫ π

0
ys dθ = |x− 1|s 2F1

( 1
2 ,−

s
2

1

∣∣∣∣− 4x

(x− 1)2

)
. (31)

Here we appealed to symmetry to restrict the angle to θ ∈ [0, π). We then evaluated
the integral in hypergeometric form which, for instance, can be done with the help of
Mathematica. Observe that gs(x) does not depend on n. Since Wn+1(s) is the s-th moment
of the distance of an (n+ 1)-step walk, we obtain

Wn+1(s) =

∫ n

0
gs(x) pn(x) dx, (32)

where pn(x) is the density of the distance x for an n-step walk. Clearly, for the 1-step walk
we have p1(x) = δ1(x), a Dirac delta function at x = 1. It is also easily shown that the
probability density for a 2-step walk is given by p2(x) = 2(π

√
4− x2)−1 for 0 6 x 6 2 and

0 otherwise. The density p3(x) is given in (3).
For n = 3, based on (12) we define

V3(s) := 3F2

( 1
2 ,−

s
2 ,−

s
2

1, 1

∣∣∣∣4) , (33)
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so that by Proposition 1 and (12), W3(2k) = V3(2k) for nonnegative integers k. This led
us to explore V3(s) more generally numerically and so to conjecture and eventually prove
the following:

Theorem 6. For nonnegative even integers and all odd integers k:

W3(k) = Re V3(k).

Remark 7. Note that, for all complex s, the function V3(s) also satisfies the recursion given
in Example 1 for W3(s)—as is routine to prove symbolically using for instance creative
telescoping [PWZ06]. However, V3 does not satisfy the growth conditions of Carlson’s
Theorem (Theorem 3). Thus, it yields a rather nice illustration that the hypotheses can
fail. ♦

Proof of Theorem 6. It remains to prove the result for odd integers. Since, as noted in
Remark 7, for all complex s, the function V3(s) defined in (33) also satisfies the recursion
given in Example 1, it suffices to show that the values given for s = 1 and s = −1 are
correct. From (32), we have the following expression for W3:

W3(s) =
2

π

∫ 2

0

gs(x)√
4− x2

dx =
2

π

∫ π/2

0
gs(2 sin(t))dt. (34)

For s = 1: equation (31), [BB87, Exercise 1c, p. 16], and Jacobi’s imaginary transforma-
tions [BB87, Exercises 7a) & 8b), p. 73] allow us to write

π

2
g1(x) = (x+ 1)E

(
2
√
x

x+ 1

)
= Re

(
2E(x)− (1− x2)K(x)

)
(35)

where K(k) =
∫ π/2
0 dt/

√
1− k2 sin2(t) and E(k) =

∫ π/2
0

√
1− k2 sin2(t) dt denote the com-

plete elliptic integrals of the first and second kind. Thus, from (34) and (35),

W3(1) =
4

π2
Re

∫ π/2

0

(
2E(2 sin(t))− (1− 4 sin2(t))K(2 sin(t))

)
dt

=
4

π2
Re

∫ π/2

0

∫ π/2

0
2

√
1− 4 sin2(t) sin2(r) dtdr

− 4

π2
Re

∫ π/2

0

∫ π/2

0

1− 4 sin2(t)√
1− 4 sin2(t) sin2(r)

dtdr.

Amalgamating the two last integrals and parameterizing, we consider

Q(a) :=
4

π2

∫ π/2

0

∫ π/2

0

1 + a2 sin2(t)− 2 a2 sin2(t) sin2(r)√
1− a2 sin2(t) sin2(r)

dtdr. (36)
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We now use the binomial theorem to integrate (36) term-by-term for |a| < 1 and

substitute 2
π

∫ π/2
0 sin2m(t) dt = (−1)m

(−1/2
m

)
throughout. Moreover, (−1)m

(−α
m

)
= (α)m/m!

where the later denotes the Pochhammer symbol. Evaluation of the consequent infinite
sum produces:

Q(a) =
∑
k>0

(−1)k
(
−1/2

k

)(
a2k
(
−1/2

k

)2

− a2k+2

(
−1/2

k

)(
−1/2

k + 1

)
− 2a2k+2

(
−1/2

k + 1

)2
)

=
∑
k>0

(−1)ka2k
(
−1/2

k

)3 1

(1− 2k)2

= 3F2

(
−1

2 ,−
1
2 ,

1
2

1, 1

∣∣∣∣a2) .
Analytic continuation to a = 2 yields the claimed result as per for s = 1.

For s = −1: we similarly and more easily use (31) and (34) to derive

W3(−1) = Re
4

π2

∫ π/2

0
K(2 sin(t)) dt

= Re
4

π2

∫ π/2

0

∫ π/2

0

1√
1− 4 sin2(t) sin2(r)

dtdr = V3(−1).

Example 5. Theorem 6 allows us to establish the following equivalent expressions for
W3(1):

W3(1) =
4
√

3

3

(
3F2

(
−1

2 ,−
1
2 ,−

1
2

1, 1

∣∣∣∣14
)
− 1

π

)
+

√
3

24
3F2

( 1
2 ,

1
2 ,

1
2

2, 2

∣∣∣∣14
)

= 2
√

3
K2 (k3)

π2
+
√

3
1

K2 (k3)

=
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
.

These rely on using Legendre’s identity and several Clausen-like product formulae, plus

Legendre’s evaluation of K(k3) where k3 :=
√
3−1
2
√
2

is the third singular value as in [BB87].

More simply but similarly, we have

W3(−1) = 2
√

3
K2 (k3)

π2
=

3

16

21/3

π4
Γ6

(
1

3

)
.

Using the recurrence presented in Example 1 it follows that similar expressions can be
given for W3 evaluated at odd integers.

In [BSW10], corresponding hypergeometric closed forms for W4 are presented. ♦
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A Appendix

A.1 An alternative proof of the series evaluation (9)

We begin with:

Proposition 3. For complex s with Re s > 0,

Wn(s) = ns
∑
m>0

(−1)m
(
s/2

m

)(
2

n

)2m ∫
[0,1]n

 ∑
16i<j6n

sin2(π(xj − xi))

m

dx. (37)

Proof. Start with∣∣∣∣∣
n∑
k=1

e2πixk

∣∣∣∣∣
2

=

(
n∑
k=1

cos(2πxk)

)2

+

(
n∑
k=1

sin(2πxk)

)2

=

∑
i<j

(
cos(2πxi) + cos(2πxj)

)2
+
(

sin(2πxi) + sin(2πxj)
)2− n(n− 2)

= 4

∑
i<j

cos2(π(xj − xi))

− n(n− 2)

= n2 − 4

∑
i<j

sin2(π(xj − xi))

 .

Therefore, noting that binomial expansion may be applied to the integrand outside a set
of n-dimensional measure zero,

Wn(s) =

∫
[0,1]n

n2 − 4

∑
i<j

sin2(π(xj − xi))

s/2

dx

= ns
∫
[0,1]n

∑
m>0

(−1)m
(
s/2

m

)(
2

n

)2m
∑
i<j

sin2(π(xj − xi))

m

dx.
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Thus the result follows once changing the order of integration and summation is justified.
Observe that if s is real then (−1)m

(
s/2
m

)
has a fixed sign for m > s/2 and we can apply

monotone convergence. On the other hand, if s is complex then we may use

lim
m→∞

∣∣∣∣∣
(
s/2
m

)(
Re s/2
m

)∣∣∣∣∣ =

∣∣∣∣Γ(−Re s/2)

Γ(−s/2)

∣∣∣∣ ,
which follows from Stirling’s approximation, and apply dominated convergence using the
real case for comparison.

We next evaluate the integrals in (37):

Theorem 7. For nonnegative integers m,

∫
[0,1]n

∑
i<j

sin2(π(xj − xi))

m

dx =
(n

2

)2m m∑
k=0

(−1)k

n2k

(
m

k

) ∑
a1+···+an=k

(
k

a1, . . . , an

)2

.

Proof. Denote the left-hand by In,m. As in the proof of Proposition 1 we note that the
claim is equivalent to asserting that 22mIn,m is the constant term of

(n2 − (x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))m.

Observe that

(n2 − (x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))m =

 ∑
16i<j6n

(
2− xi

xj
− xj
xi

)m

= (−1)m

 ∑
16i<j6n

(xj − xi)2

xixj

m

.

The result therefore follows from the next proposition.

As before, we denote by ‘ct’ the operator which extracts from an expression the constant
term of its Laurent expansion.

Proposition 4. For any integers 1 6 i1 6= j1, . . . , im 6= jm 6 n,∫
[0,1]n

m∏
k=1

4 sin2(π(xjk − xik)) dx = (−1)m ct
m∏
k=1

(xjk − xik)2

xikxjk
.
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Proof. We prove this by evaluating both sides independently. First, we have

LHS :=

∫
[0,1]n

m∏
k=1

4 sin2(π(xjk − xik)) dx

= (−1)m
∫
[0,1]n

m∏
k=1

(
eπi(xjk−xik ) − e−πi(xjk−xik )

)2
dx

= (−1)m
∑
a,b

(−1)
∑
k(ak+bk−2)/2

∫
[0,1]n

eπi
∑
k(ak+bk)(xjk−xik ) dx

=
∑
a,b

(−1)
∑
k(ak+bk)/2

∫
[0,1]n

cos

(
π
∑
k

(ak + bk)(xjk − xik)

)
dx

where the last two sums are over all sequences a, b ∈ {±1}m. In the last step the summands
corresponding to (a, b) and (−a,−b) have been combined.

Now note that, for a an even integer,∫ 1

0
cos(π(ax+ b))dx =

{
cos(πb) if a = 0,
0 otherwise.

(38)

Since ak + bk is even, we may apply (38) iteratively to obtain∫
[0,1]n

cos

(
π
∑
k

(ak + bk)(xjk − xik)

)
dx =

{
1 if a, b ∈ S,
0 otherwise,

where S denotes the set of sequences a, b ∈ {±1}m such that

m∑
k=1

(ak + bk)(xjk − xik) = 0

as a polynomial in x. It follows that

LHS =
∑
a,b∈S

(−1)
∑
k(ak+bk)/2 (39)

On the other hand, consider

RHS := (−1)m ct
m∏
k=1

(xjk − xik)2

xikxjk
,

and observe that, by a similar argument as above,

(−1)m
m∏
k=1

(xjk − xik)2

xikxjk
=
∑
a,b

m∏
k=1

(−1)(ak+bk)/2
(
xjk
xik

)(ak+bk)/2

where the sum is again over all sequences a, b ∈ {±1}m. From here, it is straight-forward
to verify that RHS is equivalent to the expression given for LHS in (39).
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The desired evaluation is now available. On combining Theorem 7 and Proposition 3
we obtain that for Re s > 0,

Wn(s) = ns
∑
m>0

(−1)m
(
s/2

m

) m∑
k=0

(−1)k

n2k

(
m

k

) ∑
a1+···+an=k

(
k

a1, . . . , an

)2

.

This is (9).

Remark 8. We briefly outline the experimental genesis of the evaluation given in Propo-
sition 1. The sequence 22mI3,m appearing in the proof of Theorem 7 is Sloane’s, [Slo09],
A093388 where a link to [Ver99] is given. That paper contains the sum

22mI3,m = (−1)m
m∑
k=0

(
m

k

)
(−8)k

m−k∑
j=0

(
m− k
j

)3

and further mentions that 22mI3,m is therefore the coefficient of (xyz)m in

(8xyz − (x+ y)(y + z)(z + x))m.

Observe also that 22mI2,m is the coefficient of (xy)m in

(4xy − (x+ y)(y + x))m.

It was then noted that

8xyz − (x+ y)(y + z)(z + x) = 32xyz − (x+ y + z)(xy + yz + zx)

and this line of extrapolation led to the correct conjecture, so that the next case would
involve

42wxyz − (w + x+ y + z)(wxy + xyz + yzw + zwx),

which was what we have now proven. ♦

A.2 Numerical evaluations

A one-dimensional reduction of the integral (1) may be achieved by taking periodicity into
account:

Wn(s) =

∫
[0,1]n−1

∣∣∣∣∣1 +

n−1∑
k=1

e2πixk

∣∣∣∣∣
s

d(x1, . . . , xn−1). (40)

From here, we note that quick and rough estimates are easily obtained using the Monte
Carlo method. Moreover, since the integrand function is periodic this seems like an invi-
tation to use lattice sequences—a quasi-Monte Carlo method. E.g., the lattice sequence
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from [CKN06] can be straightforwardly employed to calculate an entire table in one run
by keeping a running sum over different values of n and s. A standard stochastic error
estimator can then be obtained by random shifting.

Generally, however, Broadhurst’s representation (28) seems to be the best available for
high precision evaluations of Wn(s). We close by commenting on the special cases n = 3, 4.

Example 6. The first high precision evaluations of W3 were performed by David Bailey
who confirmed the initially only conjectured Theorem 6 for s = 2, . . . , 7 to 175 digits.
This was done on a 256-core LBNL system in roughly 15 minutes by applying tanh-sinh
integration to

W3(s) =

∫ 1

0

∫ 1

0

(
9− 4(sin2(πx) + sin2(πy) + sin2(π(x− y)))

)s/2
dydx,

which is obtained from (40) as in Proposition 3. More practical is the one-dimensional
form (34) which can deliver high precision results in minutes on a simple laptop. For
integral s, Theorem 6 allows extremely high precision evaluations. ♦

Example 7. Assuming that Conjecture 1 holds for n = 2 (for a proof, see [BSWZ11]),
Theorem 6 implies that for nonnegative integers k

W4(k)
?
= Re

∑
j>0

(
s/2

j

)2

3F2

( 1
2 ,−

k
2 + j,−k

2 + j

1, 1

∣∣∣∣4) .
This representation is very suitable for high precision evaluations of W4 since, roughly, one
correct digit is added by each term of the sum. Formula (30) by Crandall also lends itself
quite well for numerical work (by slightly perturbing even s for integer arguments). ♦
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