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Abstract

We establish the triple integral evaluation∫ ∞
1

∫ 1

0

∫ 1

0

dz dy dx

x(x+ y)(x+ y + z)
=

5

24
ζ(3),

as well as the equivalent polylogarithmic double sum

∞∑
k=1

∞∑
j=k

(−1)k−1

k2
1

j 2j
=

13

24
ζ(3).

This double sum is related to, but less approachable than, similar sums
studied by Ramanujan. It is also reminiscent of Euler’s formula ζ(2, 1) =
ζ(3), which is the simplest instance of duality of multiple polylogarithms.
We review this duality and apply it to derive a companion identity. We
also discuss approaches based on computer algebra. All of our approaches
ultimately require the introduction of polylogarithms and nontrivial re-
lations between them. It remains an open challenge to relate the triple
integral or the double sum to ζ(3) directly.

1 Introduction

The evaluation

ζ(3) =

∫ 1

0

∫ 1

x

∫ 1

y

dz dy dx

(1− x)yz
(1.1)
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is given by M. Kontsevich and D. Zagier [11] as an illustration that ζ(3) is a
period, in the sense that it is the value of an absolutely convergent integral
of a rational function with rational coefficients, over a domain in R3 given by
polynomial inequalities (0 < x < y < z < 1) with rational coefficients. The goal
of this work is to prove and discuss the following, much less obvious, variation
of a triple integral evaluation.

Theorem 1.1. We have

Z3 :=

∫ ∞
1

∫ 1

0

∫ 1

0

dz dy dx

x(x+ y)(x+ y + z)
=

5

24
ζ(3). (1.2)

In contrast to (1.1), it appears to be a rather tricky problem to relate the
triple integral (1.2) to ζ(3) directly. Indeed, all of our approaches to this inte-
gral have ultimately required the introduction of polylogarithms and nontrivial
relations between them. We give such a proof in Section 3.

The integral (1.2) might be seen as a continuous analog of multiple zeta
values defined by

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1

ns11 n
s2
2 · · ·n

sk
k

. (1.3)

These sums were introduced by Euler. The reader is referred to the site [10]
maintained by M. Hoffman for a large collection of papers related to these series.
For instance, when k = 3, the multiple zeta values can be written as

ζ(s1, s2, s3) =

∞∑
p=1

∞∑
q=1

∞∑
r=1

1

ps3(p+ q)s2(p+ q + r)s1
, (1.4)

where the similarity with Z3 becomes apparent.

Remark 1.2. Algorithmic approaches to computing (period) integrals such as
the one in (1.2) are described in [5] and [16]. In particular, Panzer implemented
his symbolic integration approach [16] using hyperlogarithms in a Maple pack-
age called HyperInt. Using this package, the integral (1.2) is automatically
evaluated as

Z3 = 19
8 ζ(3)− 2 log(2)ζ(2)− Li2,1

(
1
2 , 2
)
− Li1,1,1

(
1
3 ,

3
2 , 2
)

featuring the multiple polylogarithms reviewed in Section 2. Simplifying the
right-hand side to a multiple of ζ(3), however, is not straightforward. Further
comments on evaluating the integral Z3 with the help of computer algebra are
included in Section 7.

In Section 4, we show that the triple integral evaluation of Theorem 1.1 is
equivalent to the following relation between polylogarithms.

Theorem 1.3. We have

S3 :=

∞∑
k=1

∞∑
j=k

(−1)k−1

k2
1

j 2j
=

13

24
ζ(3). (1.5)
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As in the case of the triple integral, it is not clear how to relate this double
sum directly to ζ(3). In the notation for multiple polylogarithms reviewed in
Section 2, the double sum in (1.5) can be expressed as

S3 = −Li1,2( 1
2 ,−1)− Li3(− 1

2 ). (1.6)

Readers familiar with multiple polylogarithms might therefore wonder whether
the identity (1.5) is an instance of duality [6, Section 6.1]. However, it appears
that duality does not help in evaluating (1.6). We review duality in Section 5
and show that it instead naturally provides the companion identity∑

k,m,n≥1
k odd

1

3n
1

k(k +m)(k +m+ n)
=

13

48
ζ(3). (1.7)

We note that (1.5) is reminiscent of Ramanujan’s identity [2, p. 259] (see
also [6, (7.4)])

∞∑
k=1

∞∑
j=k

1

k

1

j2 2j
= ζ(3)− π2

12
log(2). (1.8)

Indeed, we show in Section 6 that Ramanujan’s approach can be applied to
evaluate the non-alternating version of (1.5) as

∞∑
k=1

∞∑
j=k

1

k2
1

j 2j
=

5

8
ζ(3). (1.9)

We further indicate that (1.5) does not succumb readily to the same approach.

Remark 1.4. We conclude this introduction by observing that the 2-dimensional
analog of (1.2), namely,

Z2 :=

∫ ∞
1

∫ 1

0

dy dx

x(x+ y)
(1.10)

is simple to evaluate. For instance, we can transform the domain of integration
to the unit square via the change of variables x 7→ 1/x to obtain

Z2 =

∫ 1

0

∫ 1

0

dydx

1 + xy
=

∞∑
n=0

∫ 1

0

∫ 1

0

(−xy)ndydx =

∞∑
n=0

(−1)n

(n+ 1)2
=

1

2
ζ(2).

2 Polylogarithms

The polylogarithm function is defined, for |z| < 1, by the power series

Lis(z) =

∞∑
k=1

zk

ks
. (2.1)
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The function Li2 is also called the dilogarithm and Li3 the trilogarithm. For
other values of z, the polylogarithms are defined by analytic continuation, with
the principal branch obtained from a cut along the positive real axis from z = 1
to∞. We record that the analytic continuation of Li2 is provided by the integral
representation

Li2(z) =

∫ 1−z

1

log(t)

1− t
dt. (2.2)

These functions satisfy a large collection of identities. Among these are the
duplication formula

Lis(−z) = −Lis(z) + 21−s Lis(z
2), (2.3)

as well as the inversion formula

Lin(z) + (−1)n Lin(1/z) = − (2πi)n

n!
Bn

(
1

2
+

log(−z)
2πi

)
, (2.4)

which holds for positive integers n and z 6∈ [0, 1]. Here, the Bn are the Bernoulli
polynomials, of which we will only use B2(x) = x2 − x + 1

6 and B3(x) = x3 −
3
2x

2 + 1
2x. In the cases n = 2 and n = 3 the inversion formula thus becomes

Li2(z) = −Li2(1/z)− 1
2 log2(−z)− π2

6 , (2.5)

Li3(z) = Li3(1/z)− 1
6 log3(−z)− π2

6 log(−z). (2.6)

The dilogarithm and the trilogarithm satisfy a number of additional relations.
A small selection of formulæ is recorded in [15, Section 25.12] (see also [2,
Chapter 9]). A more complete collection appears in [12] and [13]. For our
purposes, we record the reflection formulæ

Li2(z) + Li2(1− z) = π2

6 − log(z) log(1− z) (2.7)

and

Li3(z)+ Li3(1− z) + Li3(1− 1/z)

= ζ(3) + 1
6 log3(z) + π2

6 log(z)− 1
2 log2(z) log(1− z),

(2.8)

as well as the identity [12, (6.34)]

Li3

(
1−z
1+z

)
− Li3

(
− 1−z

1+z

)
= 1

2 Li3

(
−z2
1−z2

)
− 2 Li3

(
−z
1−z

)
− 2 Li3

(
z

1+z

)
(2.9)

+ 7
4ζ(3) + π2

4 log
(

1−z
1+z

)
+ 1

4 log2
(

1+z
1−z

)
log
(

1−z2
z2

)
.

It follows from (2.7) and (2.8), together with Li3(−1) = − 3
4ζ(3), that

Li2( 1
2 ) = π2

12 −
1
2 log2(2), (2.10)

Li3( 1
2 ) = 7

8ζ(3)− π2

12 log(2) + 1
6 log3(2). (2.11)
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Combining the mentioned identities as done, for instance, in [3, (39.1), (39.4);
p. 324] where Ramanujan considers such combinations, we can further derive
the relation

2 Li2( 1
3 )− Li2(− 1

3 ) = π2

6 −
1
2 log2(3). (2.12)

Similarly, by setting z = 1/2 in (2.9), we find

2 Li3( 1
3 )− Li3(− 1

3 ) = 13
6 ζ(3)− π2

6 log(3) + 1
6 log3(3). (2.13)

Generalizing (2.1), the multiple polylogarithms are the sums

Lis1,...,sk(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

zn1
1 zn2

2 · · · z
nk

k

ns11 n
s2
2 · · ·n

sk
k

, (2.14)

though notation varies throughout the literature (in particular, the order of the
arguments is sometimes reversed; the choice here is consistent with multiple
zeta values as defined in (1.3), so that (2.14) becomes ζ(s1, . . . , sk) when z1 =
z2 = . . . = zk = 1). A vast literature, see, for instance, [6] and the references
therein, exists concerning relations between values of multiple polylogarithms.

3 A proof of the triple integral evaluation

In this section, we evaluate the triple integral Z3 as claimed in Theorem 1.1.
We begin by integrating with respect to x and, then, with respect to y to obtain

Z3 =

∫ 1

0

∫ 1

0

[
log(y + 1)

yz
− log(y + z + 1)

z(y + z)

]
dy dz

=

∫ 1

0

[Li2(−z − 1)− Li2(−1)− Li2(−z)] dz
z

(3.1)

=

∫ 1

0

[Li2(−z − 1)− Li2(−1)]
dz

z
+

3

4
ζ(3).

For the second equality, we used the fact that the derivative of Li2(−x) is
− log(x+ 1)/x, while, for the third, we integrated term by term to find∫ 1

0

Li2(−z)dz
z

=

∫ 1

0

∞∑
n=1

(−z)n

n2
dz

z
=

∞∑
n=1

(−1)n

n3
= −3

4
ζ(3). (3.2)

We now use the integral representation (2.2) of the dilogarithm to conclude

Z3 =

∫ 1

0

∫ 2+z

2

log(t) dt

1− t
dz

z
+

3

4
ζ(3).

Exchanging the order of integration and evaluating the inner integral, we obtain

Z3 =

∫ 1

0

log(t) log(t+ 2)

1 + t
dt+

3

4
ζ(3). (3.3)
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We now replace

2 log(t) log(t+ 2) = log2(t) + log2(t+ 2)− log2

(
t

t+ 2

)
(3.4)

in the integral (3.3), and make the change of variables t/(t+ 2)→ t in the third
of the three resulting integrals, to find

Z3 =
1

2

∫ 1

0

log2(t)

1 + t
dt+

1

2

∫ 1

0

log2(t+ 2)

1 + t
dt−

∫ 1/3

0

log2(t)

1− t2
dt+

3

4
ζ(3)

=
1

2

∫ 1

0

log2(t+ 2)

1 + t
dt−

∫ 1/3

0

log2(t)

1− t2
dt+

3

2
ζ(3). (3.5)

Here, we evaluated the first integral by expanding 1/(1+t) as a geometric series,
integrating term by term and using∫ x

0

tn−1 log2(t) dt =
xn

n3
(
2− 2n log(x) + n2 log2(x)

)
(3.6)

(which is readily verified by differentiating both sides) as well as the final sum
in (3.2). Summing (3.6), we find∫ x

0

log2(t)

1− t2
dt = Li3(x)− Li3(−x)− log(x)(Li2(x)− Li2(−x)) (3.7)

+ 1
2 log2(x) log( 1+x

1−x ).

In light of the relations (2.12) and (2.13), this shows that∫ 1/3

0

log2(t)

1− t2
dt = 13

6 ζ(3)− Li3( 1
3 )− Li2( 1

3 ) log(3)− 1
6 log( 9

8 ) log2(3). (3.8)

By appealing to analytic continuation, we could similarly approach the remain-
ing integral in (3.5). Alternatively, we use the formula [13, (6.28)]∫ t

0

log2(u+ 1)

u
du = log t log2(t+ 1)− 2

3 log3(t+ 1) (3.9)

− 2 log(t+ 1) Li2

(
1

t+ 1

)
− 2 Li3

(
1

t+ 1

)
+ 2ζ(3)

to evaluate

1

2

∫ 1

0

log2(t+ 2)

1 + t
dt =

1

2

∫ 2

0

log2(t+ 1)

t
dt− 1

2

∫ 1

0

log2(t+ 1)

t
dt

= 7
8ζ(3)− Li3( 1

3 )− Li2( 1
3 ) log(3)− 1

6 log( 9
8 ) log2(3).

(3.10)

Here, we used (2.10) and (2.11) to reduce the polylogarithms at 1/2. The
claimed evaluation, Z3 = 7

8ζ(3) − 13
6 ζ(3) + 3

2ζ(3) = 5
24ζ(3), now follows from

using (3.8) and (3.10) in (3.5).
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4 An equivalent double sum evaluation

In this section, we relate the triple integral Z3 of Theorem 1.1 to the double
sum in Theorem 1.3 in the following way.

Lemma 4.1. We have

Z3 =
3

4
ζ(3)−

∞∑
k=1

∞∑
j=k

(−1)k−1

k2
1

j 2j
. (4.1)

Proof. Expanding the integrand of (1.2) as a geometric series, we obtain∫ 1

0

dz

x(x+ y)(x+ y + z)
=

1

x(x+ y)2

∫ 1

0

dz

1 + z
x+y

=
1

x

∞∑
k=0

∫ 1

0

(−1)k zk dz

(x+ y)k+2

=
1

x

∞∑
k=0

(−1)k

(k + 1)(x+ y)k+2
.

We then integrate with respect to y to find∫ 1

0

∫ 1

0

dz dy

x(x+ y)(x+ y + z)
=

1

x

∫ 1

0

∞∑
k=0

(−1)k dy

(k + 1)(x+ y)k+2

=
1

x

∞∑
k=0

(−1)k

(k + 1)2

[
1

xk+1
− 1

(x+ 1)k+1

]

=

∞∑
k=0

(−1)k

(k + 1)2xk+2
− 1

x

∞∑
k=0

(−1)k

(k + 1)2
1

(x+ 1)k+1
.

Integrating the first term with respect to x results in

∞∑
k=0

(−1)k

(k + 1)2

∫ ∞
1

dx

xk+2
=

∞∑
k=0

(−1)k

(k + 1)3
=

3

4
ζ(3). (4.2)

On the other hand, the second term contributes

∞∑
k=0

(−1)k

(k + 1)2

∫ ∞
1

dx

x (x+ 1)k+1
. (4.3)

Finally, we note that ∫ ∞
1

dx

x(x+ 1)k+1
=

∞∑
j=k

1

j 2j
, (4.4)

which follows from the change of variables w = 1/(x + 1) and expanding a
geometric series. Combining terms, we arrive at (4.1).
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Observe that Lemma 4.1 and Theorem 1.1 immediately imply Theorem 1.3.
Let us conclude this section by deriving an alternative integral representation

for the double sum

S3 =

∞∑
k=1

(−1)k−1

k2

∞∑
j=k

1

j 2j
(4.5)

of Theorem 1.3.

Theorem 4.2. We have

S3 = −
∫ 1/2

0

Li2(−t)
t(1− t)

dt = −4

∫ π/4

0

Li2(− sin2 ϕ)

sin(2ϕ)
dϕ. (4.6)

Proof. It is not hard to show (and can even be done automatically, for instance,
using creative telescoping) that, for positive integers k, the inner sum can be
expressed in hypergeometric terms as

∞∑
j=k

1

j 2j
= log 2−

k−1∑
j=1

1

j 2j
=

1

k
2F1

(
k k

k + 1

∣∣∣∣−1

)
. (4.7)

The double sum therefore equals

S3 =

∞∑
k=1

(−1)k−1

k3
2F1

(
k k

k + 1

∣∣∣∣−1

)
. (4.8)

The classical integral representation for the hypergeometric function

2F1

(
a b

c

∣∣∣∣z) =
1

B(b, c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− xz)−a dx, (4.9)

see, for instance, [1, page 65], gives

S3 =

∫ 1

0

[ ∞∑
k=1

(−1)k−1

k2

(
x

x+ 1

)k]
dx

x
. (4.10)

The series definition (2.1) for the dilogarithm, followed by the change of variables
t = x

x+1 , therefore implies the claimed integral representation.

We note that, alternatively, the series S3 can be obtained starting from
the second integral in (4.6) by expanding the dilogarithm and using [9, Entry
2.516.2] ∫

sin2k−1 ϕ

cosϕ
dϕ = −

k−1∑
j=1

sin2j ϕ

2j
− log(cosϕ). (4.11)
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5 A companion identity via duality

Recall that Theorem 1.3 is equivalent to

− Li2,1
(
−1, 12

)
− Li3

(
− 1

2

)
= 13

24ζ(3). (5.1)

In this section, we review duality [6, Section 6.1] and apply it to the identity
(5.1) to deduce the following companion identity.

Theorem 5.1. We have∑
k,m,n≥1
k odd

1

3n
1

k(k +m)(k +m+ n)
=

13

48
ζ(3). (5.2)

We use the notation of [6] and write

l

(
s1, . . . , sk
y1, . . . , yk

)
:= Lis1,...,sk

(
1

y1
,
y1
y2
,
y2
y3
, . . . ,

yk−1
yk

)
for multiple polylogarithms as well as∫ 1

0

ω(a1)ω(a2) · · ·ω(an) :=

∫ 1

0

∫ x1

0

· · ·
∫ xn−1

0

dxn · · · dx2dx1
(xn − an) · · · (x2 − a2)(x1 − a1)

for iterated integrals. These integrals provide a natural way to express multi-
ple polylogarithms. Indeed, we have the weight-dimensional iterated integral
representation [6, (4.9)]

l

(
s1, . . . , sk
y1, . . . , yk

)
= (−1)k

∫ 1

0

k∏
j=1

ω(0)sj−1ω(yj). (5.3)

Note that the weight of the multiple polylogarithm is defined to be s1+s2+· · ·+
sk (and that this matches the number of integrations in the iterated integral
representation (5.3)).

Reversing the order of integration in (5.3) and replacing each integration
variable x by 1 − x results in the dual iterated integral representation (5.4) of
the multiple polylogarithm.

Theorem 5.2 ([6, (6.1)]). We have

l

(
s1, . . . , sk
y1, . . . , yk

)
= (−1)s1+s2+···+sk+k

∫ 1

0

k−1∏
j=0

ω(1− yk−j)ω(1)sk−j−1. (5.4)

A famous instance of duality is Euler’s formula (see, for instance, [7])

ζ(2, 1) = l

(
2 1
1 1

)
=

∫ 1

0

ω(0)ω(1)ω(1) (5.5)

= −
∫ 1

0

ω(0)ω(0)ω(1) = l

(
3
1

)
= ζ(3),

where both (5.3) and (5.4) have been used to relate one polylogarithm to its
dual.
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Proof of Theorem 5.1. Similar to (5.5), for the polylogarithms involved in (5.1),
we find that

Li1,2
(
1
2 ,−1

)
= l

(
1 2
2 −2

)
=

∫ 1

0

ω(2)ω(0)ω(−2)

= −
∫ 1

0

ω(3)ω(1)ω(−1) = l

(
1 1 1
3 1 −1

)
= Li1,1,1

(
1
3 , 3,−1

)
=

∑
n1>n2>n3≥1

(−1)n3

3n1−n2

1

n1n2n3
,

as well as

Li3
(
− 1

2

)
= l

(
3
−2

)
= −

∫ 1

0

ω(0)2ω(−2)

=

∫ 1

0

ω(3)ω(1)2 = −l
(

1 1 1
3 1 1

)
= −Li1,1,1

(
1
3 , 3, 1

)
= −

∑
n1>n2>n3≥1

1

3n1−n2

1

n1n2n3
.

Taken together, we obtain∑
n1>n2>n3≥1

1

3n1−n2

1

n1n2n3
−

∑
n1>n2>n3≥1

(−1)n3

3n1−n2

1

n1n2n3
=

13

24
ζ(3)

or, equivalently, (5.2).

6 A related simpler double sum

Ramanujan derived (1.8) by evaluating [2, Entry 9; p. 251] the function

g(z) =

∞∑
k=1

Hk
zk+1

(k + 1)2
, where Hk =

k∑
j=1

1

j
,

in polylogarithmic terms as

g(1− z) = 1
2 log2(z) log(1− z) + Li2(z) log(z)− Li3(z) + ζ(3), (6.1)

and observing that the double sum (1.8) is given by g(1/2) + Li3(1/2). We next
show that (1.9) can be derived in an analogous manner.

Lemma 6.1. For |z| < 1, define

h(z) =

∞∑
k=1

H
(2)
k

zk+1

k + 1
, where H

(2)
k =

k∑
j=1

1

j2
.

Then,

h(1− z) = 2 Li3(z)− Li2(z) log(z)− π2

6 log(z)− 2ζ(3). (6.2)
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Proof. We note that

h′(z) =

∞∑
k=1

H
(2)
k zk =

Li2(z)

1− z
.

Integrating by parts, we find

h(z) = − log(1− z) Li2(z)−
∫ z

0

log2(1− t)
t

dt = − log(1− z) Li2(z)− 2g(z),

so that the claim follows from (6.1) combined with (2.7).

It is now straightforward to deduce (1.9).

Corollary 6.2. We have

∞∑
k=1

∞∑
j=k

1

k2
1

j 2j
=

5

8
ζ(3).

Proof. Observe that

∞∑
k=1

∞∑
j=k

1

k2
1

j 2j
= h

(
1
2

)
+ Li3

(
1
2

)
,

so that the claimed evaluation follows from (6.2) together with (2.10) and (2.11).

Let us indicate that similarly approaching the double sum S3 in Theorem 1.3
is not sufficient to evaluate it. Define, for |z| < 1,

h̃(z) =

∞∑
k=1

H̃
(2)
k

zk+1

k + 1
, where H̃

(2)
k =

k∑
j=1

(−1)j−1

j2
,

so that
S3 = h̃

(
1
2

)
− Li3

(
− 1

2

)
.

Observing that

h̃′(z) =

∞∑
k=1

H̃
(2)
k zk = −Li2(−z)

1− z
,

we then find

h̃(z) = log(1− z) Li2(−z) +

∫ z

0

log(1− t) log(1 + t)

t
dt. (6.3)

In particular,

S3 =

∫ 1/2

0

log(1− t) log(1 + t)

t
dt− Li3

(
− 1

2

)
− log(2) Li2

(
− 1

2

)
. (6.4)

The integral in (6.3) can be expressed as a sum of polylogarithms at various
arguments, though the result takes a rather more complicated form than (6.2).
As a consequence, it still requires a considerable amount of polylogarithmic
relations to deduce the simple evaluation S3 = 13

24ζ(3) from (6.4).
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7 Computer algebraic approaches

We indicated in Remark 1.2 that (period) integrals such as

Z3 =

∫ ∞
1

∫ 1

0

∫ 1

0

dz dy dx

x(x+ y)(x+ y + z)
(7.1)

can be algorithmically evaluated in terms of multiple polylogarithms. These
evaluations, however, are not typically in simplified form and establishing the
necessary relations between special values of polylogarithms can be (sometimes
prohibitively) difficult. For instance, Theorem 1.3 is equivalent to the polylog-
arithmic relation

− Li1,2
(
1
2 ,−1

)
− Li3

(
− 1

2

)
= 13

24ζ(3). (7.2)

We note that −Li1,2(x,−1) = H(1,−2;x) is an instance of the harmonic poly-
logarithm introduced in [18]. A Mathematica implementation of algorithms for
working with and simplifying harmonic polylogarithms is provided by Maitre
[14]. For instance, it is possible to algorithmically convert the harmonic poly-
logarithm H(1,−2;x) to trilogarithms Li3(x) and lower order terms:

H(1,−2;x) = Li3(−x)− Li3(1− x) + Li3

(
x

1+x

)
+ Li3

(
1−x
2

)
+ Li3

(
1+x
2

)
− Li3

(
2x
x−1

)
− Li3

(
2x
1+x

)
− Li2(x) log(x+ 1)

+ 1
6 log

(
1−x
8

)
log2(1− x)− 1

2 log(x) log2(1− x)

+ log2(2)
2 log(1− x2)− log(2)

2 log2(1 + x) + π2

12 log
(

1−x
1+x

)
− 3

4ζ(3)− log3(2)
3 + π2

6 log(2).

With a bit of human effort, we can then prove (7.2) by employing relations for
the tri- and dilogarithm including those mentioned in Section 2.

The question of whether an integral like (7.1) can be automatically evaluated
by a general purpose computer algebra system evolves in time. For instance,
given (7.1), Maple 18 evaluates two of three integrals and returns a single integral
similar to (3.1). On the other hand, Mathematica 9 returns the integral (7.1)
unevaluated, while Mathematica 10 produces

Z3 = Li3
(
− 1

3

)
− 2 Li3

(
1
3

)
+ 19

8 ζ(3) + 1
2 log(3) Li2

(
1
9

)
− 3 log(3) Li2

(
1
3

)
− 1

3 log3(3) + πi
[
1
2 Li2

(
1
9

)
− 3 Li2

(
1
3

)
− 1

2 log2(3) + π2

6

]
.

Assuming that this calculation is correct, and observing that Z3 is real, we can
conclude the relation

Li2
(
1
9

)
= 6 Li2

(
1
3

)
+ log2(3)− π2

3 , (7.3)

which follows from (2.3) combined with (2.12) (see also [3, (39.4); p. 324]).
Using (7.3), the expression for the triple integral reduces to

Z3 = Li3
(
− 1

3

)
− 2 Li3

(
1
3

)
+ 19

8 ζ(3)− π2

6 log(3) + 1
6 log3(3). (7.4)
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The remaining polylogarithms can be simplified using (2.13), which results in
the desired evaluation

Z3 = 5
24ζ(3), (7.5)

which we established in Theorem 1.1.
It is an interesting phenomenon that symmetrizing a problem can occasion-

ally make it considerably more tractable by computer algebra. An impressive
instance is [17], where Paule significantly reduces the order of recurrences for
certain q-sums by “creative symmetrizing”. In the remainder of this section,
we indicate that a symmetrizing transformation also makes the integral Z3

more palatable for symbolic evaluation. To begin with, the change of variables
x 7→ 1/x transforms the integral (7.1) to the unit cube:

Z3 =

∫ 1

0

∫ 1

0

∫ 1

0

x dx dy dz

(1 + xy)(1 + x(y + z))
. (7.6)

Denote the integrand of (7.6) by u(x, y, z). The symmetrization of the integral
is defined in terms of

usym(x, y, z) =
1

3
[u(x, y, z) + u(y, z, x) + u(z, x, y)] (7.7)

as

Z3 =

∫ 1

0

∫ 1

0

∫ 1

0

usym(x, y, z) dx dy dz. (7.8)

This form seems to be more favorable to a symbolic calculation. Indeed, Math-
ematica is able to directly evaluate the symmetrized integral (7.8) as

Z3 = 5
24ζ(3)− πi

6

[
Li2
(
1
9

)
− 6 Li2

(
1
3

)
− log2(3) + π2

3

]
. (7.9)

Identity (7.3), or simply observing that (7.8) is real, then gives the value Z3 =
5
24ζ(3) of Theorem 1.1.

8 Conclusions

We discussed several approaches to the triple integral (1.2) as well as the equiv-
alent double sum (1.5). However, in each case, we eventually required the in-
troduction of polylogarithms and nontrivial relations between them. It remains
an interesting challenge to relate either of (1.2) and (1.5) to ζ(3) directly.

In another direction, let us note that the unit square integral for 1
2ζ(2) in

Remark 1.4, a 2-dimensional analog of the integral (1.2), has other simpler
higher-dimensional generalizations. Indeed, for any m ≥ 2, we have the follow-
ing integrals evaluating in terms of ζ(m):∫ 1

0

· · ·
∫ 1

0

dx1 · · · dxm
1− x1 · · ·xm

= ζ(m),

∫ 1

0

· · ·
∫ 1

0

dx1 · · · dxm
1 + x1 · · ·xm

= (1− 21−m)ζ(m).
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In particular,∫ 1

0

∫ 1

0

∫ 1

0

dxdydz

1− xyz
= ζ(3),

∫ 1

0

∫ 1

0

∫ 1

0

dxdydz

1 + xyz
=

3

4
ζ(3).

Other interesting triple integrals involving ζ(3) have been considered in the
literature. For instance, in his proof, inspired by Apéry, of the irrationality of
ζ(3), Beukers [4] considers the integrals

Jn =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1
dxdydz

and shows that
Jn = A(n)ζ(3) +B(n),

where

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

are the Apéry numbers and B(n) are certain rational numbers (satisfying the
same three-term recurrence as the Apéry numbers). For instance,

J0 =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

1

1− (1− xy)z
dxdydz = ζ(3),

J1 =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

x(1− x)y(1− y)z(1− z)
(1− (1− xy)z)2

dxdydz = 5ζ(3)− 6.

Beukers [4] shows that d3nJn = anζ(3) + bn, with dn = lcm(1, 2, . . . , n), are
integer linear combinations of ζ(3) and 1 (that is, an, bn ∈ Z). He then deduces
the irrationality of ζ(3) from the bounds 0 < |anζ(3)+ bn| < (4/5)n, which hold
for large enough n.

Recently, Brown [8] introduced cellular integrals, generalizing Beukers’ in-
tegrals Jn, and showed that these cellular integrals are special linear forms in
multiple zeta values, which reproduce (and vastly generalize) many of the known
constructions related to irrationality questions for zeta values. We close by won-
dering whether the triple integral (1.2) can be similarly embedded in an infinite
family of linear forms in ζ(3) and 1.
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