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Abstract

We provide a general theorem for evaluating trigonometric Dirichlet
series of the form

∑
n>1

f(πnτ)
ns

, where f is an arbitrary product of the
elementary trigonometric functions, τ a real quadratic irrationality and s
an integer of the appropriate parity. This unifies a number of evaluations
considered by many authors, including Lerch, Ramanujan and Berndt.
Our approach is based on relating the series to combinations of derivatives
of Eichler integrals and polylogarithms.

1 Introduction

Special values of trigonometric Dirichlet series have been studied by Cauchy,
Lerch, Mellin, Hardy, Ramanujan, Watson and many others since the early
20th century. Examples, which we will refer to later, include [Ber76], [Ber77],
[Ber78], [KMT13], [LRR14], [BS14], [CG14]. Many further references, especially
to early publications, can be found in [Ber89, Chapter 14] and [Ber98, Chapter
37]. The long history of these series includes, as an early example, the formulas

∞∑
n=1

cot(πni)

n2r−1
=

1

2
(2πi)2r−1

r∑
m=0

(−1)m+1 B2m

(2m)!

B2(r−m)

(2(r −m))!
, (1)

for even r, which go back to Cauchy and Lerch with later proofs given by
several authors; see [Ber76, (6.2)] or [Ber89, Entry 14.25] for a detailed history.
In particular, the special case r = 4 in (1), that is

∞∑
n=1

cot(πni)

n7
= − 19i

56, 700
π7, (2)
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was one of the formulas Ramanujan included in his first letter to Hardy [Ber89,
Entry 14.25(ii)]. These series are usually written in terms of the hyperbolic
cotangent (so that all quantities involved are real), but the above forms are
more natural for our purposes. The evaluations (1) are a consequence of and
are explained by Ramanujan’s famous and inspiring formula

α−m

{
ζ(2m+ 1)

2
+

∞∑
n=1

n−2m−1

e2αn − 1

}
= (−β)−m

{
ζ(2m+ 1)

2
+

∞∑
n=1

n−2m−1

e2βn − 1

}

−22m
m+1∑
n=0

(−1)n
B2n

(2n)!

B2m−2n+2

(2m− 2n+ 2)!
αm−n+1βn, (3)

where α and β are positive numbers with αβ = π2 and m is any nonzero integer.
We refer to [Ber77] or [Ber89, Entry 14.21(i)], as well as the references therein.
In modern language, (3) can be seen to express the fact that, for odd s, the
cotangent Dirichlet series [GMR11]

ξs(τ) =

∞∑
n=1

cot(πnτ)

ns
(4)

is an Eichler integral of the Eisenstein series of weight s + 1 and level 1. We
briefly review Eichler integrals in Section 4. As a consequence, for certain s,
ξs(τ) can be explicitly evaluated at the values τ = i or τ = e2πi/3, which are
fixed points of linear fractional transformations induced by the modular group
SL2(Z). Up to the action of SL2(Z), these are the only fixed points in the upper
half-plane. More generally, however, every real quadratic irrationality occurs
as the fixed point of some γ ∈ SL2(Z). This is reviewed in Section 3. Though
convergence of series such as (4) becomes an interesting issue when τ is real,
see Section 2, one finds that ξs(ρ) ∈ ρπsQ for any real quadratic irrational ρ
provided that s > 2 is odd. For instance,

ξ3(
√

7) =

∞∑
n=1

cot(πn
√

7)

n3
= −
√

7

20
π3. (5)

Such evaluations of the cotangent Dirichlet series are discussed in [Ber76]. See
Example 1.4 for similar known results.

As a recent addition to the zoo of special values of trigonometric Dirichlet
series, Y. Komori, K. Matsumoto and H. Tsumura [KMT13], based on formulas
for the Barnes multiple zeta-functions, discovered identities including

∞∑
n=1

cot2(πnζ3)

n4
= − 31

2835
π4,

∞∑
n=1

csc2(πnζ3)

n4
=

1

5670
π4, (6)

where ζ3 = e2πi/3 is the cube root of unity. One purpose of and motivation for
the present note is to put all these evaluations into a general context.
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Our main result shows that, depending on the parity of s, any trigonometric
Dirichlet series

ψa,bs (τ) =

∞∑
n=1

triga,b(πnτ)

ns
, triga,b = seca cscb,

where a, b are integers, has the property that it can be evaluated when τ is a
real quadratic irrationality. Note that any product of the trigonometric func-
tions cos(x), sin(x), sec(x), csc(x), tan(x), and cot(x) can be expressed as
seca(x) cscb(x) for (unique) integers a and b. Our main result is the follow-
ing.

Theorem 1.1. Let ρ be a real quadratic irrationality, and let a, b, s be integers
such that, for convergence, s > max(a, b, 1)+1. If s and b have the same parity,
then

ψa,bs (ρ) =

∞∑
n=1

triga,b(πnρ)

ns
∈ πsQ(ρ).

Moreover, if, in addition, ρ2 ∈ Q and a+ b > 0, then ψa,bs (ρ) ∈ (πρ)sQ.

The underlying reason for Theorem 1.1, which we prove in Section 5, is
that ψa,bs (τ) can be expressed as a linear combination of derivatives of Eichler
integrals and polylogarithms. That the series ψa,bs (τ) indeed converges when τ
is a real algebraic irrationality and s > max(a, b, 1) + 1 is proved in Section 2.

Note that Theorem 1.1 includes as a special case the recent conjecture
[LRR14] of M. Laĺın, F. Rodrigue and M. Rogers that, for even s > 0 and
all rational r > 0, the values

ψ1,0
s (
√
r) =

∞∑
n=1

sec(πn
√
r)

ns

are rational multiples of πs. Independent proofs of this conjecture have been
given by P. Charollois and M. Greenberg [CG14] as well as B. Berndt and
A. Straub [BS14].

Example 1.2. We record some random examples to illustrate Theorem 1.1:

∞∑
n=1

sec2(πn
√

5)

n4
=

14

135
π4,

∞∑
n=1

cot2(πn
√

5)

n4
=

13

945
π4,

∞∑
n=1

csc2(πn
√

11)

n4
=

8

385
π4,

∞∑
n=1

sec3(πn
√

2)

n4
= −2483

5220
π4,

∞∑
n=1

tan3(πn
√

6)

n5
=

35, 159

17, 820
√

6
π4.
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These values have been obtained by tracing the proof of Theorem 1.1, which
provides a method to compute such evaluations.

In addition, the evaluation

ψ−2,13 (
√

2) =

∞∑
n=1

(cos cot)(πn
√

2)

n3
=

[
1

2
− 253

360
√

2

]
π3

illustrates that the condition a + b > 0 is required for the last part of Theo-
rem 1.1.

Remark 1.3. Theorem 1.1 is stated for real quadratic irrationalities ρ only.
Its proof, however, extends to certain nonreal ρ which are the fixed points of
linear fractional transformations γ ∈ SL2(Z). For instance, the evaluation of
ψ−2,24 (ζ3) in equation (6) can be achieved by our method because ζ3 is fixed
by ST , defined in (14), and because the cotangent Dirichlet series is an Eichler
integral for the full modular group. Similarly, formula (2), and more generally
(1), follow by evaluating ψ−1,14r−1(i) as in the proof of Theorem 1.1.

There are, however, two complications for these (and other) nonreal values.
Firstly, for instance, while ζ3 is fixed by ±ST and ±(ST )2, it is easily seen from
(15) that ζ3 is not fixed by any other nontrivial linear fractional transformation.
In particular, it is not fixed by any transformation in Γ(2). In consequence, we
cannot apply our approach to evaluate the secant Dirichlet series ψ1,0

s (ζ3) for
any s (and, to our knowledge, no evaluation as an algebraic multiple of πs is
known).

Secondly, the quantity (23), which we divide by, can be zero. This is the
reason why we can evaluate ψ−2,2s (ζ3) only for s of the form s = 6r + 4. These
are exactly the cases for which these series are evaluated in [KMT13, Corollary
6.4] by different means.

Example 1.4. Besides (4) or (6), other types of natural trigonometric Dirichlet
series have been considered by many authors. For instance, Ramanujan recorded

∞∑
n=0

tanh((2n+ 1)π/2)

(2n+ 1)3
=
π3

32
,

∞∑
n=1

(−1)n+1 csch(πn)

n3
=

π3

360
,

as well as
∞∑
n=1

χ(n) sech(πn/2)

n5
=

π5

768
,

where χ = (−4· ) denotes the nonprincipal Dirichlet character modulo 4 (that is,

χ(n) = 0 for even n, and χ(n) = (−1)(n−1)/2 for odd n). These formulas can
be found in [Ber89, Entry 14.25] along with their history and generalizations.
Since it might not be immediately obvious, let us indicate in (7), (8) and (9)
how these series relate to the series ψa,bs that we consider here. In particular,
this demonstrates that the approach of Theorem 1.1 applies to establishing the
corresponding evaluations given by Ramanujan.
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To begin with, since csc(z + πn) = (−1)n csc(z), we find

∞∑
n=1

(−1)n+1 csc(πnτ)

ns
= −ψ0,1

s (τ + 1). (7)

Next, note that cot(z + πn
2 ) equals cot(z) if n is even, and − tan(z) if n is odd.

Consequently,

∞∑
n=1

cot(πn(τ + 1
2 ))

ns
=

1

2s

∞∑
n=1

cot(2πnτ)

ns
−
∞∑
n=0

tan(π(2n+ 1)τ)

(2n+ 1)s
,

or, equivalently,

∞∑
n=0

tan(π(2n+ 1)τ)

(2n+ 1)s
=

1

2s
ψ−1,1s (2τ)− ψ−1,1s

(
τ + 1

2

)
. (8)

Explicit evaluations of the series (8) for certain real quadratic irrationalities τ
have been obtained in [Ber78, Theorem 4.11]. Theorem 1.1 shows, less explicitly,
that such evaluations are possible for all real quadratic irrationalities τ .

Similarly, csc(z+πn
2 ) equals (−1)n/2 csc(z) if n is even, and (−1)(n−1)/2 sec(z)

if n is odd. We thus conclude

∞∑
n=1

χ(n) sec(πnτ)

ns
= ψ0,1

s

(
τ + 1

2

)
− 1

2s
ψ0,1
s (2τ + 1). (9)

For each of the series (7), (8) and (9), Theorem 1.1 proves that, depending on
parity, they evaluate at real quadratic irrationalities τ as multiples of πs. We
conclude with some simple explicit examples:

∞∑
n=1

(−1)n+1 csc(πn
√

13)

n3
= − π3

12
√

13
,

∞∑
n=0

tan(π(2n+ 1)
√

5)

(2n+ 1)5
=

23π5

3456
√

5
,

∞∑
n=1

χ(n) sec(πn
√

7)

n3
= −7π3

96
.

2 Convergence

Let a > 0 and b > 0 and assume that at least one of them is positive. Then the
series

ψa,bs (τ) =

∞∑
n=1

(seca cscb)(πnτ)

ns

converges absolutely for all nonreal τ . For rational τ , the series ψa,bs (τ) converges
absolutely for s > 1 provided that all its terms are finite; this requires b 6 0
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and, in addition, τ needs to have odd denominator if a > 0. Convergence for
real irrationalities τ , on the other hand, is a much more subtle question; see,
for instance, [Riv12].

It is shown in [LRR14, Theorem 1] that the secant Dirichlet series ψ1,0
s (τ)

converges absolutely for algebraic irrational τ whenever s > 2. While the case
s > 2 follows from an application of the Thue-Siegel-Roth Theorem, the case
s = 2 requires a rather subtle argument due to Florian Luca. The next result
generalizes these conclusions to ψa,bs (τ) for any integers a, b. In addition, it
strengthens [Ber76, Theorem 5.1], which proves a weaker result in the case
(a, b) = (−1, 1).

Theorem 2.1. Let a, b be integers and τ real. The series ψa,bs (τ) converges
absolutely

1. for s > 1, if a 6 0 and b 6 0;

2. for s > max(a, b) + 1, if τ is algebraic irrational and max(a, b) > 0.

Proof. The first part is obvious because cosine and sine are bounded on the real
line, so that, for a 6 0 and b 6 0, ψa,bs (τ) can be bounded from above by the
Riemann zeta function ζ(s).

For the second part, note that sec2(z) csc2(z) = sec2(z)+ csc2(z) implies the
simple reduction identity

triga,b(z) = triga−2,b(z) + triga,b−2(z). (10)

Applying (10) recursively and again using boundedness of cosine and sine, our
claim follows if we can show that, for λ > 0 and algebraic irrational τ , the series

ψλ,0s (τ) =

∞∑
n=1

secλ(πnτ)

ns
, ψ0,λ

s (τ) =

∞∑
n=1

cscλ(πnτ)

ns

converge absolutely whenever s > λ+1. These claims are proved in Lemmas 2.3
and 2.5 below.

In the same manner as in [LRR14], we will use the following weak version
of a result due to Worley [Wor81]. Here and in the sequel, pn/qn denotes the
nth convergent of the continued fraction expansion [a0; a1, a2, . . .] of τ . It is
well-known that pn and qn satisfy

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2. (11)

Theorem 2.2. Let τ be irrational, k > 1
2 , and p/q a rational approximation to

τ in reduced form for which ∣∣∣∣τ − p

q

∣∣∣∣ < k

q2
.

Then p/q is of the form

p

q
=
apm + bpm−1
aqm + bqm−1

, |a|, |b| < 2k,
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where a and b are integers, and m is the largest index up to which the continued
fractions of τ and p/q agree.

The next result is proved by a natural extension of the proof of [LRR14,
Theorem 1], which is due to Florian Luca. As indicated in Remark 2.4, absolute

convergence of
∑∞
n=1

cscλ(πnτ)
ns for s > λ+ 1 is much simpler to deduce.

Lemma 2.3. Let λ > 0 and τ be algebraic irrational. Then the series ψ0,λ
λ+1(τ) =∑∞

n=1
cscλ(πnτ)
nλ+1 converges absolutely.

Proof. Starting with the elementary

| sin(πτ)| > |τ − k|,

where k = [τ ] is the nearest integer to τ , we obtain

| csc(πnτ)|λ

nλ+1
6

1

nλ+1|nτ − kn|λ
=

1

n2λ+1|τ − kn/n|λ

with kn = [nτ ], which is the integer maximizing the right-hand side. We first
consider those indices n for which the right-hand side is sufficiently small. In-
deed, we notice that our series restricted to the indices in the set

Wτ =

{
n > 0 :

∣∣∣∣τ − kn
n

∣∣∣∣ > (log n)α

n2

}
is easily seen to converge when we choose α large enough; namely,

∑
n∈Wτ

| csc(πnτ)|λ

nλ+1
6
∑
n∈Wτ

1

n2λ+1|τ − kn/n|λ
6
∑
n∈Wτ

1

n(log n)αλ
<∞

provided that αλ > 1. In the sequel, we assume that α has been chosen such
that αλ > 1.

On the other hand, assume that n 6∈Wτ , in which case∣∣∣∣τ − kn
n

∣∣∣∣ 6 (log n)α

n2
. (12)

Let pm/qm be the convergents of τ and let ` be such that n < q`. Then Worley’s
Theorem 2.2 applied with k = (log q`)

α/d2, where d = (kn, n), shows that

kn
n

=
apm + bpm−1
aqm + bqm−1

where m < ` and a, b are integers with |a|, |b| < 2(log q`)
α/d2. In particular,

n = d(aqm + bqm−1) = rqm + sqm−1, where m < ` and r, s are integers with
|r|, |s| < 2(log q`)

α. We conclude that there can be at most 16`(log q`)
2α values

of n less than q` for which (12) holds.
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Since τ is algebraic irrational, the Thue–Siegel–Roth Theorem implies that,
for each ε > 0, there is a constant C(τ, ε) such that∣∣∣∣τ − p

q

∣∣∣∣ > C(τ, ε)

q2+ε
(13)

for all fractions p/q. On the other hand, we have

1

q`q`+1
>

∣∣∣∣τ − p`
q`

∣∣∣∣ ,
which combined with the Thue–Siegel–Roth Theorem shows that q`+1 < C(τ, ε)q1+ε` .
Because the convergents p`/q` of continued fractions provide best possible ap-
proximations to τ among fractions with denominator at most q`, we find that,
for n < q`, ∣∣∣∣τ − kn

n

∣∣∣∣ > ∣∣∣∣τ − p`
q`

∣∣∣∣ > C(τ, ε)

q2+ε`

.

Assuming, in addition, n > q`−1, we thus obtain

| csc(πnτ)|λ

nλ+1
6

1

n2λ+1|τ − kn/n|λ
<

q
(2+ε)λ
`

C(τ, ε)λq2λ+1
`−1

<
C(τ, ε)(1+ε)λ

q
1−ε(3+ε)λ
`−1

=
C(τ, ε′)

q1−ε
′

`−1
,

where ε′ = ε(3 + ε)λ > 0.
Combining our observations, we have∑

n 6∈Wτ

| csc(πnτ)|λ

nλ+1
6
∞∑
`=1

16`(log q`)
2αC(τ, ε′)

q1−ε
′

`−1
,

and convergence follows from the fact that, by comparison with the Fibonacci
numbers F` via (11), the sequence q` grows at least as fast as ϕ` with ϕ =
(1 +

√
5)/2.

Remark 2.4. With λ and τ as in Lemma 2.3, absolute convergence of the series

∞∑
n=1

cscλ(πnτ)

nλ+1+δ
,

for δ > 0, is much simpler to deduce. Indeed, estimating as in the proof of
Lemma 2.3, we find

| csc(πnτ)|λ

nλ+1+δ
6

1

n2λ+1+δ|τ − kn/n|λ
<
C(τ, ε)−λ

n1+δ−λε
,

where C(τ, ε) is the constant from applying the Thue–Siegel–Roth Theorem
(13). Convergence follows upon choosing ε such that λε < δ.

Lemma 2.5. Let λ > 0 and τ be algebraic irrational. Then the series ψλ,0λ+1(τ) =∑∞
n=1

secλ(πnτ)
nλ+1 converges absolutely.
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Proof. The proof proceeds along similar lines as the proof of Lemma 2.3. Indeed,
we have the elementary relation

sec(τ) = csc
(
τ +

π

2

)
,

so that

| sec(πnτ)|λ

nλ+1
=
| csc

(
π(nτ + 1

2 )
)
|λ

nλ+1
6

1

nλ+1|nτ + 1
2 − kn|λ

=
1

n2λ+1
∣∣τ − 2kn−1

2n

∣∣λ
with kn = [nτ + 1

2 ]. It remains to argue as in the proof of Lemma 2.3 and we
omit the details.

3 Background on fractional linear transforma-
tions

We denote with T , S and R the matrices

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
, R =

(
1 0
1 1

)
, (14)

and recall that the matrices T and S generate Γ1 = SL2(Z). The principal
congruence subgroup Γ(N) of Γ1 consists of those matrices that are congruent
to the identity matrix I modulo N . More generally, congruence subgroups of
Γ1 are those subgroups Γ 6 Γ1 containing Γ(N) for some N ; the minimal such
N being the level of Γ.

As usual, we consider the action of Γ1 on complex numbers τ by fractional
linear transformations and write(

a b
c d

)
· τ =

aτ + b

cτ + d
.

Correspondingly, Γ1 acts on the space of functions (on the upper half-plane or
on the full complex plane) via the slash operators |k, defined by

(f |kγ)(τ) = (cτ + d)−kf(γτ), γ =

(
a b
c d

)
∈ Γ1.

This action extends naturally to the group algebra C[Γ1].
Given a quadratic irrationality τ , let Ax2 + Bx + C, with A > 0 and

(A,B,C) = 1, be its minimal polynomial and ∆ = B2 − 4AC its discrimi-
nant. We follow the exposition of [Zag08, p. 72] and observe that the fractional
linear transformation

γ =

(
a b
c d

)
∈ SL2(Z).
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fixes τ if and only if (c, d − a,−b) = u(A,B,C) for some integral factor of
proportionality u. In that case, writing t = a+ d for the trace of γ, we have

γ =

(
t−Bu

2 −Cu
Au t+Bu

2

)
, det(γ) =

t2 −∆u2

4
. (15)

Let us now restrict to real quadratic irrationalities τ . In that case, ∆ > 0. The
above argument demonstrates that, if t, u are solutions to the Pell equation

t2 −∆u2 = 4,

then the fractional linear transformation γ given in (15) fixes τ (and all fractional
linear transformations fixing τ arise that way).

Lemma 3.1. Let τ be a quadratic irrationality, and Γ 6 Γ1 a congruence
subgroup. Then there exists γ ∈ Γ, with γ 6= ±I, such that γ · τ = τ .

Proof. Let N be such that Γ(N) 6 Γ. For every positive nonsquare k, Pell’s
equation

X2 − kY 2 = 1 (16)

has nontrivial solutions X, Y . A proof of this fact was first published by La-
grange in 1768 [Lag92], and we refer to [Len02] for further information and
background. As before, let ∆ be the discriminant of τ . Then k = ∆N2 is
positive and not a perfect square, so that we find integers X,Y , with Y 6= 0,
solving (16). In light of the above discussion, setting t = 2X and u = 2NY in
(15) gives a fractional linear transformation γ which fixes τ . Clearly, γ ∈ Γ(N)
and γ 6= ±I.

4 Eichler integrals

If f(τ) is a modular form of weight k with respect to Γ 6 Γ1, then any (k−1)st
antiderivative of f(τ) is called an Eichler integral . Such an Eichler integral F (τ)
is characterized by the property that, for any γ ∈ Γ, F |2−k[γ−1] is a polynomial
of degree at most k − 2. These are referred to as the period polynomials of f
and their coefficients encode the critical L-values of f . For the general theory
of period polynomials we refer to [PP13] and the references therein.

As mentioned in the introduction, Ramanujan’s formula (3) expresses the
fact that, for odd s, the cotangent Dirichlet series ξs(τ), defined in (4), is,
essentially, an Eichler integral. Indeed, (3) may be expressed as

ξ2m−1|2−2m[S − 1] = (−1)m(2π)2m−1
m∑
n=0

B2n

(2n)!

B2m−2n

(2m− 2n)!
τ2n−1.

The reason that ξ2m−1|2−2m[S−1] are rational functions, instead of polynomials,
is that the sth derivative of ξs(τ) is an Eisenstein series with the constant term
of its Fourier expansion missing. We refer to [GMR11] for more details on the
cotangent Dirichlet series.
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Similarly, it was shown in [LRR14] and [BS14] that, for even s, the secant
Dirichlet series

ψ1,0
s (τ) =

∞∑
n=1

sec(πnτ)

ns

is, essentially, an Eichler integral of weight 1 − s with respect to the modular
group Γ2 = 〈T 2, R2〉 generated by the matrices

T 2 =

(
1 2
0 1

)
, R2 =

(
1 0
2 1

)
. (17)

In other words, Γ2 6 Γ(2) is the subgroup of the principal modular subgroup
Γ(2) consisting of those matrices whose diagonal entries are congruent to 1
modulo 4. More precisely, for any γ ∈ Γ2,

ψ1,0
s |1−s[γ − 1] = πsps(γ; τ), (18)

where ps(γ; τ) is a rational function in τ with rational coefficients. To be explicit,
we have

ps(T
2; τ) = 0,

ps(R
2; τ) = [zs−1]

sin(τz)

sin(z) sin((2τ + 1)z)
,

from which ps(γ; τ) can be derived recursively in light of the cocycle relation

ps(αβ; τ) = ps(α; τ)|1−sβ + ps(β; τ).

Several alternative expressions for ps(R
2; τ), for instance as convolution sums

involving Bernoulli numbers, are given in [LRR14] and [BS14].

5 Evaluating trigonometric Dirichlet series

The goal of this section is to prove Theorem 1.1. Let us begin by first considering
the case a 6 0 and b 6 0, which is much simpler and of a rather different nature
than the other cases. Indeed, in that case ψa,bs (τ), with s of the same parity as
b, is piecewise polynomial in τ .

Lemma 5.1. Let τ be real, and let a, b, s be integers such that a 6 0, b 6 0 and
s > 1. If s and b have the same parity, then

ψa,bs (τ) =

∞∑
n=1

triga,b(πnτ)

ns
= πsf(τ),

where f(τ) is piecewise polynomial in τ with rational coefficients on each piece.

11



Proof. Recall the classical formulas, valid for 0 < τ < 1,

∞∑
n=1

cos(2πnτ)

n2m
=

(−1)m+1

2

(2π)2m

(2m)!
B2m(τ), (19)

∞∑
n=1

sin(2πnτ)

n2m+1
=

(−1)m+1

2

(2π)2m+1

(2m+ 1)!
B2m+1(τ), (20)

which may be found, for instance, in [Ber77, Theorem 3.2] or [Lew81, Section
7.5.3]. Here, Bn(x) denotes the nth Bernoulli polynomial. Note that triga,b(τ)
is an even or odd function depending on whether b is even or odd. Writing
triga,b(τ) as a Fourier cosine or Fourier sine series, depending on the parity of b,

we may express ψa,bs (τ) as a finite linear combination of series of the type (19)
or (20). This shows that ψa,bs (τ) is indeed πs times a piecewise polynomial in τ
with rational coefficients.

The next result is a crucial building block for our proof of Theorem 1.1.
Note that ψ1,0

s is the secant Dirichlet series.

Proposition 5.2. Let ψs = ψ1,0
s . Let ρ a real quadratic irrationality, and j, s

nonnegative integers with s > 2j + 2. If j and s have the same parity, then

(Djψs)(ρ) ∈ πsQ(ρ).

If, in addition, ρ2 ∈ Q, then (Djψs)(ρ) ∈ (πρ)sQ.

Proof. Observe that the statement for j = 0 has been proven in [BS14] and
follows from (18). We will prove the general statement by induction on j.
In preparation, we first make the effect of differentiation on period functions
explicit.

Given a function F , integer k and γ =

(
a b
c d

)
∈ Γ(1), denote with

pF,k(γ; τ) the function

pF,k(γ; τ) = F |k[γ − 1](τ) = (cτ + d)−kF

(
aτ + b

cτ + d

)
− F (τ).

If F is an Eichler integral of weight k, which transforms with respect to γ, then
pF,k(γ; τ) is one of its period polynomials. By differentiating both sides with
respect to τ , we find

DpF,k(γ; τ) = −ck(cτ + d)−k−1F (γτ) + (cτ + d)−k−2(DF )(γτ)− (DF )(τ)

= (DF )|k+2[γ − 1](τ)− ck

cτ + d
F |kγ

= pDF,k+2(γ; τ)− ck

cτ + d
(F (τ) + pF,k(γ; τ)),

and hence

pDF,k+2(γ; τ) =
ck

cτ + d
(F (τ) + pF,k(γ; τ)) +DpF,k(γ; τ). (21)

12



We now apply this observation in the case F = ψs and k = 1 − s. Assuming
that s is even and γ ∈ Γ2, equation (18) shows that pψs,1−s(γ; τ) ∈ πsQ(τ).
Inductively applying (21), we then find that

(cτ + d)s−2j−1(Djψs)(γτ)− (Djψs)(τ) = πsf(τ) +

j−1∑
m=0

fm(τ)(Dmψs)(τ),

where f(τ), f0(τ), . . . , fj−1(τ) are rational functions in τ with rational coeffi-
cients (these functions, of course, depend on j and s). By Lemma 3.1, there
exists γ ∈ Γ2 > Γ(4) such that ρ is fixed by γ. Consequently, we obtain

(Djψs)(ρ) = πsg(ρ) +

j−1∑
m=0

gm(ρ)(Dmψs)(ρ), (22)

where the rational functions g(τ), g0(τ), . . . , gj−1(τ) are obtained from f(τ), f0(τ), . . . , fj−1(τ)
by dividing by

(cτ + d)s−2j−1 − 1. (23)

It is important to note that the condition s > 2j + 2 guarantees (23) to
be nonzero when τ is a real quadratic irrationality. The first claim, that is
(Djψs)(ρ) ∈ πsQ(ρ), now follows by induction on j.

For the second claim, suppose that ρ =
√
r, where r ∈ Q. Being algebraic

conjugates, −ρ is fixed by γ as well so that (22) also holds with ρ replaced by
−ρ. Also, observe that (Dmψs)(τ)/τs is an even function of τ . By induction,
we may assume that, for m = 0, 1, . . . , j − 1,

(Dmψs)(ρ)

ρs
=

(Dmψs)(−ρ)

(−ρ)s
∈ πsQ.

In combination with equation (22), we thus find that

(Djψs)(ρ)

ρs
= πsh(ρ),

(Djψs)(−ρ)

(−ρ)s
= πsh(−ρ),

where h(τ) ∈ Q(τ) is a (single) rational function with rational coefficients. Since
the left-hand sides are equal, we conclude that h(ρ) = h(−ρ). The rationality
of h(τ) then implies that h(ρ) ∈ Q. This proves the claim.

We next observe that the previous result for the secant Dirichlet series ψ1,0
s

carries over to the cases of the cosecant Dirichlet series ψ0,1
s , the cotangent

Dirichlet series ψ−1,1s , and the tangent Dirichlet series ψ1,−1
s .

Proposition 5.3. Let (a, b) be one of (1, 0), (0, 1), (−1, 1), (1,−1). Let ρ be
a real quadratic irrationality, and j, s nonnegative integers with s > 2j + 2. If
j + b and s have the same parity, then

(Djψa,bs )(ρ) ∈ πsQ(ρ).

If, in addition, ρ2 ∈ Q, then (Djψa,bs )(ρ) ∈ (πρ)sQ.
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Proof. The case (a, b) = (1, 0) was proved in Proposition 5.2 using the fact that,
for s of the required parity (namely, s even), ψ1,0

s is an Eichler integral of weight
1−s with respect to the modular group Γ2, whose period functions are πs times
a rational function with rational coefficients.

Recall that, for odd s, the cotangent Dirichlet series ψ−1,1s is an Eichler
integral with respect to the full modular group. Indeed, Ramanujan’s formula
(3) shows that, for s = 2m− 1,

ψ−1,1s |1−s[S − 1] = (−1)m(2π)s
m∑
n=0

B2n

(2n)!

B2(m−n)

(2(m− n))!
τ2n−1,

ψ−1,1s |1−s[T − 1] = 0.

Consequently, the period functions are again πs times a rational function with
rational coefficients. The proof of Proposition 5.2 therefore applies to show the
case (a, b) = (−1, 1) as well.

Finally, note that the trigonometric relation csc(z) = cot(z/2) − cot(z) im-
plies that, for odd s, the cosecant Dirichlet series ψ0,1

s is an Eichler integral
with respect to Γ0(2), the congruence subgroup of Γ1 consisting of those ma-
trices whose upper-right entry is even. Likewise, tan(z) = cot(z) − 2 cot(2z)
shows that, for odd s, the tangent Dirichlet series ψ1,−1

s is an Eichler integral
with respect to Γ0(2), consisting of those matrices in Γ1 whose lower-left entry
is even. Again, the period functions are of the required form to apply the proof
of Proposition 5.2 also in these two final cases.

We are finally prepared to prove Theorem 1.1, which is restated below for
the convenience of the reader.

Theorem 5.4. Let ρ be a real quadratic irrationality, and let a, b, s be integers
such that, for convergence, s > max(a, b, 1)+1. If s and b have the same parity,
then

ψa,bs (ρ) =

∞∑
n=1

triga,b(πnρ)

ns
∈ πsQ(ρ).

Moreover, if, in addition, ρ2 ∈ Q and a+ b > 0, then ψa,bs (ρ) ∈ (πρ)sQ.

Proof. The case a 6 0 and b 6 0 follows as a special case of Lemma 5.1.
Next, consider the case a > 0 and b > 0. By applying (10), that is ψa,bs =

ψa−2,bs + ψa,b−2s , recursively, we find that the general case follows if we can
evaluate the cases (a, b) with a ∈ {−1, 0} and b > 0 as well as the cases (a, b)
with b ∈ {−1, 0} and a > 0.

In the remaining cases, we have either a > 0 and b 6 0, or a 6 0 and b > 0.
If a < −1, then we apply ψa,bs = ψa+2,b

s − ψa+2,b−2
s , which follows from (10),

while, if b < −1, then we similarly apply ψa,bs = ψa,b+2
s − ψa−2,b+2

s . Proceeding
recursively, the general case reduces to the cases (a, b) with a ∈ {−1, 0} and
b > 0 as well as the cases (a, b) with b ∈ {−1, 0} and a > 0. Note that, if the
condition a+ b > 0 holds initially, then it holds for all the recursively generated
cases.
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In summary, it remains to show the claim in the cases where (a, b) takes one
of the four forms (a, 0), (a,−1), (0, b), or (−1, b) with a, b > 0 (in each of these
cases, we obviously have a + b > 0). In the remainder, we will show how to
prove the case (a, 0). The other cases follow similarly.

Denote D = d/dτ . Note that D seca(τ) = a tan(τ) seca(τ). Differentiating
once more, we find

seca+2(τ) =
1

a(a+ 1)
(D2 + a2) seca(τ).

This shows that, for odd a,

seca(τ) =
1

(a− 1)!
(D2 + (a− 2)2)(D2 + (a− 4)2) · · · (D2 + 12) sec(τ),

which implies that ψa,0s is a linear combination of derivatives Djψ1,0
s of the

secant Dirichlet series; more precisely, we find that

ψa,0s (τ) =

(a−1)/2∑
j=0

bj
π2j

(D2jψ1,0
s+2j)(τ)

for some rational numbers bj . By the assumption s > a + 1, Proposition 5.2
applies and the claimed evaluation of ψa,0s (ρ) follows when a > 0 is odd. For
even a, we similarly have

seca(τ) =
1

(a− 1)!
(D2 + (a− 2)2)(D2 + (a− 4)2) · · · (D2 + 22)D tan(τ),

demonstrating that ψa,0s now is a linear combination of derivatives of the tangent
Dirichlet series. Our claim therefore follows analogously from Proposition 5.3.

6 Conclusion

We have shown that all Dirichlet series
∑∞
n=1 f(πnτ)/ns of the appropriate

parity, with f(τ) an arbitrary product of the elementary trigonometric functions,
evaluate as a (simple) algebraic multiple of πs if τ is a real quadratic irrationality.
Can this, in interesting cases, be extended to series such as

∞∑
n=1

cot(πnτ1) · · · cot(πnτr)

ns
,

where τ1, . . . , τr are quadratic (or algebraic) irrationalities? Some examples are
given in [KMT13, Example 6.5], where it is shown that, for instance,

∞∑
n=1

(−1)n+1 csc(πnζ5) csc(πnζ25 ) · · · csc(πnζ45 )

n6
=

π6

935, 550
,
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with ζ5 = e2πi/5.
Our method for evaluating trigonometric Dirichlet series proceeds in a re-

cursive way. In certain special cases, such as [Ber76, Theorem 5.2], [KMT13,
Corollary 6.4] or [LRR14, Proposition 1], the evaluations can be made entirely
explicit. It is natural to wonder how much more explicit the evaluations given
in this paper can be made in the general case.

Acknowledgements. I thank Florian Luca for sharing his insight into his
proof [LRR14, Theorem 1] of the convergence of the secant Dirichlet series, and
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