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Abstract

A well-studied statistic of an integer partition is the size of its Durfee square. In
particular, the number Dk(n) of partitions of n with Durfee square of fixed size k
has a well-known simple rational generating function. We study the number Rk(n)
of partitions of n with Durfee triangle of size k (the largest subpartition with parts
1, 2, . . . , k). We determine the corresponding generating functions which are rational
functions of a similar form. Moreover, we explicitly determine the leading asymptotic
of Rk(n), as n → ∞.

1 Introduction

A partition of an integer n ≥ 0 is an ordered list λ = (λ1, λ2, . . . , λd) of integers λ1 ≥ λ2 ≥
· · · ≥ λd ≥ 1 such that n = λ1 + λ2 + · · ·+ λd. The λj are called the parts of λ. For nice
introductions to partitions, we refer to [And76] and [AE04]. Recall that the Ferrers board
of the partition λ consists of d left-aligned rows such that the jth row contains λj boxes.
Its Durfee square is the largest square within the Ferrers board. We say that the Durfee
square of λ has size k if its sides have length k (in which case it consists of k × k boxes).
Equivalently, k is the largest integer such that λj ≥ k for all j ∈ {1, 2, . . . , k}. Let Dk(n)
be the number of partitions of n whose Durfee square has size k. It is well-known that

∞∑
n=0

Dk(n)q
n =

qk
2

(1− q)2(1− q2)2 · · · (1− qk)2
(1)

(see, for instance, [And76, p. 28] or [AE04, Section 8.1]).
As illustrated in Figure 1, one can likewise consider the Durfee triangle of a partition

λ as the largest right-angled isosceles triangle within the Ferrers board whose apex is the
top-left corner. We say that the Durfee triangle of λ has size k if its horizontal and vertical
sides have length k each. Equivalently, k is the largest integer such that λj > k − j for all
j ∈ {1, 2, . . . , k}. This notion of Durfee triangle was recently introduced by the first author
[Sha25], who showed that the size of the Durfee triangle of λ equals the maximal number of
non-intersecting rooks that can be placed on the Ferrer’s board of λ. In the present paper,
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we study the number Rk(n) of partitions of n whose Durfee triangle has size k. Our first
main result is that the generating functions Fk(q) of Rk(n) take a form that is similar to
the generating functions (1) for Dk(n), though more complicated and less explicit.

Theorem 1.1. For any fixed positive integer k, we have

Fk(q) :=
∞∑
n=0

Rk(n)q
n =

qk(k+1)/2φk(q)

(1− q)(1− q2) · · · (1− qk)
(2)

where
φk(q) = 1 + c1q + · · ·+ ck2−1q

k2−1 + (−1)k−1qk
2

is a polynomial of degree k2 with integer coefficients. Moreover, if k is odd then φk(−1) = 0.

The initial cases k ∈ {1, 2, 3, 4, 5} were individually considered in [Sha25] and Theo-
rem 1.1 extends this to all k in a uniform manner. Theorem 1.1 is proved in Section 4 as
Theorem 4.1 (which is stated in terms of the normalized variation Fk(q) = q−k(k+1)/2Fk(q))
and Lemma 4.2. The proof proceeds from an explicit representation of the generating
function Fk(q) as a multiple sum which is discussed in Section 2. This q-multisum is a
convolution sum of a related simpler q-series Ad(q) which is further analyzed in Section 3.

Figure 1: Durfee square and triangle (of size 2 and 4) of λ = (6, 4, 2, 1)

As a consequence of the generating functions (2), the sequences Rk(n) are constant
recursive, or C-finite, of order k(k + 1)/2 (and the order can be reduced by 1 if k ≥ 3 is
odd). This is discussed in Section 5. It further follows (see Corollary 5.7) that the values
Rk(n), for fixed k and all n > k2, are given by a quasi-polynomial of degree k − 1 and
quasi-period lcm(1, 2, . . . , k). Analogously, Choliy and Sills [CS16] deduce from (1) that
Dk(n) is a quasi-polynomial of degree 2k − 1 and quasi-period lcm(1, 2, . . . , k). Moreover,
they show that the leading terms are

Dk(n) =
1

(k!)2
n2k−1

(2k − 1)!
− 1

2k!(k − 2)!

n2k−2

(2k − 2)!
+O(n2k−3). (3)

Additional terms of the asymptotic expansion as n → ∞ can be worked out algorithmically
as observed by Sills and Zeilberger [SZ12]. Establishing the asymptotics for Rk(n) is more

2



intricate because the generating functions (2) are less explicit than (1) when working with
general k. Our second main result is to determine the leading term in Section 5.

Theorem 1.2. Fix a positive integer k. As n→∞, we have

Rk(n) =
2k

k!

nk−1

(k − 1)!
+O(nk−2). (4)

It would be desirable to further analyze the generating functions (2) and, as an appli-
cation, to determine additional terms in the asymptotic expansion of Rk(n). Various other
avenues for future work are outlined in the final section.

2 A convolution sum for Fk(q)

We begin by describing the generating function Fk(q) in terms of a convolution sum in-
volving the following simpler q-series which we study in more detail in the next section:

Ad(q) :=
∞∑

k1=0

k1+1∑
k2=0

· · ·
kd−1+1∑
kd=0

qk1+k2+···+kd =
∞∑
n=0

ad(n)q
n, (5)

where d is a positive integer. We further set A0(q) = 1. Throughout, let

Tk = 1 + 2 + · · ·+ k =
1

2
k(k + 1)

be the kth triangular number.

Lemma 2.1. We have

Fk(q) = qTk

k∑
d=0

qdAd(q)Ak−d(q). (6)

Proof. Let λ = (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ . . . be a partition with Durfee triangle of size
k, and let λ′ = (λ′

1, λ
′
2, . . .) be its conjugate. This implies that λj ≥ k − j + 1 (as well as

λ′
j ≥ k − j + 1) for j ∈ {1, 2, . . . , k}. Choose d ∈ {0, 1, . . . , k} to be maximal such that

λj > k − j + 1 for all j ∈ {1, 2, . . . , d}, and set mj = λj − (k − j + 1). In other words, d
is the number of initial rows in the Ferrers diagram of λ that are strictly longer than the
Durfee triangle, and mj ≥ 1 is the amount by which the length of the jth row exceeds the
Durfee triangle. Note that we have m1 ≥ 1, 1 ≤ m2 ≤ m1 + 1, ..., 1 ≤ md ≤ md−1 + 1.

On the other hand, set nj = λ′
j −k+ j−1 ≥ 0 for j ∈ {1, 2, . . . , k} to be the amount by

which the length of the jth column in the Ferrers diagram of λ exceeds the Durfee triangle.
Note that we have n1 ≥ 0, 0 ≤ n2 ≤ n1 + 1, ..., 0 ≤ nk−d ≤ nk−d−1 + 1 (and that, by
the definition of d, we have nk−d+1 = 0 provided that d ̸= 0). See Figure 2 for a diagram
illustrating the situation.
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Figure 2: Decomposing a partition according to its Durfee triangle

The Ferrers diagram of λ decomposes into the Durfee triangle, the m1+ · · ·+md excess
nodes in the first d rows, as well as the n1 + · · · + nk−d excess nodes in the first k − d
columns. It follows that the generating function Fk(q) for partitions with Durfee triangle
of size k is given by

qTk

k∑
d=0

 ∞∑
m1=1

m1+1∑
m2=1

· · ·
md−1+1∑
md=1

qm1+···+md

 ∞∑
n1=0

n1+1∑
n2=0

· · ·
nk−d−1+1∑
nk−d=0

qn1+···+nk−d

 .

The second bracketed multi-sum is Ak−d(q), by the definition of the latter. On the other
hand, the first bracketed multi-sum can be rewritten as

∞∑
m1=1

m1+1∑
m2=1

· · ·
md−1+1∑
md=1

qm1+···+md = qd
∞∑

n1=0

n1+1∑
n2=0

· · ·
nd−1+1∑
nd=0

qn1+···+nd = qdAd(q).

Algebraically, this follows by setting ni = mi − 1; combinatorially, this reflects the fact
that each of the d rows contains at least one excess node and these d first nodes are peeled
off into the overall factor qd.

In terms of the function Ad(q), we therefore conclude that

Fk(q) = qTk

k∑
d=0

qdAd(q)Ak−d(q),

as claimed.
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3 The generating function Ad(q)

Let Ad(q) =
∑∞

n=0 ad(n)q
n be as defined in (5). The values of the numbers ad(n) for small

d and n are recorded in the following table:

d\n 0 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 3 3 4 4 5 5 6 6

3 1 3 4 6 7 9 11 13 15 18 20

4 1 4 7 11 15 19 25 30 37 44 53

5 1 5 11 19 29 39 53 67 84 103 126

6 1 6 16 31 52 76 107 143 184 233 289

7 1 7 22 48 88 140 207 291 389 508 646

8 1 8 29 71 142 245 384 567 792 1069 1401

By the defining multisum (5), ad(n) is the number of weak compositions of n into d parts
such that each part does not exceed its predecessor by more than 1. In other words, ad(n)
is the number of tuples (k1, k2, . . . , kd) of nonnegative integers kj with k1+k2+ · · ·+kd = n
such that kj ≤ kj−1 + 1 for j ∈ {2, 3, . . . , d}. On the other hand, it follows as in the proof
of Lemma 2.1 that ad(n) equals the number of partitions of n+Td into exactly d parts with
Durfee triangle of size d. In other words, qTdAd(q) can be interpreted as the generating
function for partitions into d parts with Durfee triangle of size d.

Example 3.1. For instance, a3(5) = 9. The corresponding weak compositions of 5 into 3
parts such that each part does not exceed its predecessor by more than 1 are

(5, 0, 0), (4, 1, 0), (4, 0, 1), (3, 2, 0), (3, 1, 1), (2, 3, 0), (2, 2, 1), (2, 1, 2), (1, 2, 2).

On the other hand, by adding the Durfee triangle (3, 2, 1) componentwise to these com-
positions, we obtain the corresponding partitions of 5 + T3 = 11 into 3 parts with Durfee
triangle of size 3:

(8, 2, 1), (7, 3, 1), (7, 2, 2), (6, 4, 1), (6, 3, 2), (5, 5, 1), (5, 4, 2), (5, 3, 3), (4, 4, 3).

Remark 3.2. The sequences ad(n) for fixed d ≤ 10 are recorded in the OEIS [OEI25]
as the “number of partitions into d parts such that every ith smallest part (counted with
multiplicity) is different from i”. Here one has to consider partitions of size n+Td+ d and
the corresponding partitions can be obtained from those of n+Td into d parts with Durfee
triangle of size d by simply increasing each part by 1.

For small values of d, we can use the multisum (5) to compute Ad(q) explicitly. For
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instance, in addition to the trivial A1(q) = 1/(1− q), we find

A2(q) =
1 + q − q2

(1− q)2(1 + q)
,

A3(q) =
1 + 2q − q3 − 2q4 + q6

(1− q)3(1 + q)(1 + q + q2)
,

A4(q) =
(1 + q − q4)(1 + 2q − 2q4 − q5 + q8)

(1− q)4(1 + q)2(1 + q + q2)(1 + q2)
.

Firstly, we observe that the denominators of these three rational functions are (q; q)2, (q; q)3
and (q; q)4, respectively, where (q; q)d is the q-Pochhammer

(q; q)d =
d∏

r=1

(1− qr). (7)

The remainder of this section focuses on proving the following result which shows, in
particular, that this observation extends to Ad(q) in general.

Theorem 3.3. For all positive integers d,

Ad(q) =
αd(q)

(q; q)d
(8)

where αd(q) ∈ 1 + qZ[q] is a polynomial of degree (d − 1)d. Moreover, the coefficient of
q(d−1)d in αd(q) is (−1)d−1.

Numerical evidence suggests that Theorem 3.3 is best possible in the sense that the
quotient on the right-hand side of (8) is in lowest terms and cannot be further reduced.
We have confirmed this for all d ≤ 20 by explicitly calculating Ad(q).

In order to prove Theorem 3.3, we first give a recursive characterization of Ad(q). To
this end, we introduce the auxiliary generating functions

Ad(x1, . . . , xd) :=

∞∑
k1=0

k1+1∑
k2=0

· · ·
kd−1+1∑
kd=0

xk11 · · ·xkdd . (9)

We note that there is no harm in denoting the sums in (5) and (9) both with Ad because
they are equal in the case d = 1. More generally, we have Ad(q) = Ad(q, . . . , q), where the
right-hand side features d copies of q.

Combined with the base case A1(x1) = 1/(1−x1), the following recursively determines
the series Ad(x1, . . . , xd) for all positive integers d.

Lemma 3.4. For integers d > 1,

Ad(x1, . . . , xd) =
Ad−1(x1, . . . , xd−1)− x2dAd−1(x1, . . . , xd−2, xd−1xd)

1− xd
. (10)
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Proof. This follows directly from the definition (9) of Ad(x1, . . . , xd) by evaluating the
innermost geometric series:

Ad(x1, . . . , xd) =

∞∑
k1=0

k1+1∑
k2=0

· · ·
kd−2+1∑
kd−1=0

xk11 · · ·xkd−1

d−1

kd−1+1∑
kd=0

xkdd

=
1

1− xd

∞∑
k1=0

k1+1∑
k2=0

· · ·
kd−2+1∑
kd−1=0

xk11 · · ·xkd−1

d−1 (1− x
kd−1+2
d )

=
Ad−1(x1, . . . , xd−1)− x2dAd−1(x1, . . . , xd−2, xd−1xd)

1− xd
.

It is clear from this recursive description that Ad(x1, . . . , xd) is a rational function in
the variables x1, . . . , xd. Moreover, we can describe the denominators as follows.

Lemma 3.5. For all positive integers d,

Ad(x1, . . . , xd) =
αd(x1, . . . , xd)∏d

r=1(1− x1x2 · · ·xr)
, (11)

where αd(x1, . . . , xd) ∈ Z[x1, . . . , xd] is a polynomial of degree d−1 in each variable. More-
over, αd(0, . . . , 0) = 1 and the coefficient of (x1 · · ·xd)d−1 is (−1)d−1.

Proof. Since A1(x1) = 1/(1−x1), the claim is true for d = 1. For the purpose of induction
on d, we fix d and assume that (11) has already been shown to hold for d−1. In particular,
we may assume that

Ad−1(x1, . . . , xd−1) =
αd−1(x1, . . . , xd−1)∏d−1
r=1(1− x1x2 · · ·xr)

,

Ad−1(x1, . . . , xd−2, xd−1xd) =
αd−1(x1, . . . , xd−2, xd−1xd)

(1− x1x2 · · ·xd−1xd)
∏d−2

r=1(1− x1x2 · · ·xr)
.

Note that the least common multiple of the two denominators on the right-hand sides is∏d
r=1(1− x1x2 · · ·xr). By Lemma 3.4, we therefore have

Ad(x1, . . . , xd) =
Ad−1(x1, . . . , xd−1)− x2dAd−1(x1, . . . , xd−2, xd−1xd)

1− xd

=
βd(x1, . . . , xd)

(1− xd)
∏d

r=1(1− x1x2 · · ·xr)
, (12)

for some βd(x1, . . . , xd) ∈ Z[x1, . . . , xd]. On the other hand, observe that

Ad−1(x1, . . . , xd−1)− x2dAd−1(x1, . . . , xd−2, xd−1xd)
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vanishes if we set xd = 1. It follows that βd(x1, . . . , xd) is a multiple of 1 − xd, and
this cancels with the factor 1 − xd in the denominator of (12), resulting in (11) with
αd(x1, . . . , xd) = βd(x1, . . . , xd)/(1− xd) ∈ Z[x1, . . . , xd].

Since the constant term of the denominator of (11) is 1, it follows from the definition
(9) that the constant term αd(0, . . . , 0) of the numerator is 1 as well. Finally, to extract
the numerator term of highest degree, we note that

βd(x1, . . . , xd) = (1− x1x2 · · ·xd)αd−1(x1, . . . , xd−1)

−x2d(1− x1x2 · · ·xd−1)αd−1(x1, . . . , xd−2, xd−1xd).

It then follows from the induction hypothesis that the term of highest degree in βd(x1, . . . , xd)
is

−x2d(−x1x2 · · ·xd−1)(−1)d−2(x1x2 · · ·xd)d−2 = xd(−1)d−2(x1x2 · · ·xd)d−1.

Consequently, after dividing βd(x1, . . . , xd) by the factor 1 − xd, we find that the term of
highest degree in αd(x1, . . . , xd) is (−1)d−1(x1x2 · · ·xd)d−1 as claimed.

Since Ad(q) = Ad(q, . . . , q), we observe that Lemma 3.5 implies Theorem 3.3 as a special
case as shown below.

Proof of Theorem 3.3. In the special case where we set all variables x1, . . . , xd to q, the
product

∏d
r=1(1 − x1x2 · · ·xr) becomes the q-Pochhammer (q; q)d. As such, Lemma 3.5

shows that

Ad(q) =
αd(q)

(q; q)d
, αd(q) = αd(q, . . . , q) ∈ 1 + qZ[q],

as claimed in (8). Moreover, the fact that the term of highest degree in αd(x1, . . . , xd) is
(x1 · · ·xd)d−1 implies that the degree of αd(q) is (d− 1)d.

We conclude this section by establishing the following asymptotic result for ad(n) which
we will use in Section 5 for determining the asymptotics of Rk(n) as n → ∞.

Lemma 3.6. Fix a positive integer d. As n→∞, we have

ad(n) =
1

d!

nd−1

(d− 1)!
+O(nd−2). (13)

Proof. Let pd(n) denote the number of partitions of n into at most d parts. Since ad(n)
counts weak compositions of n into d parts such that each part does not exceed its prede-
cessor by more than 1, we clearly have pd(n) ≤ ad(n). On the other hand, we know from
the proof of Lemma 2.1 that ad(n) equals the number of partitions of n+ Td into exactly
d parts with Durfee triangle of size d. This implies that ad(n) ≤ pd(n + Td). Combined,
we therefore have

pd(n) ≤ ad(n) ≤ pd(n+ Td). (14)
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On the other hand, it is well-known that

pd(n) =
1

d!

nd−1

(d− 1)!
+O(nd−2). (15)

We refer, for instance, to [PS78, Part 1, Problem 27] or [RA05, Theorem 4.2.1] where the
result is attributed to Laguerre and Schur. The bounds (14) combined with (15) show that
ad(n) ∼ pd(n) as n → ∞. This proves (13).

For completeness, we indicate a direct proof of (15). To that end, observe that the
argument used in the proof of Theorem 5.4 also applies to the coefficients cd(n) of

γd(q)

(q; q)d
=

∞∑
n=0

cd(n)q
n,

where γd(q) is some polynomial in q, and shows that, as n → ∞,

cd(n) =
γd(1)

d!

nd−1

(d− 1)!
+O(nd−2). (16)

Since the numbers pd(n) have the simple generating function∑
n≥0

pd(n)q
n =

1

(q; q)d
, (17)

the claimed asymptotics (15) follows from (16) upon setting γd(q) = 1.

Corollary 3.7. Let αd(q) = Ad(q)(q; q)d as in (8). Then, for all positive integers d, we
have αd(1) = 1.

Proof. Setting γd(q) = αd(q) in (16), it follows that

ad(n) =
αd(1)

d!

nd−1

(d− 1)!
+O(nd−2).

Comparison with (13) then shows that αd(1) = 1.

4 The generating function Fk(q)

We now return to the generating function Fk(q) ∈ qTkZ[[q]]. To simplify exposition, we
consider the normalization

Fk(q) = q−TkFk(q) =
∞∑
n=0

fk(n)q
n ∈ 1 + qZ[[q]],
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so that Rk(n) = fk(n−Tk). The values of the numbers fk(n) for small k and n are recorded
in the following table (cf. A325188 in [OEI25]):

k\n 0 1 2 3 4 5 6 7 8 9 10

1 1 2 2 2 2 2 2 2 2 2 2

2 1 3 5 8 9 12 13 16 17 20 21

3 1 4 8 15 23 32 43 54 67 82 97

4 1 5 12 24 42 66 98 135 181 233 298

5 1 6 17 37 70 118 189 282 402 552 736

6 1 7 23 55 112 201 337 533 801 1158 1617

7 1 8 30 79 173 331 581 959 1502 2262 3286

8 1 9 38 110 259 528 974 1676 2724 4241 6368

In the previous section, we observed that Ad(q) is a rational function in q. In light of
Lemma 2.1, it follows that Fk(q), and hence Fk(q), are rational functions as well. For
instance, from the expressions for Ad(q) given in the previous section for d ∈ {1, 2, 3, 4} we
readily find that F1(q) = (1 + q)/(1− q) as well as

F2(q) =
1 + 2q + q2 + q3 − q4

(1− q)2(1 + q)
,

F3(q) =
1 + 2q + q2 + 2q3 − q4 − q6 − q7 + q8

(1− q)3(1 + q + q2)
,

F4(q) =
1 + 4q + 6q2 + 7q3 + 6q4 + 2q5 − 5q7 − 5q8 − 5q9 + q11 + 3q12 + 2q13 − q16

(1− q)4(1 + q)2(1 + q + q2)(1 + q2)

which match the formulas derived in [Sha25] (also see the entries A325168, A382682,
A384562 in [OEI25]). The denominators of the latter three rational functions are (q; q)2,
(q; q)3/(1 + q) and (q; q)4, respectively. If written as rational functions with denominator
(q; q)k, the numerator degrees of Fk(q) are k2 for k ∈ {1, 2, 3, 4}. The next result proves
that this observation holds in general. In Lemma 4.2, we then show that the denominator
can be reduced to (q; q)k/(1 + q) for all odd k ≥ 3.

Theorem 4.1. For all positive integers k,

Fk(q) =
φk(q)

(q; q)k
(18)

where φk(q) ∈ 1 + qZ[q] is a polynomial of degree k2. Moreover, the coefficient of qk
2
in

φk(q) is (−1)k−1.

Proof. By Lemma 2.1 combined with Theorem 3.3, we have

Fk(q) =
k∑

d=0

qdAd(q)Ak−d(q) =
k∑

d=0

qd
αd(q)

(q; q)d

αk−d(q)

(q; q)k−d
, (19)
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for polynomials αd(q) ∈ 1 + qZ[q] of degree (d − 1)d. This true also in the case d = 0,
for which we have A0(q) = 1 and, hence, α0(q) = 1. Recall the well-known fact that the
quotients (

k

d

)
q

:=
(q; q)k

(q; q)d(q; q)k−d
(20)

are polynomials in Z[q], known as the Gaussian polynomials or q-binomial coefficients. We
conclude from (19) that Fk(q) = φk(q)/(q; q)k where

φk(q) =
k∑

d=0

(
k

d

)
q

qdαd(q)αk−d(q) ∈ 1 + qZ[q]. (21)

It follows readily from (7) that (q; q)d has degree d(d + 1)/2. Accordingly, the q-binomial
coefficients in (20) have degree d(k − d). Using further that αd(q) has degree (d − 1)d,
standard calculations show that, in the sum for φk(q), the summand corresponding to
d = k is the unique one contributing the term of highest degree in q. That summand
simplifies to qkαk(q) since the involved q-binomial coefficient as well as α0(q) equal 1.
Therefore, the degree of φk(q) equals the degree of qkαk(q) which is k + (k − 1)k = k2.
Moreover, by Theorem 3.3, the coefficient of qk

2
is (−1)k−1.

While the denominators for Ad(q) provided by Theorem 3.3 appear best possible, nu-
merical evidence suggests that, as we observed in the case F3(q) above, the denominators
for Fk(q) provided by Theorem 4.1 can be improved by removing the factor 1+ q whenever
k ≥ 3 is odd.

Lemma 4.2. Write Fk(q) = φk(q)/(q; q)k as in (18). If k ≥ 1 is odd then

φk(q) ∈ (1 + q)Z[q]. (22)

Proof. From (21), we have

φk(q) =
k∑

d=0

(
k

d

)
q

qdαd(q)αk−d(q) = qk
k∑

d=0

(
k

d

)
q

q−dαd(q)αk−d(q) (23)

where, for the second equality, we replaced d by k − d in the summand and used the
symmetry (

k

k − d

)
q

=

(
k

d

)
q

of the q-binomial coefficients. Upon setting q = −1 in both of the sums in (23) and
comparing the results, we find that

φk(−1) = (−1)kφk(−1).

If k is odd then this implies that φk(−1) = 0 which is equivalent to (22).
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Apart from this observation, numerical evidence suggests that Theorem 4.1 is best
possible. In other words, it appears that the minimal denominator of Fk(q) equals (q; q)k,
if k is even, and equals (q; q)k/(1 + q) if k ≥ 3 is odd (since, for k ≥ 2, the factor 1 + q
divides both (q; q)k and φk(q)). By explicitly calculating Fk(q), we have confirmed this
conjecture for k ≤ 20.

Example 4.3. The first case not covered by the approach in [Sha25] is k = 6. In that
case, in accordance with Theorem 4.1, we find F6(q) = φ6(q)/(q; q)6 where φ6(q) is the
degree 62 polynomial

φ6(q) = 1 + 6q + 15q2 + 25q3 + 34q4 + 35q5 + 31q6 + 20q7 − 19q9 − 39q10

−48q11 − 50q12 − 36q13 − 19q14 + 13q15 + 30q16 + 45q17 + 42q18

+28q19 + 11q20 − 8q21 − 21q22 − 24q23 − 15q24 − 9q25 + 2q26 + 3q27

+5q28 + 3q29 + 2q30 + 2q31 − q36.

5 Asymptotics and exact formulas for Rk(n)

Recall that a sequence a(n) is constant recursive, or C-finite, of order r if there exist
complex numbers c0, c1, . . . , cr−1 such that

a(n+ r) = cr−1a(n+ r − 1) + · · ·+ c1a(n+ 1) + c0a(n) (24)

for all n ≥ n0. The corresponding polynomial

P (x) = xr − cr−1x
r−1 − · · · − c1x− c0 (25)

is called the characteristic polynomial. We refer to [EvdPSW03] or [KP11, Chapter 4]
for introductions to constant recursive sequences. It is well-known that constant recursive
sequences are exactly those whose generating function is rational. More precisely, the
condition that a(n) satisfies a recurrence of the form (24) for all n ≥ n0 is equivalent to

∞∑
n=0

a(n)qn =
N(q)

D(q)
(26)

for polynomials N,D ∈ C[q], and deg(N) < deg(D) + n0. Moreover, if P (x) is the charac-
teristic polynomial (25) of the recurrence then we can choose

D(q) = qrP (1/q) = 1− cr−1q − · · · − c1q
r−1 − c0q

r.

It therefore follows from Theorem 4.1 that, for every fixed positive integer k, the sequence
Rk(n) is constant recursive. More precisely, we find the following:

12



Lemma 5.1. Fix a positive integer k. The sequence Rk(n) is constant recursive and, for
all n > k2, satisfies a recurrence (24) of order

r =

{
Tk − 1, if k ≥ 3 is odd,
Tk, otherwise.

Proof. By Theorem 4.1,

Fk(q) =
∞∑
n=0

Rk(n)q
n = qTk

φk(q)

(q; q)k
(27)

where φk(q) ∈ 1 + qZ[q] has degree k2. As in (26), this implies that Rk(n) is constant
recursive. Moreover, since (q; q)k has degree 1+2+ · · ·+k = Tk, we find that we can choose
n0 = k2 + 1 in the above discussion. The recurrence corresponding to the denominators
(q; q)k has order Tk. On the other hand, we have shown in Lemma 4.2 that, for odd k ≥ 3,
the denominators can be reduced to (q; q)k/(1 + q). Accordingly, for odd k ≥ 3, the order
of the recurrence can be reduced to Tk − 1.

As in the discussion after Lemma 4.2, it appears that the orders of the recurrences in
Lemma 5.1 are minimal.

Example 5.2. We have

F3(q) =
∞∑
n=1

R3(n)q
n = qT3F3(q) =

q6(1 + 2q + q2 + 2q3 − q4 − q6 − q7 + q8)

(1− q)3(1 + q + q2)
.

Let P (q) = (1−q)3(1+q+q2) = 1−2q+q2−q3+2q4−q5. It therefore follows as observed
for (26) that the sequence R3(n) satisfies the recurrence

R3(n+ 5) = 2R3(n+ 4)−R3(n+ 3) +R3(n+ 2)− 2R3(n+ 1) +R3(n)

of order 5 = T3 − 1 for all n > 14 − 5 = 32. This coincides with the conclusion in
Corollary 3.3 of [Sha25].

Example 5.3. It likewise follows from Theorem 3.3 that the coefficients ad(n) of Ad(q)
discussed in Section 3 are constant recursive and, for all n > (d− 1)d−Td or, equivalently,
n ≥ Td−2, satisfy a recurrence (24) of order Td. This proves, in particular, the generating
functions and recurrences that are presently listed as conjectured by Chai Wah Wu for
the cases k ∈ {4, 5, 6, 7} in the OEIS [OEI25] (sequences A244240, A244241, A244242,
A244243).

Let λ1, λ2, . . . , λs ∈ C be the roots, with multiplicities m1,m2, . . . ,ms, of the charac-
teristic polynomial (25). Then the sequence a(n) admits an exact formula of the form

a(n) =
s∑

j=1

mj−1∑
r=0

cj,rn
rλn

j , (28)
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which is valid for all n ≥ n0 (where, as before, n0 is such that the recurrence (24) holds
for all n ≥ n0), and where cj,r ∈ C are constants. This can be seen, for instance, from the
generalized binomial expansion applied to the partial fraction decomposition of (26).

In our case of Fk(q) =
∑

n≥1Rk(n)q
n, it follows from Theorem 4.1 that the charac-

teristic roots are all roots of unity. Therefore, as n → ∞, the asymptotically dominating
contribution comes from the root with the highest multiplicity. Pursuing this line of rea-
soning ultimately results in the asymptotics claimed in Theorem 1.2 which is restated here.
This in particular proves, as conjectured in [Sha25], that Rk(n) ∼ Ckn

k−1 as n → ∞ for
suitable constants Ck.

Theorem 5.4. Fix a positive integer k. As n→∞, we have

Rk(n) =
2k

k!

nk−1

(k − 1)!
+O(nk−2). (29)

Proof. By Theorem 4.1, we have

Fk(q) =
∞∑
n=1

Rk(n)q
n = qTk

φk(q)

(q; q)k

with φk(q) ∈ 1 + qZ[q]. We can see from (7) that the roots of (q; q)k are the roots of unity
ζ of order m with m ≤ k and their multiplicity is ⌊k/m⌋. In other words,

(q; q)k = (−1)k
k∏

m=1

Φ⌊k/m⌋
m (q)

where Φm is themth cyclotomic polynomial (the monic polynomial whose roots are precisely
the mth primitive roots of unity). We write λ1 = 1 and let λ2, λ3, . . . , λs be the other roots
of unity of order up to k. We denote with m1,m2, . . . the corresponding multiplicities.
Note that m1 = k and that mj ≤ k/2 for j > 1. The exact formula (28) therefore implies

Rk(n) =
k−1∑
r=0

c1,rn
r +

s∑
j=2

mj−1∑
r=0

cj,rn
rλn

j =
k−1∑
r=0

c1,rn
r +O(n⌊k/2⌋−1). (30)

It remains to determine the leading coefficient c1,k−1. To this end, we write

Fk(q) = qTk
φk(q)

(q; q)k
=

Ñ(q)

(1− q)kD̃(q)

for polynomials Ñ(q), D̃(q) ∈ Z[q] with Ñ(1) ̸= 0 and D̃(1) ̸= 0. Note that Ñ(q) =
qTkφk(q) and D̃(q) = (q; q)k/(1 − q)k. Performing part of the partial fraction expansion,
we then have

Fk(q) =
γk

(1− q)k
+

γk−1

(1− q)k−1
+ · · ·+ γ1

1− q
+

M(q)

D̃(q)
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where γj are constants and M(q) ∈ Z[q]. Using

(j − 1)!

(1− q)j
=

∑
n≥0

(n+ j − 1)(n+ j − 2) · · · (n+ 1)qn,

the coefficients c1,r in (30) can be obtained from the coefficients γj . In particular, the
leading coefficient can be computed as

c1,k−1 =
γk

(k − 1)!
=

1

(k − 1)!

Ñ(1)

D̃(1)
.

Since Ñ(q) = qTkφk(q), we have Ñ(1) = φk(1). On the other hand, we find that D̃(1) = k!
because

D̃(q) =
(q; q)k
(1− q)k

=

k∏
r=1

1− qr

1− q
=

k∏
r=1

(1 + q + q2 + · · ·+ qr−1).

Combined, we obtain

c1,k−1 =
1

(k − 1)!

Ñ(1)

D̃(1)
=

φk(1)

(k − 1)!k!
.

By (30), this proves the claimed asymptotics (29) if we can show that φk(1) = 2k. Indeed,
we can conclude from αd(1) = 1, established in Corollary 3.7, combined with (21) that

φk(1) =
k∑

d=0

(
k

d

)
αd(1)αk−d(1) =

k∑
d=0

(
k

d

)
= 2k,

as desired.

Remark 5.5. Note that we obtain the same leading asymptotics for the coefficients fk(n)
of Fk(q) = q−TkFk(q). Namely,

fk(n) =
2k

k!

nk−1

(k − 1)!
+O(nk−2).

Recall that a sequence f(n) is a quasi-polynomial of degree m and quasi-period δ if it
can be expressed as

f(n) = φm(n)nm + φm−1(n)n
m−1 + · · ·+ φ0(n)

where each φj(n) has period δ (that is, φj(n+ δ) = φj(n)). See, for instance, Section 4.4
in [Sta97]. Equivalently, f(n) is a quasi-polynomial of degree m and quasi-period δ if there
exist polynomials f0(n), f1(n), . . . , fδ−1(n) such that f(n) ≡ fj(n) if n ≡ j (mod δ).

Suppose that each root λj of the characteristic polynomial (25) is a root of unity of

order δj (so that λ
δj
j = 1). Let δ be the least common multiple of δ1, δ2, . . . , δs, and let m
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be the maximum of m1,m2, . . . ,ms. Then a(n) is a quasi-polynomial of degree m− 1 and
quasi-period δ. Indeed, it follows from (28) that, for each ν ∈ {0, 1, . . . , δ − 1}, we have

a(δn+ ν) =

s∑
j=1

mj−1∑
r=0

cj,r(δn+ ν)rλν
j , (31)

providing an explicit formula for a(δn+ ν), for all n ≥ n0, as a polynomial in n.

Example 5.6. As detailed in [Sha25], James Sellers pointed out that it follows from the
rational generating function for R3(n) given in Example 5.2 that

R3(n) =


6m2 − 15m+ 7, if n = 3m,
6m2 − 11m+ 2, if n = 3m+ 1,
6m2 − 7m− 1, if n = 3m+ 2,

provided that n > 9. We note that the right-hand side can be equivalently expressed as

R3(n) =
2

3
n2 − 5n+

59

9
+

4

9
cos

(
2nπ

3

)
.

In particular, the corresponding first-order asymptotics R3(n) ∼ 2
3n

2 matches the conclu-

sion of Theorem 5.4 where it is shown that Rk(n) ∼ 2k

k!
nk−1

(k−1)! . Likewise, in the special case

k = 4, we obtain R4(n) ∼ 1
9n

3 as shown in [Sha25].

Representations as in the previous example can be worked out for Rk(n) for all fixed
k, as a consequence of Theorem 4.1.

Corollary 5.7. Let k be a positive integer. Then there exists a quasi-polynomial Qk(n) of
degree k− 1 and quasi-period lcm(1, 2, . . . , k) such that Rk(n) = Qk(n) for all n > k2. For
k = 3, the quasi-period is further reduced to 3.

Proof. Recall that the roots of the q-Pochhammer (q; q)k are all the roots of unity of order
up to k. More precisely, if µm denotes the primitive mth roots of unity, then each ζ ∈ µm

is a root of (q; q)k of multiplicity ⌊k/m⌋. Accordingly, it follows from Lemma 5.1 and the
above discussion that Rk(n) has a representation (28) which here takes the form

Rk(n) =

k∑
m=1

∑
ζ∈µm

⌊k/m⌋−1∑
r=0

cj,rn
rζn (32)

and is valid for all n > k2. In particular, as for (31), the right-hand side of (32) is a
quasi-polynomial of degree k − 1 and quasi-period lcm(1, 2, . . . , k).

The reduction in Lemma 4.2 implies that the maximum value of r for m = 2 in (32)
gets reduced by 1. This lowers the quasi-period for k = 3 from lcm(2, 3) = 6 to 3 but does
not affect the quasi-period for other values of k.
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As observed by Andrews [And03], quasi-polynomials can always be expressed via a
single polynomial formula if we permit use of the floor function. For instance, the piecewise
formula in Example 5.6 is equivalent to the alternative representation

R3(n) =
1

3
(2n− 3)(n− 7) +

2

3

⌊
n+ 1

3

⌋
+

4

3

⌊n
3

⌋
for n > 9. The process of using computer algebra to automatically obtain quasi-polynomial
representations from an appropriate generating function is described by Sills and Zeilberger
[SZ12]. The discussion in [SZ12] is focused on the examples of pm(n), the number of
partitions of n into at most m parts, as well as Dk(n), the number of partitions of n whose
Durfee square has size k. The approach, however, applies equally to the numbers Rk(n) in
light of the generating function provided by Theorem 4.1.

6 Conclusions and future work

In Theorem 4.1 we showed that the generating function Fk(q) of the number Rk(n) of
partitions of n with Durfee triangle of fixed size k takes the form qTkφk(q)/(q; q)k. This
is derived from the q-multisum representation (6). Neither of these is as explicit as one
would like for certain applications such as extracting the asymptotic expansions of Rk(n),
as n → ∞, to higher order. For instance, computing the leading order asymptotics in
Theorem 5.4 required showing that the numerator polynomials φk(q) satisfy φk(1) = 2k.
It would be desirable to determine the polynomials φk(q) more explicitly.

By the relationship (21), information on φk(q) can be inferred from corresponding
information on the simpler polynomials αd(q) defined by (8). The mentioned evaluations
of φk(1), for instance, follow from the simpler evaluations αd(1) = 1 that we showed
in Corollary 3.7. More generally, it appears worthwhile to investigate the values of the
polynomials αd(q) and φk(q) at roots of unity. For instance, it appears that αd(−1) =
(−1)⌊d/2⌋ for all integers d ≥ 0. By (21), this implies the corresponding values

φk(−1) =

{
(−2)k/2, if k even,
0, otherwise .

The fact that φk(−1) = 0 for odd k follows from Lemma 4.2 according to which 1 + q
divides φk(q) for odd k. Also, apart from these cases and the sporadic case

α4(q) = (1 + q − q4)(1 + 2q − 2q4 − q5 + q8),

the polynomials αd(q) and φk(q) appear to be irreducible.
In a related direction, it would be of interest to obtain formulas for the coefficients that

arise in the (ordinary) partial fraction decomposition of Fk(q) or its q-partial fraction de-
composition in the sense of Munagi [Mun07] or, possibly, a partial fraction-type expansion
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in the spirit of MacMahon [Sil19]. In the case of pd(n), Rademacher [Rad73, Section 130]
considered the partial fraction decomposition

1

(q; q)d
=

d∑
k=1

∑
0≤h<k
(h,k)=1

⌊d/k⌋∑
ℓ=1

Ch,k,ℓ(d)

(q − e2πih/k)ℓ

and asked for formulas for the coefficients Ch,k,ℓ(d). Andrews [And03] provided first in-
stances of such formulas but they are involved and not convenient for computations. Sills
and Zeilberger [SZ13] showed that certain coefficients Ch,k,ℓ(d) can be efficiently computed
in a recursive manner. Rademacher conjectured that the coefficients Ch,k,ℓ(d) converge
as d → ∞. This was proved false by Drmota and Gerhold [DG14] and, independently,
O’Sullivan [O’S16] after Sills and Zeilberger [SZ13] provided strong numerical evidence
that Rademacher’s conjecture is false. On the other hand, it remains an open problem
to clarify the relationship between the partial fraction decompositions of 1/(q; q)d and the
limiting case 1/(q; q)∞ which admits a version of a partial fraction decomposition by the
Hardy–Ramanujan–Rademacher formula for p(n). For instance, as asked in [DG14], do
the coefficients Ch,k,ℓ(d) converge in a weaker generalized sense as d → ∞? These ques-
tions may also be considered if one replaces (ordinary) partial fraction decompositions with
the q-partial fraction decomposition in the sense of Munagi [Mun07]. In the special case
h = k = 1, Munagi [Mun08] proves that the analog of Rademacher’s conjecture actually
holds true. It would be valuable to extend this analysis to other coefficients as well as to
similarly investigate the generating functions studied in this paper.

Recall that every constant recursive integer sequence is necessarily eventually periodic
when reduced modulo an integer M > 1. Corollary 5.7 allows us to bound the corre-
sponding periods for Rk(n) modulo M . Namely, let Q be the associated quasi-period (by
Corollary 5.7 we can always choose Q = lcm(1, 2, . . . , k); as well as Q = 3 if k = 3). Then
we find

Rk(n+MQ) ≡ Rk(n) (mod M)

for all n > k2, provided that M is such that, for all r ∈ {0, 1, . . . , Q − 1}, the values
Rk(mQ + r) are produced by polynomials in m with coefficients whose denominators are
coprime to M (these polynomials necessarily have rational coefficients because they are
integer-valued).

Example 6.1. For instance, in the case k = 3, we find that R3(n+ 3M) ≡ R3(n) modulo
M for all n > 9. Likewise, R4(n + 12M) ≡ R4(n) modulo M for all n > 16 as well as
R5(n + 60M) ≡ R5(n) modulo M for all n > 25. In the cases k = 3 and k = 4, these
observations are also made in [Sha25]. We note that in the cases k ≤ 5 no restriction on M
is needed. On the other hand, for instance for k = 6, the congruences R6(n+60M) ≡ R6(n)
modulo M only hold for all n > 36 provided that M is coprime to 3.
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Remarkably, much stronger congruences appear to hold in the case M = 2. As observed
in [Sha25], for n > k2, the sequences Rk(n) modulo 2 are periodic with period 2 if k ∈
{2, 3} and period 8 if k ∈ {4, 5}. Likewise, by explicitly computing the quasi-polynomial
representation in Corollary 5.7, we find that the corresponding period is 24 if k ∈ {6, 7}, 48
if k ∈ {8, 9}, and 480 if k ∈ {10, 11}. It is natural to wonder whether the sequences R2k(n)
and R2k+1(n) modulo 2 always have the same (eventual) period. We leave this question
for future work. More generally, it would be of interest to investigate further congruential
properties of the numbers Rk(n), such as analogs of the Ramanujan congruences for the
partition function. Such investigations have been initiated and developed by Kronholm
[Kro05], [Kro13] for the related numbers p(n, k) of partitions of n into exactly k parts. For
recent subsequent work in this direction, we refer to [EKL23] and the references therein.

Finally, we wonder if it is fruitful to investigate the bivariate generating function

F (q, z) =
∞∑
k=0

Fk(q)z
k =

∞∑
k=0

∞∑
n=0

fk(n)q
nzk

in order to increase our understanding of the underlying numbers Rk(n) = fk(n− Tk). In
this direction, we note that, if we similarly write

A(q, z) =

∞∑
d=0

Ad(q)z
d,

then Lemma 2.1 becomes equivalent to the simple relationship

F (q, z) = A(q, qz)A(q, z).
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