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Abstract

In 1982, Gessel showed that the Apéry numbers associated to the ir-
rationality of ζ(3) satisfy Lucas congruences. Our main result is to prove
corresponding congruences for all sporadic Apéry-like sequences. In sev-
eral cases, we are able to employ approaches due to McIntosh, Samol–van
Straten and Rowland–Yassawi to establish these congruences. However,
for the sequences often labeled s18 and (η) we require a finer analysis.

As an application, we investigate modulo which numbers these se-
quences are periodic. In particular, we show that the Almkvist–Zudilin
numbers are periodic modulo 8, a special property which they share with
the Apéry numbers. We also investigate primes which do not divide any
term of a given Apéry-like sequence.

1 Introduction

In his surprising proof [Apé79], [Poo79] of the irrationality of ζ(3), R. Apéry
introduced the sequence

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

, (1)

which has since been referred to as the Apéry sequence. It was shown by I. Gessel
[Ges82, Theorem 1] that, for any prime p, these numbers satisfy the Lucas
congruences

A(n) ≡ A(n0)A(n1) · · ·A(nr) (mod p), (2)

where n = n0 + n1p+ · · ·+ nrp
r is the expansion of n in base p. Initial work of

F. Beukers [Beu02] and D. Zagier [Zag09], which was extended by G. Almkvist,
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W. Zudilin [AZ06] and S. Cooper [Coo12], has complemented the Apéry num-
bers with a, conjecturally finite, set of sequences, known as Apéry-like, which
share (or are believed to share) many of the remarkable properties of the Apéry
numbers, such as connections to modular forms [SB85], [Beu87], [AO00] or
supercongruences [Beu85], [Cos88], [CCS10], [OS11], [OS13], [OSS14]. After
briefly reviewing Apéry-like sequences in Section 2, we prove in Sections 3 and
4 our main result that all of these sequences also satisfy the Lucas congruences
(2). For all but two of the sequences, we establish these congruences in Section 3
by extending a general approach provided by R. McIntosh [McI92]. The main
difficulty, however, lies in establishing these congruences for the sequence (η).
For this sequence, and to a lesser extent for the sequence s18, we require a much
finer analysis, which is given separately in Section 4.

In the approaches of Gessel and McIntosh, binomial sums, like (1), are used
to derive Lucas congruences. Other known approaches to proving Lucas congru-
ences for a sequence C(n) are based on expressing C(n) as the constant terms of
powers of a Laurent polynomial or as the diagonal coefficients of a multivariate
algebraic function. However, neither of these approaches is known to apply,
for instance, to the sequence (η). In the first approach, one seeks a Laurent
polynomial Λ(x) = Λ(x1, . . . , xd) such that C(n) is the constant term of Λ(x).
In that case, we write C(n) = ct Λ(x)n for brevity. If the Newton polyhedron
of Λ(x) has the origin as its only interior integral point, the results of K. Samol
and D. van Straten [SvS09] (see also [MV13]) apply to show that C(n) satisfies
the Dwork congruences

C(prm+ n)C(bn/pc) ≡ C(pr−1m+ bn/pc)C(n) (mod pr) (3)

for all primes p and all integers m,n > 0, r > 1. The case r = 1 of these
congruences is equivalent to the Lucas congruences (2) for the sequence C(n).
For instance, in the case of the Apéry numbers (1), we have [Str14, Remark 1.4]

A(n) = ct

[
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz

]n
,

from which one may conclude that the Apéry numbers satisfy the congruences
(3), generalizing (2). Similarly, for the sequence (η), one may derive from the
binomial sum (22), using G. Egorychev’s method of coefficients [Ego84], that
its nth term is given by ct Λ(x, y, z)n, where

Λ(x, y, z) =

(
1− 1

xy(1 + z)5

)
(1 + x)(1 + y)(1 + z)4

z3
.

However, Λ(x, y, z) is not a Laurent polynomial, and it is unclear if and how one
could express the sequence (η) as constant terms of powers of an appropriate
Laurent polynomial. As a second general approach, E. Rowland and R. Yassawi
[RY13] show that Lucas congruences hold for a certain class of sequences that
can be represented as the diagonal Taylor coefficients of 1/Q(x)1/s, where s >
1 is an integer and Q(x) ∈ Z[x] is a multivariate polynomial. Again, while
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such representations are known for some Apéry-like sequences, see, for instance,
[Str14], no suitable representations are available for the sequences (η) or s18.

It was conjectured by S. Chowla, J. Cowles and M. Cowles [CCC80] and
subsequently proven by I. Gessel [Ges82] that

A(n) ≡
{

1, if n is even,
5, if n is odd,

(mod 8). (4)

The congruences (4) show that the Apéry numbers are periodic modulo 8,
and it was recently demonstrated by E. Rowland and R. Yassawi [RY13] that
they are not eventually periodic modulo 16, thus answering a question of Gessel.
The Apéry numbers are also periodic modulo 3 (see (47)) and their values
modulo 9 are characterized by an extension of the Lucas congruences [Ges82];
see also the recent generalizations [KM15] of C. Krattenthaler and T. Müller,
who characterize generalized Apéry numbers modulo 9. As an application of the
Lucas congruences established in Sections 3 and 4, we address in Section 5 the
natural question to which extent results like (4) are true for Apéry-like numbers
in general. In particular, we show in Theorem 5.3 that the Almkvist–Zudilin
numbers are periodic modulo 8 as well.

The primes 2, 3, 7, 13, 23, 29, 43, 47, . . . do not divide any Apéry number A(n),
and E. Rowland and R. Yassawi [RY13] pose the question whether there are in-
finitely many such primes. While this question remains open, we offer numerical
and heuristic evidence that a positive proportion of the primes, namely, about
e−1/2 ∼ 0.6065, do not divide any Apéry number. In Section 6, we investigate
the analogous question for other Apéry-like numbers, and prove that Cooper’s
sporadic sequences [Coo12] behave markedly differently. Indeed, for any given
prime p, a fixed proportion of the last of the first p terms of these sequences
is divisible by p. In the case of sums of powers of binomial coefficients, such a
result has been proven by N. Calkin [Cal98].

2 Review of Apéry-like numbers

Along with the Apéry numbers A(n), defined in (1), R. Apéry also introduced
the sequence

B(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)
,

which allowed him to (re)prove the irrationality of ζ(2). This sequence is the
solution of the three-term recursion

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1, (5)

with the choice of parameters (a, b, c) = (11, 3,−1) and initial conditions u−1 =
0, u0 = 1. Because we divide by (n+ 1)2 at each step, it is not to be expected
that the recursion (5) should have an integer solution. Inspired by F. Beukers
[Beu02], D. Zagier [Zag09] conducted a systematic search for other choices of
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the parameters (a, b, c) for which the solution to (5), with initial conditions
u−1 = 0, u0 = 1, is integral. After normalizing, and apart from degenerate
cases, he discovered four hypergeometric, four Legendrian as well as six sporadic
solutions. It is still open whether further solutions exist or even that there should
be only finitely many solutions. The six sporadic solutions are reproduced in
Table 1. Note that each binomial sum included in this table certifies that the
corresponding sequence indeed consists of integers.

(a, b, c) [Zag09] [AvSZ11] A(n)

(7, 2,−8) A (a)
∑
k

(
n

k

)3

(11, 3,−1) D (b)
∑
k

(
n

k

)2(
n+ k

n

)

(10, 3, 9) C (c)
∑
k

(
n

k

)2(
2k

k

)

(12, 4, 32) E (d)
∑
k

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

(9, 3, 27) B (f)
∑
k

(−1)k3n−3k
(
n

3k

)
(3k)!

k!3

(17, 6, 72) F (g)
∑
k,l

(−1)k8n−k
(
n

k

)(
k

l

)3

Table 1: The six sporadic solutions of (5)

Similarly, the Apéry numbers A(n), defined in (1), are the solution of the
three-term recurrence

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1, (6)

with the choice of parameters (a, b, c, d) = (17, 5, 1, 0) and initial conditions
u−1 = 0, u0 = 1. Systematic computer searches for further integer solutions
have been performed by G. Almkvist and W. Zudilin [AZ06] in the case d =
0 and, more recently, by S. Cooper [Coo12], who introduced the additional
parameter d. As in the case of (5), apart from degenerate cases, only finitely
many sequences have been discovered. In the case d = 0, there are again
six sporadic sequences, which are recorded in Table 2. Moreover, by general
principles (see [Coo12, Eq. (17)]), each of the sequences in Table 1 times

(
2n
n

)
is an integer solution of (6) with d 6= 0. Apart from such expected solutions,
Cooper also found three additional sporadic solutions, including

s18(n) =

bn/3c∑
k=0

(−1)k
(
n

k

)(
2k

k

)(
2(n− k)

n− k

)[(
2n− 3k − 1

n

)
+

(
2n− 3k

n

)]
,

(7)
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for n > 1, with s18(0) = 1, as well as s7 and s10, which are included in Table 2.
Remarkably, these sequences are again connected to modular forms [Coo12] (the
subscript refers to the level) and satisfy supercongruences, which are proved in
[OSS14]. Indeed, it was the corresponding modular forms and Ramanujan-
type series for 1/π that led Cooper to study these sequences, and the binomial
expressions for s7 and s18 were found subsequently by Zudilin (sequence s10 was
well-known before).

(a, b, c, d) [AvSZ11] A(n)

(7, 3, 81, 0) (δ)
∑
k

(−1)k3n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125, 0) (η)
bn/5c∑
k=0

(−1)k
(
n

k

)3((
4n− 5k − 1

3n

)
+

(
4n− 5k

3n

))

(10, 4, 64, 0) (α)
∑
k

(
n

k

)2(
2k

k

)(
2(n− k)

n− k

)

(12, 4, 16, 0) (ε)
∑
k

(
n

k

)2(
2k

n

)2

(9, 3,−27, 0) (ζ)
∑
k,l

(
n

k

)2(
n

l

)(
k

l

)(
k + l

n

)

(17, 5, 1, 0) (γ)
∑
k

(
n

k

)2(
n+ k

n

)2

(13, 4,−27, 3) s7
∑
k

(
n

k

)2(
n+ k

k

)(
2k

n

)

(6, 2,−64, 4) s10
∑
k

(
n

k

)4

(14, 6, 192,−12) s18 defined in (7)

Table 2: The sporadic solutions of (6)

3 Lucas congruences

It is a well-known and beautiful classical result of Lucas [Luc78] that the bino-
mial coefficients satisfy the congruences(

n

k

)
≡
(
n0
k0

)(
n1
k1

)
· · ·
(
nr
kr

)
(mod p), (8)

where p is a prime and ni, respectively ki, are the p-adic digits of n and k. That
is, n = n0 + n1p+ · · ·+ nrp

r and k = k0 + k1p+ · · ·+ krp
r are the expansions

of n and k in base p. Correspondingly, a sequence a(n) is said to satisfy Lucas
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congruences, if the congruences

a(n) ≡ a(n0)a(n1) · · · a(nr) (mod p) (9)

hold for all primes p. It was shown by I. Gessel [Ges82, Theorem 1] that the
Apéry numbers A(n), defined in (1), satisfy Lucas congruences. E. Deutsch and
B. Sagan [DS06, Theorem 5.9] show that the Lucas congruences (9) in fact hold
for the family of generalized Apéry sequences

Ar,s(n) =

n∑
k=0

(
n

k

)r(
n+ k

k

)s
, (10)

with r and s positive integers. This family includes the sequences (a), (b) from
Table 1, and the sequences (γ), s10 from Table 2. The purpose of this section and
Section 4 is to show that, in fact, all the Apéry-like sequences in Tables 1 and 2
satisfy the Lucas congruences (9). Using and extending the general framework
provided by R. McIntosh [McI92, Theorem 6], which we review below, we are
able to prove this claim for all of the sequences in the two tables, with the
exception of the two sequences (η) and s18, for which we require a much finer
analysis, which is given in Section 4.

Theorem 3.1. Each of the sequences from Tables 1 and 2 satisfies the Lucas
congruences (9).

Remark 3.2. The Lucas congruences (9), in general, do not extend to prime
powers. However, it is shown in [Ges82], and generalized in [KM15], that the
Lucas congruences modulo 3 for the Apéry numbers extend to hold modulo 9.

On the other hand, numerical evidence suggests that all the Apéry-like se-
quences from Tables 1 and 2 in fact satisfy the Dwork congruences (3). While
Theorem 3.1 proves the case r = 1 of these congruences, it would be desirable
to establish the corresponding congruences modulo higher powers of primes.

Following [McI92], we say that a function L : Z2
>0 → Z has the double Lucas

property (DLP) if L(n, k) = 0, for k > n, and if

L(n, k) ≡ L(n0, k0)L(n1, k1) · · ·L(nr, kr) (mod p), (11)

for every prime p. Here, as in (8), ni and ki are the p-adic digits of n and k,
respectively. Equation (8) shows that the binomial coefficients

(
n
k

)
are a DLP

function. More generally, it is shown in [McI92, Theorem 6] that, for positive
integers r0, r1, . . . , rm,

L(n, k) =

(
n

k

)r0(n+ k

k

)r1(n+ 2k

k

)r2
· · ·
(
n+mk

k

)rm
(12)

is a DLP function. For instance, choosing the exponents as ri = 1, we find that
the multinomial coefficient(

n+mk

k, k, . . . , k, n− k

)
=

(n+mk)!

k!m+1(n− k)!
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is a DLP function for any integer m > 0.
Suppose that L(n, k) is a DLP function and that G(n) and H(n) are LP

functions, that is, the sequences G(n) and H(n) satisfy the Lucas congruences
(9). Then, as shown in [McI92, Theorem 5],

F (n) =

n∑
k=0

L(n, k)G(k)H(n− k) (13)

is an LP function. Note that (12) and (13) combined are already sufficient
to prove that the generalized Apéry sequences, defined in (10), satisfy Lucas
congruences. In order to apply this machinery more generally, and prove The-
orem 3.1, our next results extend the repertoire of DLP functions. In fact, it
turns out that we need a natural extension of the Lucas property to the case
of three variables. We say that a function M : Z3

>0 → Z has the triple Lucas
property (TLP) if M(n, k, j) = 0, for j > n, and if

M(n, k, j) ≡M(n0, k0, j0) · · ·M(nr, kr, jr) (mod p), (14)

for every prime p, where ni, ki and ji are the p-adic digits of n, k and j,
respectively. It is straightforward to prove the following analog of (13) for TLP
functions.

Lemma 3.3. If M(n, k, j) is a TLP function, then

L(n, k) =

n∑
j=0

M(n, k, j)

satisfies the double Lucas congruences (11). In particular, if L(n, k) = 0, for
k > n, then L(n, k) is a DLP function.

Proof. Let p be a prime. It is enough to show that, for any nonnegative integers
n0, n

′, k0, k
′ such that n0 < p and k0 < p,

L(n0 + n′p, k0 + k′p) ≡ L(n0, k0)L(n′, k′) (mod p). (15)

Since the sum defining L(n, k) is naturally supported on j ∈ {0, 1, . . . , n}, we
may extend it over all j ∈ Z. Modulo p, we have

L(n, k) =
∑
j∈Z

M(n, k, j)

=

p−1∑
j0=0

∑
j′∈Z

M(n, k, j0 + j′p)

≡
∑
j0∈Z

∑
j′∈Z

M(n0, k0, j0)M(n′, k′, j′)

= L(n0, k0)L(n′, k′),

which is what we had to prove.
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Lemma 3.4. The function

M(n, k, j) =

(
n

j

)(
k + j

n

)
is a TLP function.

Proof. Clearly, M(n, k, j) = 0, for j > n. In order to show that M(n, k, j) is a
TLP function, we therefore need to show that, for any prime p,

M(n0 + n′p, k0 + k′p, j0 + j′p) ≡M(n0, k0, j0)M(n′, k′, j′) (mod p), (16)

provided that 0 6 n0, k0, j0 < p and n′, k′, j′ > 0. Observe that in the case j0 >
n0 both sides of the congruence (16) vanish because of the Lucas congruences (8)
for the binomial coefficients. We may therefore proceed under the assumption
that j0 6 n0.

Writing [xn]f(x) for the coefficient of xn in the polynomial f(x), we begin
with the simple observation that(

k + j

n

)
= [xn](1 + x)k+j .

Modulo p, we have

(1 + x)k+j = (1 + x)k0+j0(1 + x)(k
′+j′)p ≡ (1 + x)k0+j0(1 + xp)k

′+j′ (mod p).

Since 0 6 k0 + j0 < 2p, extracting the coefficient of xn = xn0(xp)n
′

from this
product results in the congruence(

k + j

n

)
≡
(
k0 + j0
n0

)(
k′ + j′

n′

)
+

(
k0 + j0
n0 + p

)(
k′ + j′

n′ − 1

)
(mod p).

Note that, under our assumption that j0 6 n0, the second term on the right-
hand side of this congruence vanishes (since n0 + p > j0 + p > j0 + k0). This,
along with (8), proves (16).

Corollary 3.5. The function

L(n, k) =

(
n

k

)(
2k

n

)
is a DLP function.

Proof. Set j = k in Lemma 3.4.

Lemma 3.6. The function

L(n, k) = 3n−3k
(
n

3k

)
(3k)!

k!3

is a DLP function.
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Proof. Let p be a prime. As usual, we write n = n0+n′p and k = k0+k′p where
0 6 n0 < p and 0 6 k0 < p. In light of (8) and (13), the simple observation(

2n

n

)
=

n∑
k=0

(
n

k

)2

, (17)

demonstrates that the sequence of central binomial coefficients is an LP func-
tion. We claim that

(3k)!

k!3
=

(
3k

k

)(
2k

k

)
is an LP function as well. From the Lucas congruences for the central binomials,
that is (

2k

k

)
≡
(

2k0
k0

)(
2k′

k′

)
(mod p),

we observe that
(
2k
k

)
is divisible by p if 2k0 > p. Hence, we only need to show

the congruences
(3k)!

k!3
≡ (3k0)!

k0!3
(3k′)!

k′!3
(mod p) (18)

under the assumption that k0 < p/2. Note that(
3k

k

)
= [xk](1 + x)3k

≡ [xk0(xp)k
′
](1 + x)3k0(1 + xp)3k

′
(mod p)

=

(
3k0
k0

)(
3k′

k′

)
+

(
3k0
k0 + p

)(
3k′

k′ − 1

)
+

(
3k0

k0 + 2p

)(
3k′

k′ − 2

)
.

In the case k0 < p/2, we have k0 + p > 3k0, so that the last two terms on the
right-hand side vanish. This proves (18).

Next, we claim that(
n

3k

)
(3k)!

k!3
≡
(
n0
3k0

)
(3k0)!

k0!3

(
n′

3k′

)
(3k′)!

k′!3
(mod p). (19)

By congruence (18), both sides vanish modulo p if 3k0 > p. On the other hand,
if 3k0 < p, then the usual argument shows that(

n

3k

)
≡ [x3k0(xp)3k

′
](1 + x)n0(1 + xp)n

′
=

(
n0
3k0

)(
n′

3k′

)
(mod p).

In combination with (18), this proves (19).
Finally, the congruences L(n, k) ≡ L(n0, k0)L(n′, k′), that is

3n−3k
(
n

3k

)
(3k)!

k!3
≡ 3n0−3k0

(
n0
3k0

)
(3k0)!

k0!3
3n

′−3k′
(
n′

3k′

)
(3k′)!

k′!3
(mod p), (20)

follow from Fermat’s little theorem and the fact that both sides vanish if 3k0 >
n0 or 3k′ > n′.
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We are now in a comfortable position to prove Theorem 3.1 for all but
two of the sporadic Apéry-like sequences. To show that sequences (η) and s18
satisfy Lucas congruences as well requires considerable additional effort, and the
corresponding proofs are given in Section 4.

Proof of Theorem 3.1. Recall from (17) that the sequence of central binomial
coefficients is an LP function. Further armed with (12) as well as Corollary 3.5
and Lemma 3.6, the claimed Lucas congruences for the sequences (a), (b), (c),
(d), (f), (α), (ε), (γ), s10, s7 follow from (13). It remains to consider the
sequences (g), (δ), (ζ) as well as (η) and s18.

Sequence (g) can be written as

Ag(n) =

n∑
k=0

(−1)k8n−k
(
n

k

)
F (k),

where F (k) =
∑k
l=0

(
k
l

)3
are the Franel numbers (sequence (a)), which we al-

ready know to be an LP function. As a consequence of Fermat’s little theorem,
the sequence an is an LP function for any integer a. Hence, equation (13)
applies to show that Ag(n) is an LP function.

In order to see that sequence (δ) satisfies the Lucas congruences as well, it
suffices to observe that L(n, k) =

(
n+k
k

)
is almost a DLP function, that is, it

satisfies the congruences (11) but does not vanish for k > n. This is enough to
conclude from Lemma 3.6 that

L(n, k) = 3n−3k
(
n

3k

)(
n+ k

k

)
(3k)!

k!3

is a DLP function. Since this is the summand of sequence (δ), the desired Lucas
congruences again follow from (13).

On the other hand, for sequence (ζ), we observe that

L(n, k) =

n∑
j=0

(
n

j

)(
k

j

)(
k + j

n

)
satisfies the congruences (11) by Lemma 3.3 because the summand is a TLP

function by Lemma 3.4. Hence,
(
n
k

)2
L(n, k) is a DLP function. Writing se-

quence (ζ) as

Aζ(n) =

n∑
k=0

(
n

k

)2

L(n, k),

the claimed congruences once more follow from (13).

4 Proofs for the two remaining sequences

The proof of the Lucas congruences in the previous section does not readily
extend to the sequences (η) and s18 from Table 2, because, in contrast to the
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other cases, the known binomial sums for these sequences do not have the prop-
erty that their summands satisfy the double Lucas property. Let us first note
that the binomial sums for s18 and sequence (η), given in (7) and Table 2, can
be simplified at the expense of working with binomial coefficients with negative
entries. Namely, we have

s18(n) =

n∑
k=0

(−1)k
(
n

k

)(
2k

k

)(
2(n− k)

n− k

)(
2n− 3k

n

)
(21)

and

Aη(n) =

n∑
k=0

(−1)k
(
n

k

)3(
4n− 5k

3n

)
, (22)

where, as usual, for any integer m > 0 and any number x, we define(
x

m

)
=
x(x− 1) · · · (x−m+ 1)

m!
.

For instance, the equivalence between (7) and (21) is a simple consequence of
the fact that, for integers n > 0 and l = n− k,

(−1)k
(

2n− 3k

n

)
= (−1)k+n

(
−n+ 3k − 1

n

)
= (−1)l

(
2n− 3l − 1

n

)
. (23)

For the first equality, we used that, for integers b > 0,(
a

b

)
=
a(a− 1) · · · (a− b+ 1)

b!

= (−1)b
(−a)(−a+ 1) · · · (−a+ b− 1)

b!
= (−1)b

(
−a+ b− 1

b

)
. (24)

The following result generalizes the Lucas congruences for the sequence s18(n).

Theorem 4.1. Suppose that B(n, k) is a DLP function with the property that
B(n, k) = B(n, n− k). Then, the sequence

A(n) =

n∑
k=0

(−1)kB(n, k)

(
2n− 3k

n

)
is an LP function, that is, A(n) satisfy the Lucas congruences (9).

Proof. Let p be a prime and let n > 0 be an integer. Write n = n0 + n′p and
k = k0 + k′p, where 0 6 n0 < p and 0 6 k0 < p and n′, k′ are nonnegative
integers. We have to show that

A(n) ≡ A(n0)A(n′) (mod p). (25)

In the sequel, we denote

C(n, k) = (−1)kB(n, k)

(
2n− 3k

n

)
.
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For k0 6 n0/3, we have 2n0 − 3k0 > n0 > 0 and 2n0 − 3k0 6 2n0 < n0 + p.
Hence, by the usual argument, we have(

2n− 3k

n

)
≡ [xn0(xp)n

′
](1 + x)2n0−3k0(1 + xp)2n

′−3k′ (mod p)

≡
(

2n0 − 3k0
n0

)(
2n′ − 3k′

n′

)
(mod p).

Hence, we find that, when k0 6 n0/3,

C(n, k) ≡ C(n0, k0)C(n′, k′) (mod p). (26)

For n0/3 < k0 < 2n0/3, we have n0 > 2n0− 3k0 > 0. By the same argument as
above, we find that (

2n− 3k

n

)
≡ 0 (mod p), (27)

and hence C(n, k) ≡ C(n0, k0) ≡ 0 modulo p.
Finally, consider the case n0 > 1 and 2n0/3 6 k0 6 n0. In that case,

−p < −n0 6 2n0 − 3k0 6 0 or, equivalently, 0 < 2n0 − 3k0 + p 6 p. Hence, we
have, modulo p,(

2n− 3k

n

)
≡ [xn0(xp)n

′
](1 + x)2n0−3k0+p(1 + xp)2n

′−3k′−1

≡
(

2n0 − 3k0 + p

n0

)(
2n′ − 3k′ − 1

n′

)
≡

(
2n0 − 3k0

n0

)(
2n′ − 3k′ − 1

n′

)
, (28)

because, for any integers A,B and m such that 0 6 m < p,(
A+Bp

m

)
=

1

m!
(A+Bp)(A+Bp− 1) · · · (A+Bp−m+ 1)

≡ 1

m!
A(A− 1) · · · (A−m+ 1) =

(
A

m

)
(mod p). (29)

Set l′ = n′ − k′. Applying (23) to the second binomial factor in (28), we find
that (

2n− 3k

n

)
≡ (−1)n

′
(

2n0 − 3k0
n0

)(
2n′ − 3l′

n′

)
(mod p).

In combination with the assumed symmetry of B(n, k), we therefore have that,
when n0 > 1 and 2n0/3 6 k0 6 n0,

C(n, k) ≡ C(n0, k0)C(n′, n′ − k′) (mod p). (30)
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We are now ready to combine all cases. First, suppose that n0 > 1. Noting that
k 6 n/3 implies k′ 6 n′/3, and using (26), (27) and (30), we conclude that,
modulo p,

A(n) =

p−1∑
k0=0

n′∑
k′=0

C(n, k) ≡
n0∑
k0=0

n′∑
k′=0

C(n, k)

≡
bn0/3c∑
k0=0

n′∑
k′=0

C(n, k) +

n0∑
k0=d2n0/3e

n′∑
k′=0

C(n, k)

≡
bn0/3c∑
k0=0

C(n0, k0)

n′∑
k′=0

C(n′, k′) +

n0∑
k0=d2n0/3e

C(n0, k0)

n′∑
k′=0

C(n′, n′ − k′)

=

bn0/3c∑
k0=0

C(n0, k0) +

n0∑
k0=d2n0/3e

C(n0, k0)

 n′∑
k′=0

C(n′, k′)

= A(n0)A(n′),

which is what we wanted to prove. The case n0 = 0 is simpler, and we only
have to use (26) to again conclude that (25) holds.

Corollary 4.2. The sequence s18(n) satisfies the Lucas congruences (9).

Proof. Recall from the discussion in Section 3 that

B(n, k) =

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
is a DLP function. Obviously, B(n, k) = B(n, n − k). Hence, Theorem 4.1
applies to show that s18(n), in the form (21) satisfies the Lucas congruences
(9).

Next, we prove that the sequence (η), which corresponds to the choice a = 3
in Theorem 4.3, satisfies Lucas congruences as well.

Theorem 4.3. Let a ∈ {1, 3}. Then, the sequence

A(n) =

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
(31)

is an LP function, that is, A(n) satisfy the Lucas congruences (9).

Proof. Let p be a prime and let n > 0 be an integer. As in the proof of
Theorem 4.1, we write n = n0 + n′p and k = k0 + k′p, where 0 6 n0 < p and
0 6 k0 < p and n′, k′ are nonnegative integers. Again, we have to show that

A(n) ≡ A(n0)A(n′) (mod p). (32)
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Throughout the proof, let d = b3n0/pc.
If k0 6 n0/5, then 4n0 − 5k0 > 3n0 > 0 and 4n0 − 5k0 6 4n0 < 3n0 + p.

Since d = b3n0/pc, we thus have 0 6 3n0 − dp < p and 0 6 4n0 − 5k0 − dp <
(3n0 − dp) + p. Therefore, modulo p,(

4n− 5k

3n

)
≡ [x3n0−dp(xp)3n

′+d](1 + x)4n0−5k0−dp(1 + xp)4n
′−5k′+d

≡
(

4n0 − 5k0 − dp
3n0 − dp

)(
4n′ − 5k′ + d

3n′ + d

)
≡

(
4n0 − 5k0

3n0

)(
4n′ − 5k′ + d

3n′ + d

)
,

where in the last step we used that, modulo p,(
4n0 − 5k0 − dp

3n0 − dp

)
=

(
4n0 − 5k0 − dp

n0 − 5k0

)
≡
(

4n0 − 5k0
n0 − 5k0

)
=

(
4n0 − 5k0

3n0

)
, (33)

which follows from (29) because 0 6 n0 − 5k0 < p. In particular, we have

bn0/5c∑
k0=0

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)

≡
bn0/5c∑
k0=0

(−1)k0
(
n0
k0

)a(
4n0 − 5k0

3n0

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + d

3n′ + d

)
, (34)

and we observe that, for d ∈ {0, 1},

A(n) =

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k + d

3n+ d

)
. (35)

To see this, note that the the sum of the k-th and (n − k)-th term does not
depend on the value of d ∈ {0, 1}. Indeed, using (24), Pascal’s relation and (24)
again, we deduce that(

4n− 5k + 1

3n+ 1

)
+ (−1)n

(
4n− 5(n− k) + 1

3n+ 1

)
=

(
4n− 5k + 1

3n+ 1

)
−
(

4n− 5k − 1

3n+ 1

)
=

[(
4n− 5k + 1

3n+ 1

)
−
(

4n− 5k

3n+ 1

)]
+

[(
4n− 5k

3n+ 1

)
−
(

4n− 5k − 1

3n+ 1

)]
=

(
4n− 5k

3n

)
+

(
4n− 5k − 1

3n

)
=

(
4n− 5k

3n

)
+ (−1)n

(
4n− 5(n− k)

3n

)
.
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Next, suppose that n0 > 1 and 4n0/5 6 k0 6 n0. In that case, −p < −n0 6
4n0 − 5k0 6 0 or, equivalently, 0 < 4n0 − 5k0 + p 6 p. Hence, we have, modulo
p, (

4n− 5k

3n

)
≡ [x3n0−dp(xp)3n

′+d](1 + x)4n0−5k0+p(1 + xp)4n
′−5k′−1

≡
(

4n0 − 5k0 + p

3n0 − dp

)(
4n′ − 5k′ − 1

3n′ + d

)
.

We rewrite the first binomial factor as follows, applying first (24) and then (29)
twice, to find that, with l0 = n0 − k0, modulo p,(

4n0 − 5k0 + p

3n0 − dp

)
= (−1)n0+d

(
4n0 − 5l0 − (d+ 1)p− 1

3n0 − dp

)
≡ (−1)n0+d

(
4n0 − 5l0 − dp− 1

3n0 − dp

)
= (−1)n0+d

(
4n0 − 5l0 − dp− 1

n0 − 5l0 − 1

)
≡ (−1)n0+d

(
4n0 − 5l0 − 1

n0 − 5l0 − 1

)
= (−1)n0+d

(
4n0 − 5l0 − 1

3n0

)
.

Here, we proceeded under the assumption that n0−5l0 > 0. It is straightforward
to check that the final congruence also holds when n0 = 5l0, because then the
binomial coefficients vanish modulo p. We conclude that, when n0 > 1 and
4n0/5 6 k0 6 n0,

(−1)k
(

4n− 5k

3n

)
≡ (−1)l0

(
4n0 − 5l0 − 1

3n0

)
(−1)k

′+d

(
4n′ − 5k′ − 1

3n′ + d

)
(mod p).

In particular, we have

n0∑
k0=d4n0/5e

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)

≡
n0∑

k0=d4n0/5e

(−1)l0
(
n0
l0

)a(
4n0 − 5l0 − 1

3n0

) n′∑
k′=0

(−1)k
′+d

(
n′

k′

)a(
4n′ − 5k′ − 1

3n′ + d

)

=

bn0/5c∑
k0=0

(−1)k0
(
n0
k0

)a(
4n0 − 5k0 − 1

3n0

) n′∑
k′=0

(−1)k
′+d

(
n′

k′

)a(
4n′ − 5k′ − 1

3n′ + d

)
,

(36)

and we observe that, for integers d > 0,

n∑
k=0

(−1)k+d
(
n

k

)a(
4n− 5k − 1

3n+ d

)
=

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k + d

3n+ d

)
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because, by (24),

(−1)k
(

4n− 5k + d

3n+ d

)
= (−1)(n−k)+d

(
4n− 5(n− k)− 1

3n+ d

)
.

Therefore, we can combine (34) and (36) into

n0∑
k0=0

k06n0/5 or k0>4n0/5

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)

≡ A(n0)

n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + d

3n′ + d

)
(mod p), (37)

which holds for all 0 6 n0 < p (recall from the discussion at the beginning of
this section that A(n0), like sequence (η), can be represented as in Table 2).

On the other hand, suppose that n0/5 < k0 < 4n0/5. Set f = b(4n0 −
5k0)/pc. Since 0 < 4n0 − 5k0 < 3n0 < 3p, we have f ∈ {0, 1, 2}. The usual
arguments show that, modulo p,(

4n− 5k

3n

)
≡ [x3n0−dp(xp)3n

′+d](1 + x)4n0−5k0−fp(1 + xp)4n
′−5k′+f

≡
(

4n0 − 5k0 − fp
3n0 − dp

)(
4n′ − 5k′ + f

3n′ + d

)
≡

(
4n0 − 5k0
3n0 − dp

)(
4n′ − 5k′ + f

3n′ + d

)
. (38)

We are now in a position to begin piecing everything together. To do so, we
consider individually the cases corresponding to the value of d ∈ {0, 1, 2}.

First, suppose d = 0 or d = 1. Congruence (37) coupled with (35) implies
that

n0∑
k0=0

k06n0/5 or k0>4n0/5

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
≡ A(n0)A(n′) (mod p).

To conclude the desired congruence (32), it therefore only remains to show that

d4n0/5e−1∑
k0=bn0/5c+1

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
≡ 0 (mod p). (39)

This is easily seen in the case d = 0, because then each term of this sum vanishes
modulo p. Equivalently, for d = 0, (38) vanishes whenever n0/5 < k0 < 4n0/5
(because 0 6 4n0 − 5k0 − fp 6 4n0 − 5k0 < 3n0). On the other hand, if d = 1,
we claim that the sum (39) vanishes modulo p because the terms corresponding
to (k0, k

′) and (k0, n
′−k′) cancel each other. To see that, observe first that, for
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d = 1, (38) vanishes whenever n0/5 < k0 < 4n0/5 and f = b(4n0 − 5k0)/pc 6= 0
(because 0 6 4n0−5k0−fp 6 4n0−5k0−p < 3n0−p if f ∈ {1, 2}). Therefore,
for the term corresponding to (k0, k

′),

(−1)k
(

4n− 5k

3n

)
≡ (−1)k0

(
4n0 − 5k0
3n0 − p

)
(−1)k

′
(

4n′ − 5k′

3n′ + 1

)
(mod p),

while, for the term corresponding to (k0, n
′ − k′) with j = k0 + (n′ − k′)p,

(−1)j
(

4n− 5j

3n

)
≡ (−1)k0

(
4n0 − 5k0
3n0 − p

)
(−1)n

′−k′
(

4n′ − 5(n′ − k′)
3n′ + 1

)
≡ (−1)k0

(
4n0 − 5k0
3n0 − p

)
(−1)k

′+1

(
4n′ − 5k′

3n′ + 1

)
≡ −(−1)k

(
4n− 5k

3n

)
(mod p),

where we applied (24) for the second congruence. It is now immediate to see
that the sum (39) indeed vanishes modulo p for d = 1.

It remains to prove the Lucas congruences (32) in the case d = 2. Using
(37), we have

A(n) ≡ A(n0)

n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + 2

3n′ + 2

)
+M (mod p),

where

M :=

d4n0/5e−1∑
k0=bn0/5c+1

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
.

Combining this congruence with the identity

A(n) =

n∑
k=0

(−1)k
(
n

k

)a [(
4n− 5k + 2

3n+ 2

)
−
(

4n− 5k

3n+ 2

)]
,

which can be deduced along the same lines as (35), we find that

A(n) ≡ A(n0)A(n′)+A(n0)

n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′

3n′ + 2

)
+M (mod p). (40)

We have, by (38), modulo p,

M ≡
d4n0/5e−1∑
k0=bn0/5c+1

(−1)k0
(
n0
k0

)a(
4n0 − 5k0
3n0 − 2p

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + f

3n′ + 2

)

≡
d4n0/5e−1∑
k0=bn0/5c+1

(−1)k0
(
n0
k0

)a(
4n0 − 5k0
3n0 − 2p

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′

3n′ + 2

)
,
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where the last congruence is a consequence of the identity

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k + 1

3n+ 2

)
=

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k

3n+ 2

)
(which follows from (24) and replacing k with n − k) and the fact that (38)
vanishes for n0/5 < k0 < 4n0/5 if f = 2. Using this value of M in (40), we find
that the desired Lucas congruence (32) follows, if we can show that

A(n0) +

d4n0/5e−1∑
k0=bn0/5c+1

(−1)k0
(
n0
k0

)a(
4n0 − 5k0
3n0 − 2p

)
≡ 0 (mod p). (41)

Note that, if k0 6 n0/5, then, by (29) and (33),(
4n0 − 5k0
3n0 − 2p

)
≡
(

4n0 − 5k0 − 2p

3n0 − 2p

)
≡
(

4n0 − 5k0
3n0

)
(mod p). (42)

A similar argument, combined with (24), shows that the congruence (42) also
holds if k0 > 4n0/5. We therefore find that (41) is equivalent to

n0∑
k0=0

(−1)k0
(
n0
k0

)a(
4n0 − 5k0
3n0 − 2p

)
≡ 0 (mod p).

The next lemma proves that this congruence indeed holds provided that a ∈
{1, 3}.

Lemma 4.4. Let p be a prime, and a ∈ {1, 2, 3}. Then we have, for all n such
that 2p/3 6 n < p,

n∑
k=0

(−1)ak
(
n

k

)a(
4n− 5k

3n− 2p

)
≡ 0 (mod p).

Proof. To prove these congruences we employ N. Calkin’s technique [Cal98] for
proving similar divisibility results for sums of powers of binomials (58). Denoting
r = p− n, we have, by (24) and (29),

n∑
k=0

(−1)ak
(
n

k

)a(
4n− 5k

3n− 2p

)
=

p−r∑
k=0

(−1)ak
(
p− r
k

)a(
4p− 4r − 5k

p− 3r

)

=

p−r∑
k=0

(
k − p+ r − 1

k

)a(
4p− 4r − 5k

p− 3r

)

≡
p−r∑
k=0

(
k + r − 1

k

)a(
4p− 4r − 5k

p− 3r

)
(mod p).
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Clearly, (
k + r − 1

k

)
=

(k + 1)(k + 2) · · · (k + r − 1)

(r − 1)!
=

(k + 1)r−1
(r − 1)!

, (43)

where (x)k = x(x + 1) · · · (x + k − 1) denotes the Pochhammer symbol (in
particular, (x)0 = 1). Likewise,(

4p− 4r − 5k

p− 3r

)
=

(3p− r − 5k + 1)p−3r
(p− 3r)!

Since (r − 1)! and (p− 3r)! are not divisible by p, we have to show that

p−r∑
k=0

(k + 1)ar−1(3p− r − 5k + 1)p−3r ≡ 0 (mod p). (44)

Since the polynomials (x)k, (x)k−1, . . . , (x)0 form an integer basis for the space
of all polynomials with integer coefficients and degree at most k, there exist
integers c0, c1, . . . , cN with N = (a− 1)(r − 1) + p− 3r so that

(k + 1)a−1r−1(3p− r − 5k + 1)p−3r =

N∑
j=0

cj(k + r)j .

Then the left-hand side of (44) becomes

p−r∑
k=0

(k + 1)r−1

N∑
j=0

cj(k + r)j =

N∑
j=0

cj

p−r∑
k=0

(k + 1)r−1(k + r)j

=

N∑
j=0

cj

p−r∑
k=0

(k + 1)r+j−1

=

N∑
j=0

cj
(p− r + 1)r+j

r + j
, (45)

where we used
(x)k − (x− 1)k = k(x)k−1

to evaluate

p−r∑
k=0

(k + 1)r+j−1 =

p−r∑
k=0

(k + 1)r+j − (k)r+j
r + j

=
(p− r + 1)r+j

r + j
.

The desired congruence therefore follows if we can show that

(p− r + 1)r+j
r + j

≡ 0 (mod p) (46)
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for all j = 0, 1, . . . , N . Since r > 0 and j > 0, the numerator (p − r + 1)r+j is
always divisible by p. The congruences (46) thus follow if r+ j < p for all j, or,
equivalently, r +N < p. Since

r +N = (a− 1)(r − 1) + p− 2r,

we have r +N < p if and only if

(a− 1)(r − 1) < 2r.

Clearly, this inequality holds for all r > 1 if and only if a 6 3.

Remark 4.5. Numerical evidence suggests that the values a ∈ {1, 3} in Theo-
rem 4.3 are the only choices for which the sequence (31) satisfies Lucas congru-
ences. In light of Lemma 4.4, it is natural to ask if there are additional values
of a and ε, for which the sequence

n∑
k=0

(−1)εk
(
n

k

)a(
4n− 5k

3n

)
satisfies Lucas congruences. Empirically, this does not appear to be the case. In
particular, for a = 2 this sequence does not satisfy Lucas congruences for either
ε = 0 or ε = 1.

5 Periodicity of residues

The Apéry numbers satisfy

A(n) ≡ (−1)n (mod 3), (47)

and so are periodic modulo 3. As in the case of the congruences (4), which
show that the Apéry numbers are also periodic modulo 8, the congruences (47)
were first conjectured in [CCC80] and then proven in [Ges82]. We say that
a sequence C(n) is eventually periodic if there exists an integer M > 0 such
that C(n + M) = C(n) for all sufficiently large n. An initial numerical search
suggests that each sporadic Apéry-like sequence listed in Tables 1 and 2 can
only be eventually periodic modulo a prime p if p 6 5. As an application of
Theorem 3.1, we prove this claim next.

Corollary 5.1. None of the sequences from Tables 1 and 2 is eventually periodic
modulo p for any prime p > 5.

Proof. Gessel [Ges82] shows that, if a sequence C(n) satisfies the Lucas con-
gruences (9) modulo p and is eventually periodic modulo p, then C(n) ≡ C(1)n

modulo p for all n = 0, 1, . . . , p− 1.
For instance, let C(n) be the Almkvist–Zudilin sequence (δ). Then, C(1) =

3, C(2) = 9 and C(3) = 3. Suppose C(n) was eventually periodic modulo p.
Then p has to divide C(3)− C(1)3 = −24, which implies that p ∈ {2, 3}.
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In Table 3 we list, for each sequence, the primes dividing both C(2)−C(1)2

and C(3) − C(1)3. The fact, that all these primes are at most 5, proves our
claim.

(a) (b) (c) (d) (f) (g) (δ) (η) (α) (ε) (ζ) (γ) (s7) (s10) (s18)
2, 3 2, 5 2, 3 2 2, 3 2, 3 2, 3 2, 5 2, 3 2, 3 2, 3 2, 3 2 2 2, 3

Table 3: The primes dividing both C(2) − C(1)2 and C(3) − C(1)3, for each
sequence C(n) from Tables 1 and 2.

In fact, as another simple consequence of Theorem 3.1, we observe that the
Apéry-like sequences are in fact eventually periodic modulo each of the primes
listed in Table 3.

Corollary 5.2. Let C(n) be any sequence from Tables 1 and 2.

• C(n) ≡ C(1) (mod 2) for all n > 1.

• C(n) ≡ C(1) (mod 3) for all n > 1 if C(n) is one of (c), (f), (g), (δ),
(α), (ε), (ζ), s18, and C(n) ≡ (−1)n (mod 3) for all n > 0 if C(n) is (a)
or (γ).

• C(n) ≡ 3n (mod 5) for all n > 0 if C(n) is (b), and C(n) ≡ 0 (mod 5)
for all n > 1 if C(n) is (η).

Proof. One can check that Table 3 does not change if we include only those
primes p such that C(n) − C(1)n is divisible by p for all n ∈ {0, 1, 2, 3, 4}. For
n = 0, this is trivial since C(0) = 1. Therefore, in each of the cases considered
here, we have

C(n) ≡ C(1)n (mod p)

for all n ∈ {0, 1, . . . , p− 1}. For any n > 0, let n = n0 + n1p+ · · ·+ nrp
r be the

p-adic expansion of n. Then, by Theorem 3.1, we have

C(n) ≡ C(n0)C(n1) · · ·C(nr) (mod p)

≡ C(1)n0+n1+···+nr (mod p)

≡ C(1)n (mod p).

For the final congruence we used Fermat’s little theorem. All claimed congru-
ences then follow from the specific initial values of C(n) modulo p.

More interestingly, the congruences (4) show that the Apéry numbers (se-
quence (γ)) are periodic modulo 8. We offer the following corresponding result
for the Almkvist–Zudilin sequence (δ).

Theorem 5.3. The Almkvist–Zudilin numbers

Z(n) =

n∑
k=0

(−1)k3n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3
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satisfy the congruences

Z(n) ≡
{

1, if n is even,
3, if n is odd,

(mod 8). (48)

Proof. It is shown in [Str14] that the numbers (−1)nZ(n) are the diagonal
Taylor coefficients of the multivariate rational function

F (x1, x2, x3, x4) =
1

1− (x1 + x2 + x3 + x4) + 27x1x2x3x4
. (49)

That is, if

F (x1, x2, x3, x4) =

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

C(n1, n2, n3, n4)xn1
1 xn2

2 xn3
3 xn4

4

is the Taylor expansion of the rational function F , then Z(n) = (−1)nC(n, n, n, n).
Given such a rational function as well as a reasonably small prime power pr,

Rowland and Yassawi [RY13] give an explicit algorithm for computing a finite
state automaton, which produces the values of the diagonal coefficients modulo
pr. In the present case, this finite state automaton for the values (−1)nZ(n)
modulo 8 turns out to be the same automaton as the one for the Apéry numbers
modulo 8. Hence, the congruences (48) follow from the congruences (4). We
refer to [RY13] for details on finite state automata and the algorithm to construct
them from a multivariate rational generating function.

Empirically, Theorem 5.3 is the only other interesting set of congruences,
apart from the congruences (4), which demonstrates that an Apéry-like sequence
is periodic modulo a prime power. More precisely, numerical evidence suggests
that none of the sequences in Tables 1 and 2 is eventually periodic modulo
pr, for some r > 1, unless p = 2. Moreover, the only other instances modulo
a power of 2 appear to be the following, less interesting, ones: sequences (d)
and (α) are eventually periodic modulo 4 because all their terms, except the
first, are divisible by 4; likewise, sequences (ε) and s7 are eventually periodic
modulo 8 because all their terms, except the first, are divisible by 8. We do
not attempt to prove these claims here. We remark, however, that these claims
can be established by the approach used in the proof of Theorem 5.3, provided
that one is able to determine a computationally accessible analog of (49) for the
sequence at hand.

6 Primes not dividing Apéry-like numbers

Using the Lucas congruences proved in Theorem 3.1, it is straightforward to
verify whether or not a given prime divides some Apéry-like number.

Example 6.1. The values of Apéry numbers A(0), A(1), . . . , A(6) modulo 7 are
1, 5, 3, 3, 3, 5, 1. Since 7 does not divide A(0), A(1), . . . , A(6), it follows from the
Lucas congruences (9) that 7 does not divide any Apéry number. �
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Arguing as in Example 6.1, one finds that the primes 2, 3, 7, 13, 23, 29, 43, 47, . . .
do not divide any Apéry number A(n). E. Rowland and R. Yassawi [RY13] pose
the question whether there are infinitely many such primes. Table 4 records,
for each sporadic Apéry-like sequence, the primes below 100 which do not di-
vide any of its terms, and the last column gives the proportion of primes below
104 with this property. Each Apéry-like sequence is specified by its label from
[AvSZ11], which is also used in Tables 1 and 2. The alert reader will notice that
Cooper’s sporadic sequences (the ones with d 6= 0 in Table 2) are missing from
Table 4. That is because these sequences turn out to be divisible by all primes.
A more precise result for these sequences is proved at the end of this section.

(a) 3, 11, 17, 19, 43, 83, 89, 97 0.2994
(b) 2, 5, 13, 17, 29, 37, 41, 61, 73, 89 0.2897
(c) 2, 7, 13, 37, 61, 73 0.2962
(d) 3, 11, 17, 19, 43, 59, 73, 83, 89 0.2815
(f) 2, 5, 13, 17, 29, 37, 41, 61, 73, 97 0.2994
(g) 5, 11, 29, 31, 59, 79 0.2929
(δ) 2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192
(η) 2, 3, 17, 19, 23, 31, 47, 53, 61 0.2897
(α) 3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 0.5989
(ε) 3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037
(ζ) 2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046
(γ) 2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168

Table 4: The primes below 100 not dividing Apéry-like numbers (sequence indi-
cated in first column using the labels from [AvSZ11]) as well as the proportion
of primes (in the last column) below 10, 000 not dividing any term

Example 6.1 shows that the first 7 values of the Apéry numbers modulo 7
are palindromic. Our next result, which was noticed by E. Rowland, shows that
this is true for all primes.

Lemma 6.2. For any prime p, and integers n such that 0 6 n < p, the Apéry
numbers A(n) satisfy the congruence

A(n) ≡ A(p− 1− n) (mod p). (50)

Proof. For n such that 0 6 n < p, we employ (24) and (29) to arrive at

A(p− 1− n) =

p−1∑
k=0

(
p− 1− n

k

)2(
p− 1− n+ k

k

)2

≡
p−1∑
k=0

(
n+ k

k

)2(
n

k

)2

= A(n) (mod p),

as claimed.
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Theorem 3.1 and Lemma 6.2, considered together, suggest that e−1/2 ≈
60.65% of the primes do not divide any Apéry number. Indeed, let us make
the empirical assumption that the values A(n) modulo p, for n = 0, 1, . . . , (p−
1)/2, are independent and uniformly random. Since one of the values A(n) is
congruent to 0 modulo p with probability 1/p, it follows that the probability
that p does not divide any of the (p+ 1)/2 first values is(

1− 1

p

)(p+1)/2

. (51)

By the Lucas congruences, shown in Theorem 3.1, and Lemma 6.2, p does not
divide any of the (p+1)/2 first values if and only if p does not divide any Apéry
number. In the limit p→∞, the proportion (51) becomes e−1/2. Observe that
this empirical prediction matches the numerical data in Table 4 rather well. We
therefore arrive at the following conjecture.

Conjecture 6.3. The proportion of primes not dividing any Apéry number
A(n) is e−1/2.
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Figure 1: Proportion of primes (up to 10, 000) not dividing the sequences (δ),
(α), (ε), (ζ), (γ), with the dotted line indicating e−1/2. The Apéry sequence is
plotted in blue. (We thank Arian Daneshvar for producing this plot.)

While Lemma 6.2 does not hold for the other Apéry-like numbers C(n) from
Tables 1 and 2, we make the weaker observation that if a prime p > 5 divides
C(n), where 0 6 n < p, then p also divides C(p − 1 − n). We expect that this
empirical observation can be proven in the spirit of the proof of Lemma 6.2,
but do not pursue this theme further. We only note that it allows us to extend
the heuristic leading to Conjecture 6.3 to the Apéry-like sequences (δ), (α),
(ε), (ζ) from Table 2. In other words, we conjecture that, for each of these
sequences, the proportion of primes not dividing any of the terms is again e−1/2.
Figure 1 visualizes some numerical evidence for this conjecture. On the other
hand, for sequence (η) as well as the sequences from Table 1, the proportion of
primes not dividing any of their terms appears to be about half of that, that is
e−1/2/2 ≈ 30.33%.

To explain this extra factor of 1/2, we note that, for the Apéry-like numbers

Ab(n) =
∑
k

(
n

k

)2(
n+ k

n

)
, (52)
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Stienstra and Beukers [SB85] proved that, modulo p,

Ab

(
p− 1

2

)
≡
{

4a2 − 2p, if p = a2 + b2, a odd,
0, if p ≡ 3 (mod 4)

(53)

(and conjectured that the congruence should hold modulo p2, which was later
proved by Ahlgren and Ono [AO00]). In particular, congruence (53) makes
it explicit that every prime p ≡ 3 (mod 4) divides a term of this Apéry-like
sequence. Note that, by a classical congruence of Gauss, the congruences (53)
are equivalent, modulo p, to the congruences

Ab

(⌊p
2

⌋)
≡

{ (bp/2c
bp/4c

)2
, if p ≡ 1 (mod 4),

0, otherwise,
(54)

which are valid for any prime p 6= 2. The more general result in [SB85] also
includes the cases Aa and Ac. Similar divisibility results appear to hold for the
other Apéry-like numbers from Table 1, and it would be interesting to make
these explicit.

On the other hand, the extra factor of 1/2 in case of sequence (η) is explained
by the following congruences, which resemble (54) remarkably well.

Theorem 6.4. For any prime p 6= 3, we have that, modulo p,

Aη

(⌊p
3

⌋)
≡

{
(−1)bp/5c

( bp/3c
bp/15c

)3
, if p ≡ 1, 2, 4, 8 (mod 15),

0, otherwise.
(55)

Proof. Suppose that p ≡ 2 (mod 3), and write p = 3n+2. The congruence (55)
can be checked directly for p = 2 and p = 5, and so we may assume p > 5 in
the sequel. Applying (43) to the definition of sequence (η) in Table 2, we have

Aη(n) =

bn/5c∑
k=0

(−1)k
(
n

k

)3((
4n− 5k − 1

3n

)
+

(
4n− 5k

3n

))

=

bn/5c∑
k=0

(−1)k
(
n

k

)3(
(n− 5k)3n

(3n)!
+

(n− 5k + 1)3n
(3n)!

)
. (56)

Since 3n = p− 2 and 0 6 k 6 n/5, the term

(n− 5k)3n
(3n)!

(57)

is always divisible by p, unless n − 5k ∈ {1, 2} (because, otherwise, one of the
p − 2 factors of (n − 5k)3n is divisible by p, while (3n)! is not). Note that
n− 5k = 1 and n− 5k = 2 are equivalent to k = (p− 5)/15 and k = (p− 8)/15,
respectively. However, (p − 5)/15 cannot be an integer (since p 6= 5). We thus
find that (57) vanishes modulo p unless p ≡ 8 (mod 15) and k = bp/15c, in
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which case (57) is congruent to −1 modulo p. Combined with the analogous
discussion for the corresponding second term in (56), we conclude that

(n− 5k)3n
(3n)!

+
(n− 5k + 1)3n

(3n)!
≡

 1, if k = bp/15c and p ≡ 2 (mod 15),
−1, if k = bp/15c and p ≡ 8 (mod 15),
0, otherwise.

Applying this to the sum (56) and combining the signs properly, we arrive at
the congruences (55) when p ≡ 2 (mod 3).

The case p ≡ 1 (mod 3) is similar and a little bit simpler.

In summary, we conjecture that the proportion of primes not dividing any
term of the Apéry-like sequences in Tables 1 and 2 is as follows.

Conjecture 6.5.

• Let C(n) be one of the sequences of Table 1 or sequence (η). Then the
proportion of primes not dividing any C(n) is 1

2e
−1/2.

• Let C(n) be one of the sequences (δ), (α), (ε), (ζ), (γ) from Table 2. Then
the proportion of primes not dividing any C(n) is e−1/2.

In stark contrast, Cooper’s sporadic sequences s7, s10, s18 from Table 2 are
divisible by all primes. Indeed, let C(n) denote any of these three sequences.
Then,

C(p− 1) ≡ 0 (mod p)

for all primes p. In fact, we can prove much more. For any given prime p, the
last quarter (or third) of the first p terms of these sequences are divisible by p.
In the case of sequence s10, the sum of fourth powers of binomial coefficients,
this is proved by N. Calkin [Cal98]. Indeed, among other divisibility results on
sums of powers of binomials, Calkin shows that, for all integers a > 0, the sums

n∑
k=0

(
n

k

)2a

(58)

are divisible by all primes p in the range

n < p < n+ 1 +
n

2a− 1
.

In particular, in the case a = 2, we conclude that s10(n) is divisible by all primes
p that satisfy n < p < 4n

3 + 1. Equivalently, we have

s10(p− j) ≡ 0 (mod p)

whenever 1 6 j 6 (p + 2)/4. Our final result proves the same phenomenon for
Cooper’s sporadic sequences s7, s18. We note that in each case, empirically, the
bounds on j cannot be improved (with the expection of the case p = 3 for s18;
see Remark 6.7).
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Theorem 6.6. For any prime p, we have

s7(p− j) ≡ 0 (mod p)

whenever 1 6 j 6 (p+ 1)/3, and

s18(p− j) ≡ 0 (mod p)

whenever 1 6 j 6 (p+ 2)/4.

Proof. For the sequence s7, we want to show

p−j∑
k=0

(
p− j
k

)2(
p− j + k

k

)(
2k

p− j

)
≡ 0 (mod p),

for 1 6 j 6 (p + 1)/3. Note that for 2k < p − j or k > p − j the summand is
already zero. Therefore, we assume that p − j > k > (p − j)/2. We write the
summand as(

p− j
k

)2(
p− j + k

k

)(
2k

p− j

)
=

(p− j + k)!(2k)!

k!3(p− j − k)!2(2k − p+ j)!
,

and observe that the denominator is not divisible by p if j > 1. On the other
hand, the factorial (p− j + k)! in the numerator is divisible by p since

p− j + k > p− j +

⌈
p− j

2

⌉
> p,

where we used j 6 (p + 1)/3 to verify the final inequality. Thus, for 1 6 j 6
(p+ 1)/3, the congruences s7(p− j) ≡ 0 hold modulo p, as claimed.

We proceed similarly for s18(p− j), which is given by

b(p−j)/3c∑
k=0

(−1)k
(
p− j
k

)(
2k

k

)(
2(p− j − k)

p− j − k

){(
2(p− j)− 3k − 1

p− j

)
+

(
2(p− j)− 3k

p− j

)}
,

and, using (43), write the summand as

(−1)k(2k)!(2(p− j − k))!

k!3(p− j − k)!3
(p− j − 3k + 1)p−j−1(3p− 3j − 6k). (59)

None of the terms in the denominator is divisible by p since j > 1. On the other
hand, (2(p− j − k))! in the numerator is divisible by p since

2(p− j − k) > 2

(
p− j −

⌊
p− j

3

⌋)
> p,

where we used j 6 (p + 2)/4 for the final inequality. Therefore, for 1 6 j 6
(p+ 2)/4, each of the terms in the sum for s18(p− j) is a multiple of p, and we
obtain the desired congruences.
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Remark 6.7. Employing (59), we observe that s18(n) ≡ 0 (mod 3) for n > 1,
which reaffirms Corollary 5.2 for this sequence.

Finally, as noted in [Coo12], each of the sequences in Table 1 times
(
2n
n

)
is

an integer solution of (6) with d 6= 0. Observe that
(
2n
n

)
is divisible by a prime p

for all n such that n < p 6 2n. This results in a (weaker) analog of Theorem 6.6
for these Apéry-like sequences, and implies, in particular, that these sequences
are again divisible by all prime numbers.

7 Conclusion and open questions

In Sections 3 and 4, we showed that all sporadic solutions of (5) and (6), given
in Tables 1 and 2, uniformly satisfy Lucas congruences. However, for two of
these sequences, especially sequence (η), we had to resort to a rather technical
analysis. We therefore wonder if there is a representation of these sequences
from which the Lucas congruences can be deduced more naturally, based on, for
instance the approaches of [SvS09] and [MV13], or [RY13]. More generally, it
would be desirable to have a uniform approach to these congruences, possibly
directly from the shape of the defining recurrences and associated differential
equations. In another direction, it would be interesting to show that, as numer-
ical evidence suggests, all of the Apéry-like sequences in fact satisfy the Dwork
congruences (3).

The congruences (4) show that the Apéry numbers are periodic modulo 8,
alternating between the values 1 and 5. As a consequence, the other residue
classes 0, 2, 3, 4, 6, 7 modulo 8 are never attained. On the other hand, the obser-
vations in Section 6 show that certain primes do not divide any Apéry number.
This can be rephrased as saying that the residue class 0 is not attained by the
Apéry numbers modulo these primes. This leads us to the question of which
residue classes are not attained by Apéry-like numbers modulo prime powers pα.
In particular, are there interesting cases which are not explained by Sections 5
and 6?

The second part of congruence (53) makes it explicit that every prime p ≡ 3
(mod 4) divides a term of the Apéry-like sequence (52). Is there a similarly
explicit result which demonstrates that the Apéry numbers are divisible by
infinitely many distinct primes?
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[Str14] A. Straub. Multivariate Apéry numbers and supercongruences of rational
functions. Algebra & Number Theory, 8(8):1985–2008, 2014.

[Zag09] D. Zagier. Integral solutions of Apery-like recurrences. In J. Harnad and
P. Winternitz, editors, Groups and symmetries. From Neolithic to John
McKay, volume 47. American Mathematical Society, 2009.

30

http://arxiv.org/abs/1306.5811
http://arxiv.org/abs/1312.2195
http://arxiv.org/abs/1310.8635
http://arxiv.org/abs/0911.0797

	Introduction
	Review of Apéry-like numbers
	Lucas congruences
	Proofs for the two remaining sequences
	Periodicity of residues
	Primes not dividing Apéry-like numbers
	Conclusion and open questions

