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Abstract

Heninger, Rains and Sloane raised the question of which power series with integer
coefficients can be written as the nth power of another power series with integer coef-
ficients and constant term 1. We provide necessary and sufficient conditions, as well
as compare with a general integrality criterion due to Dieudonné and Dwork that can
be applied to this question as well.

1 Introduction

Heninger, Rains and Sloane [HRS06] raise and investigate the question of charactizing when
a formal power series f(x) ∈ 1 + xZ[[x]] has an nth root g(x) ∈ 1 + xZ[[x]]. That is, given
f(x), does there exist g(x) ∈ 1 + xZ[[x]] such that f(x) = g(x)n? Among other results,
a necessary condition is proved in [HRS06, Theorem 16] in the case where n is a prime.
In the following, we extend this condition to the case of prime powers and prove that it
is not only necessary but also sufficient. As explained below, the case of general n can be
reduced to the case of prime powers so that Theorem 1.1 can be considered an answer to
the question of Heninger, Rains and Sloane.

Theorem 1.1. Let a1, a2, . . . ∈ Zp and r ∈ Z>0. The power series (1+a1x+a2x
2+ . . .)1/p

r

has p-integral coefficients if and only if

1 + a1x+ a2x
2 + . . . ≡ (1 + aprx+ a2prx

2 + . . .)p
r

(mod pr+1). (1)

Here, as well as throughout, p denotes a prime. We write Zp for the ring of p-adic
integers as well as Qp for its fraction field (for nice introductions to p-adic numbers, we refer
to [Kob84] and [Rob00]). For A,B ∈ Qp[[x]], we will write either A ≡ B (mod prZp[[x]])
or, more succinctly, A ≡ B (mod pr) to mean that A − B ∈ prZp[[x]]. Since Z and Q
naturally embed into Zp and Qp, we may without possible confusion treat them as subsets.
For instance, given a ∈ Q, we say that a ∈ Zp if and only if the (reduced) denominator of
a is not a multiple of p.
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As reviewed in Section 2, if f(x) = g(x)n for two power series f(x), g(x) in 1+ xQ[[x]],
then we necessarily have g(x) = f(x)1/n where f(x)1/n is well-defined as a power series
by the binomial expansion (5). A more general (but ultimately equivalent) version of the
question by Heninger, Rains and Sloane therefore is to ask: under which conditions on
f(x) ∈ 1 + xZ[[x]] and λ ∈ Q has the power series f(x)λ integral coefficients itself? This
question for rational exponents λ readily reduces to the question for λ = 1/pr where pr is
a prime power (and this is the case covered by Theorem 1.1).

Proposition 1.2. Suppose f(x) ∈ 1 + xZ[[x]] and λ ∈ Q. Write λ = n/(pr11 · · · prmm ),
where rj ∈ Z>0 and where the pj are distinct primes not dividing n ∈ Z. Then we have
f(x)λ ∈ Z[[x]] if and only if f(x)1/p

r ∈ Zp[[x]] for all pr ∈ {pr11 , . . . , prmm }.

Proof. Observe that f(x)λ ∈ Z[[x]] if and only if f(x)λ ∈ Zp[[x]] for all primes p. If p
is a prime not dividing the denominator of λ, then λ ∈ Zp and it follows readily that
f(x)λ ∈ Zp[[x]] (see the discussion after the binomial expansion (5)). On the other hand,
suppose that pr ∈ {pr11 , . . . , prmm }. Then, as reviewed in Section 2, f(x)λ ∈ Zp[[x]] if and
only if f(x)λµ = f(x)1/p

r ∈ Zp[[x]] where µ = 1/(prλ) ∈ Z×
p .

Our criterion for the p-integrality of power series f(x)1/p
r
proved in Theorem 1.1 is

particularly easy to use for certain basic applications, such as the ones illustrated in the
examples below.

Example 1.3. As a first, particularly simple application of Theorem 1.1, let us confirm
that the power series

(1− 12x+ 12x2 + 8x3)−1/6 = 1 + 2x+ 12x2 + 92x3 + 784x4 + 7056x5 + . . . (2)

has integer coefficients. By Proposition 1.2, this is the case if and only if f(x)1/p ∈ Zp[[x]]
for p ∈ {2, 3} where f(x) = 1 − 12x + 12x2 + 8x3. In the case p = 2, by Theorem 1.1,
we have f(x)1/2 ∈ Z2[[x]] if and only if f(x) ≡ (1 + 12x)2 (mod 4), which is clearly true.
Likewise, f(x)1/3 ∈ Z3[[x]] if and only if f(x) ≡ (1 + 8x)3 (mod 9), which is true as well.
On the other hand, the same analysis shows that, for instance, (1− 12x+12x2 − 8x3)−1/6

does not have coefficients that are all integers (indeed, the coefficient of x3 is 284/3).

Example 1.4. It follows from Theorem 1.1 that, if a1, a2, . . . , ad ∈ Zp with d < pr, then
(1+a1x+a2x

2+. . .+adx
d)1/p

r ∈ Zp[[x]] if and only if a1, a2, . . . , ad ∈ pr+1Zp. In particular,
(1 + ax)1/p

r ∈ Zp[[x]] if and only if a ∈ pr+1Zp.

Example 1.5. The coefficients c(n, k) in the power series expansions

∞∑
n=0

c(n, k)xn = (1− k2x)−1/k
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are studied in [SMA09]. These numbers are referred to as k-central binomial coefficients,
with c(n, 2) =

(
2n
n

)
the usual central binomial coefficients. It follows from the binomial

theorem, see [SMA09, Proposition 2.1], that

c(n, k) = (−1)n
(
−1/k

n

)
k2n =

kn

n!

n−1∏
m=1

(1 + km).

In [SMA09, Theorem 2.2], these coefficients are proved to be positive integers. For instance,
in the case k = 4, this proves that (1−16x)−1/4 ∈ Z[[x]]. This, however, is not best possible
in the sense that, already, (1 − 8x)−1/4 ∈ Z[[x]] (this observation is equivalent to the fact
that 2n divides c(n, 4)). More generally, we find, as an application of Theorem 1.1, that,
for any nonzero k ∈ Z,

(1− k rad(k)x)−1/k ∈ Z[[x]], (3)

where rad(k) denotes the largest squarefree integer dividing k (for instance, rad(4) = 2
and rad(24) = 6). The result (3) is a strengthening of [SMA09, Theorem 2.2] and follows
directly from the observation made in the previous example that (1+ax)1/p

r ∈ Zp[[x]] if and
only if a ∈ pr+1Zp. Moreover, it follows from Theorem 1.1 combined with Proposition 1.2
that (3) is strongest possible in the sense that, with the exponent −1/k fixed, (1−ax)−1/k ∈
Z[[x]] if and only if a is a multiple of k rad(k).

Example 1.6. Suppose that f(x) ∈ 1+ xZ[[x]] and n ∈ Z>0. Heninger, Rains and Sloane
proved [HRS06, Theorem 1] that the power series f(x)1/n has integer coefficients if and
only if this is true for f(x) with its coefficients reduced modulo n rad(n). As in the previous
example, this result can be deduced as a corollary of Theorem 1.1.

Example 1.7. For a, b, c ∈ Z, Noe [Noe06] studies the generalized trinomial coefficients

Tn(a, b, c) = [xn](a+ bx+ cx2)n,

where [xn]f(x) denotes the coefficient of xn in f(x), and notes that they have the ordinary
generating function ∑

n≥0

Tn(a, b, c)x
n =

1√
1− 2bx+ dx2

(4)

where d = b2 − 4ac (note that Tn(a, b, c) only depends on ac, not on the individual values
of a and c). As an application of Theorem 1.1, we can conclude that these are the only
instances in which the power series (1+αx+βx2)−1/2, with α, β ∈ Z, has integer coefficients.
Indeed, applying Theorem 1.1, the condition (1) with p = 2, r = 1 becomes

1 + αx+ βx2 ≡ (1 + βx)2 (mod 4),

which is equivalent to α ≡ 2β and β ≡ β2 (mod 4). In other words, α ≡ 2β and β ≡ 0, 1
(mod 4). Since α is necessarily even, we may set b = −α/2 ∈ Z and d = β to match the
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right-hand side of (4). In terms of b and d, the conditions for integrality reduce to

b ≡ d (mod 2), d ≡ 0, 1 (mod 4),

which can be combined to d ≡ b2 (mod 4). In particular, letting a = 1 and c = (b2−d)/4 ∈
Z, we conclude that, if the coefficients of (1 + αx + βx2)−1/2 are integers, then they are
given by the generalized trinomial coefficients Tn(a, b, c).

Example 1.8. As another application of Theorem 1.1, let us characterize the values a, b ∈
Z and λ ∈ Q, for which the power series (1 + ax + bx2)λ has integer coefficients. As in
Example 1.4, it follows from Theorem 1.1 that, if pr ̸= 2, then (1+ax+bx2)1/p

r ∈ Zp[[x]] if
and only if a, b ∈ pr+1Zp. On the other hand, as in the previous example, (1+ax+bx2)1/2 ∈
Z2[[x]] if and only if either a, b ∈ 4Z2 or (a, b) ≡ (2, 1) (mod 4). Let k be the denominator
of λ. It follows that (1 + ax+ bx2)λ ∈ Z[[x]] if and only if

� a, b ∈ k rad(k)Z, or

� k = 2κ and a, b ∈ κ rad(κ)Z as well as (a, b) ≡ (2, 1) (mod 4).

Note that, in the second case, κ is necessarily odd.

The remainder of this paper is organized as follows. Before proving Theorem 1.1 in
Section 3, we collect some basic notations and results in Section 2. In the final Section 4,
we then review (and slightly extend) the Dieudonné–Dwork criterion for the purpose of
comparison with Theorem 1.1.

2 Notations and review

For any formal power series f(x) ∈ 1 + xR[[x]] over a commutative ring R containing Q,
the power f(x)λ can be defined for any λ ∈ R as a formal power series by the binomial
expansion

(1 + a1x+ a2x
2 + . . .)λ =

∑
n≥0

(
λ

n

)
(a1x+ a2x

2 + . . .)n ∈ R[[x]], (5)

where (
λ

n

)
=

λ(λ− 1) · · · (λ− n+ 1)

n!
. (6)

We refer to [KP11] and [Sam23] for introductions to formal power series. We note that the
binomial expansion (5) for (1+x)λ is equivalent to the definition (1+x)λ = exp(λ log(1+x))
used in [Sam23] to which we refer the reader for a detailed discussion of the formal power
series exp(x), log(1 + x) ∈ Q[[x]] and their properties. In particular, the expansion (5)
agrees with products of power series in the case where λ ∈ Z≥0, and the usual power laws
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hold. For instance, as pointed out in [KP11, §5.1], the multiplication law f(x)λf(x)µ =
f(x)λ+µ is equivalent to the Vandermonde convolution identity. Similarly, for any λ, µ ∈ R
and f(x) ∈ 1 + xR[[x]], we have (f(x)λ)µ = f(x)λµ, which can be deduced from the
corresponding property exp(x)λ = exp(λx) of the exponential. Note that this implies the
following observation: if f(x) = g(x)λ for f(x), g(x) ∈ 1 + xR[[x]] and λ ∈ R×, then we
necessarily have g(x) = f(x)1/λ.

For our purposes, we note that, if λ ∈ Zp, then
(
λ
n

)
∈ Zp for any integer n ≥ 0 (this

is clear for λ ∈ Z≥0 and follows for λ ∈ Zp by p-adic continuity and the fact that Zp is
closed). Consequently, if f(x) ∈ Zp[[x]] and λ ∈ Zp, then f(x)λ ∈ Zp[[x]]. In particular, if
λ ∈ Z×

p , then f(x) ∈ Zp[[x]] if and only if f(x)λ ∈ Zp[[x]].
Finally, we recall the following rather well-known result concerning congruences involv-

ing power series (see, for instance, [RY15, Proposition 1.9]).

Lemma 2.1. For any f(x), g(x) ∈ Zp[[x]] and r ∈ Z>0,

f(x) ≡ g(x) (mod p) ⇐⇒ f(x)p
r−1 ≡ g(x)p

r−1
(mod pr).

Proof. By Fermat’s little theorem for power series (which follows from the binomial ex-
pansion (5) combined with the fact that

(
p
n

)
is divisible by p except if n = 0 or n = p), we

have
f(x)p ≡ f(xp) (mod p), (7)

and thus f(x)p
r−1 ≡ f(xp

r−1
) modulo p, for any f(x) ∈ Zp[[x]]. Therefore, if f(x)p

r−1 ≡
g(x)p

r−1
modulo pr, then f(x) ≡ g(x) modulo p.

For the converse, suppose that f(x) ≡ g(x) modulo p. We will prove f(x)p
r−1 ≡ g(x)p

r−1

modulo pr by induction on r. For r = 1, this is true by assumption. Suppose that
f(x)p

r−1 ≡ g(x)p
r−1

modulo pr for some r ≥ 1. Then f(x)p
r−1

= g(x)p
r−1

+ prh(x) for
some h(x) ∈ Zp[[x]]. Raising both sides to the pth power, we find

f(x)p
r
= (g(x)p

r−1
+ prh(x))p = g(x)p

r
+

p∑
k=1

(
p

k

)
g(x)p

r−1(p−k)(prh(x))k.

For each k ∈ {1, 2, . . . , p}, the summand on the right-hand side is divisible by at least pr+1,
so that we conclude f(x)p

r ≡ g(x)p
r
modulo pr+1, as needed for the induction step.

3 Proof of Theorem 1.1

In preparation for proving Theorem 1.1, we observe the following result, which can also
be found, for instance, in [PS76, Part VIII, Chap. 3, No. 140]. (Note that it follows from
Theorem 1.1 that, more generally, (1 + ax)1/p

r ∈ Zp[[x]] if and only if a ∈ pr+1Zp.)

Lemma 3.1. For any r ∈ Z>0, we have (1 + pr+1x)1/p
r ∈ Zp[[x]].
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Proof. For any n ∈ Qp (in particular, for any n ∈ Q), denote with νp(n) the p-adic valuation
of n, that is the largest r ∈ Z such that n/pr ∈ Zp if n ̸= 0 (and r = ∞ if n = 0). We
recall Legendre’s formula which states that

νp(n!) =
n− sp(n)

p− 1
, (8)

where sp(n) is the sum of the digits of n in base p. It further follows from (6) that, if
νp(λ) < 0, then

νp

((
λ

n

))
= nνp(λ)− νp(n!). (9)

In particular, by combining this with Legendre’s formula, we have

νp

((
p−r

n

))
= −rn− νp(n!) = −

(
r +

1

p− 1

)
n+

sp(n)

p− 1

≥ −
(
r +

1

p− 1

)
n ≥ −(r + 1)n.

It therefore follows that the coefficients of (1 + ax)1/p
r
are p-integral if νp(a) ≥ r + 1. In

particular, (1 + pr+1x)1/p
r ∈ Zp[[x]], as claimed.

We are now in a convenient position to prove Theorem 1.1 which is restated in expanded
form below. We note that the equivalence of (a) and (b) follows from the result of Heninger,
Rains and Sloane [HRS06, Theorem 1] that we indicate in Example 1.6.

Theorem 3.2. Suppose f(x) = 1 + a1x + a2x
2 + . . . ∈ Zp[[x]] and r ∈ Z>0. Then the

following are equivalent.

(a) f(x)1/p
r ∈ Zp[[x]]

(b) f(x) ≡ g(x)p
r
(mod pr+1) for some g(x) ∈ Zp[[x]]

(c) f(x) ≡ (1 + aprx+ a2prx
2 + . . .)p

r
(mod pr+1)

Proof. Note that f(x)1/p
r ∈ Zp[[x]] if and only if there exists g(x) ∈ Zp[[x]] such that

g(x)p
r
= f(x). As such, (a) clearly implies (b).

Obviously, (c) implies (b). Let us show that the two conditions are, in fact, equivalent.
To that end, suppose that (b) holds. Write g(x) = b0 + b1x+ b2x

2 + . . . and observe that,
by repeated application of Fermat’s little theorem (7),

g(x)p
r ≡ g(xp

r
) = b0 + b1x

pr + b2x
2pr + . . . (mod p).

Thus, it follows from f(x) ≡ g(x)p
r
(mod pr+1) that bm ≡ ampr (mod p). In other words,

g(x) ≡ 1 + aprx+ a2prx
2 + . . . (mod p).

6



By Lemma 2.1, this congruence is equivalent to

g(x)p
r ≡ (1 + aprx+ a2prx

2 + . . .)p
r

(mod pr+1),

so that condition (c) follows from (b).
Finally, suppose that condition (c) holds. We need to show that (a) holds, that is,

f(x)1/p
r ∈ Zp[[x]]. Write g(x) = 1+aprx+a2prx

2+. . ., and let ∆(x) = f(x)−g(x)p
r
. By (c),

we have ∆(x) ∈ pr+1xZp[[x]]. Observe that it follows from Lemma 3.1 that (1+pr+1x)1/p
r ∈

Zp[[x]]. In particular, (1 + h(x))1/p
r ∈ Zp[[x]] whenever h(x) ∈ pr+1xZp[[x]]. We therefore

conclude that

f(x)1/p
r
= (g(x)p

r
+∆(x))1/p

r
= g(x)

(
1 +

∆(x)

g(x)pr

)1/pr

∈ Zp[[x]]

because g(x), and thus g(x)−pr as well, are in 1 + xZp[[x]].

4 The Dieudonné–Dwork criterion

For comparison with Theorem 1.1, we discuss in this section a well-known general criterion
due to Dieudonné and Dwork that is recorded as Theorem 4.1 below. We include a proof of
this criterion since we have not seen condition (c) stated in the literature (such as [Dwo58],
[Lan80], [Kob84] and [Rob00]). On the other hand, Dwork’s proof for the equivalence of
(a) and (b) readily extends to show that (a) and (c) are equivalent as well. As mentioned
in [Kob84] and [Rob00], the Dieudonné–Dwork criterion can be interpreted as saying that
a power series f(x) has p-integral coefficients if and only if it “commutes to within mod
p” with the pth power map. Both (b) and (c) are natural ways to make such a statement
precise. (We note that, given (a), the conditions (b) and (c) are clearly equivalent. However,
it is not obvious to us that the conditions (b) and (c) should be equivalent without using
(a) to pass from one to the other.)

Theorem 4.1 (Dieudonné–Dwork). Let f(x) ∈ 1 + xQp[[x]]. Then the following are
equivalent:

(a) f(x) ∈ Zp[[x]]

(b)
f(x)p

f(xp)
≡ 1 (mod p)

(c) f(x)p ≡ f(xp) (mod p)

Proof. We follow the proof in [Rob00, Chapter 7.2.3]. First, we show that (a) implies both
(b) and (c). Suppose that f(x) ∈ Zp[[x]]. Then, by Fermat’s little theorem (7), we have
f(x)p ≡ f(xp) (mod p) which is equivalent to f(x)p/f(xp) ≡ 1 since f(xp) ∈ 1 + Zp[[x]] is
invertible in Zp[[x]].
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On the other hand, suppose that either (b) or (c) holds, and write f(x) = 1 + a1x +
a2x

2 + . . . ∈ Qp[[x]]. In that case, there exists g(x) = b1x+ b2x
2 + . . . ∈ Zp[[x]] such that

f(x)p = f(xp) + pφ(x)g(x), (10)

where φ(x) = f(xp) in the case of (b) and φ(x) = 1 in the case of (c). It follows that
a1 = b1 ∈ Zp. Suppose that aj ∈ Zp for all j < n. We claim that an ∈ Zp so that (a)
follows by induction. To show this claim, we compare the coefficient of xn on both sides
of (10). For the left-hand side, we find

[xn]f(x)p = [xn](1 + a1x+ . . .+ anx
n)p

= pan + [xn](1 + a1x+ . . .+ an−1x
n−1)p

≡ pan + [xn](1 + a1x
p + . . .+ an−1x

(n−1)p) (mod p)

= pan + an/p. (11)

In the final step, we use the convention that an/p = 0 if p does not divide n. Note that we
were able to use Fermat’s little theorem (7) to reduce (1+a1x+ . . .+an−1x

n−1)p since, by
the induction hypothesis, all coefficients are in Zp. On the other hand, for the right-hand
side of (10), the only coefficients of f(xp) and φ(x) contributing to the coefficient of xn

are in Zp. Further reducing modulo p, only f(xp) contributes, whose coefficient of xn is
an/p. Upon comparison with (11), we conclude that pan ∈ pZp or, equivalently, an ∈ Zp,
as claimed.

Theorem 1.1 was proved by Dwork [Dwo58] who credits Dieudonné [Die57] for proving
the following additive version (both consider the special case where f(x) has the form∑

n≥0 anx
pn). Since both results are often referred to as Dwork’s lemma in the literature,

we find it fitting to include this additive version here, highlighting that it is consequence
of Theorem 4.1.

Corollary 4.2 (Dieudonné–Dwork, additive version). Let f(x) ∈ xQp[[x]]. Then exp(f(x)) ∈
Zp[[x]] if and only if f(xp)− pf(x) ∈ pZp[[x]].

Proof. It follows from Theorem 4.1 that exp(f(x)) ∈ Zp[[x]] if and only if

exp(f(xp)− pf(x)) ≡ 1 (mod pZp[[x]]).

The claim therefore follows from

exp

∑
n≥1

anx
n

 ∈ pZp[[x]] ⇐⇒
∑
n≥1

anx
n ∈ pZp[[x]]. (12)

The “⇐=” part of this equivalence is a consequence of the fact that exp(px) ∈ 1+pxZp[[x]]
(see, for instance, [Rob00, Chapter 7.2.3]). On the other hand, suppose that the left-hand
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side of (12) holds but that the right-hand side does not. In that case, there exists N ≥ 1
such that aN ̸∈ pZp. Suppose thatN is chosen as small as possible. Since exp

(∑
n<N anx

n
)

as well as its inverse are in 1 + pxZp[[x]], we conclude that exp
(∑

n≥N anx
n
)
∈ pZp[[x]].

The coefficient of xN in that series is aN so that, in particular, aN ∈ pZp. This, however,
is a contradiction.

There are various directions in which Theorem 4.1 and Corollary 4.2 can be extended,
including to several variables and extensions of Qp. We refer the interested reader to
[Rob00] for more information. For recent work on truncated versions of this integrality
criterion, we refer to [KM15]. Here, for comparison with Theorem 1.1, we offer the following
slight extension of the Dieudonné–Dwork criterion as stated in Theorem 4.1 (which is the
case r = 0 of the following).

Corollary 4.3. Let f(x) ∈ 1 + xQp[[x]] and r ∈ Z≥0. Then the following are equivalent:

(a) f(x)1/p
r ∈ Zp[[x]]

(b)
f(x)p

f(xp)
≡ 1 (mod pr+1)

(c) f(x)p ≡ f(xp) (mod pr+1)

Proof. It follows from Theorem 4.1 that conditions (b) and (c) imply f(x) ∈ Zp[[x]]. Since
condition (a) clearly implies f(x) ∈ Zp[[x]] as well, we may assume throughout that f(x) ∈
1+xZp[[x]]. This assumption, in particular, implies that 1/f(x) ∈ Zp[[x]] so that it becomes
clear that conditions (b) and (c) are equivalent.

Recall from Lemma 2.1 that, for p-integral power series, f(x)p
r ≡ g(x)p

r
(mod pr+1) is

equivalent to f(x) ≡ g(x) (mod p). Consequently, condition (b) is equivalent to(
f(x)p

f(xp)

)1/pr

≡ 1 (mod p).

By the Dieudonné–Dwork criterion as in Theorem 4.1, applied with f(x)1/p
r
in place of

f(x), it follows that this latter congruence is equivalent to f(x)1/p
r ∈ Zp[[x]], which is

condition (a).

In [Rob00], the Dieudonné–Dwork criterion is described by stating that “the extent to
which the operations

� first raising x to the power p and then applying f ,

� first computing f(x) and then raising to the pth power
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lead to similar results, is a measure of the integrality of the coefficients of f(x).” Corol-
lary 4.3 can be interpreted as a quantifiable version of this statement. Corollary 4.3 also
provides a second characterization of the p-integrality of power series f(x)1/p

r
which dif-

fers from the characterization we offer in Theorem 1.1. To appreciate this difference, we
conclude with the following example.

Example 4.4. As observed in Example 1.4, Theorem 1.1 immediately implies that, if
a1, a2, . . . , ad ∈ Zp with d < pr, then (1 + a1x+ a2x

2 + . . .+ adx
d)1/p

r ∈ Zp[[x]] if and only
if a1, a2, . . . , ad ∈ pr+1Zp. On the other hand, applying Corollary 4.3 to this case, we find
that (1 + a1x+ a2x

2 + . . .+ adx
d)1/p

r ∈ Zp[[x]] if and only if

(1 + a1x+ a2x
2 + . . .+ adx

d)p ≡ 1 + a1x
p + a2x

2p + . . .+ adx
pd (mod pr+1).

It then requires additional thought to conclude that this congruence is equivalent to
a1, a2, . . . , ad ∈ pr+1Zp.
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functions. Journal de Théorie des Nombres de Bordeaux, 27(1):245–288, 2015.

[Sam23] Benjamin Sambale. An Invitation to Formal Power Series. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 125:3–69, 2023.

[SMA09] Armin Straub, Victor H. Moll, and Tewodros Amdeberhan. The p-adic valuation
of k-central binomial coefficients. Acta Arithmetica, 140(1):31–42, 2009.

11


	Introduction
	Notations and review
	Proof of Theorem 1.1
	The Dieudonné–Dwork criterion

