
IDENTITIES FOR BERNOULLI POLYNOMIALS RELATED TO

MULTIPLE TORNHEIM ZETA FUNCTIONS
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Abstract. We show that each member of a doubly infinite sequence of highly

nonlinear expressions of Bernoulli polynomials, which can be seen as linear
combinations of certain higher-order convolutions, is a multiple of a specific

product of linear factors. The special case of Bernoulli numbers has important

applications in the study of multiple Tornheim zeta functions. The proof of
the main result relies on properties of Eulerian polynomials and higher-order

Bernoulli polynomials.

1. Introduction

Various convolution identities for Bernoulli polynomials and related numbers and
polynomials have attracted considerable attention in recent years. In connection
with a detailed study of multiple Tornheim zeta functions, the first author [4, 5]
recently obtained what appears to be a new type of identity, namely

(1.1)

n∑
m=1

(
n+ 1

m

) ∑
j1,...,jm≥1
j1+···+jm=n

m∏
i=1

Bji(z)

ji!
=

1

n!

n∏
j=1

(
(n+ 1)z − j

)
,

for n ≥ 1. Here Bk(z) is the kth Bernoulli polynomial , which can be defined by
the generating function

(1.2)
xezx

ex − 1
=

∞∑
k=0

Bk(z)
xk

k!
, |x| < 2π,

and the kth Bernoulli number is defined by Bk := Bk(0), k ≥ 0. The first few
Bernoulli polynomials are listed in Table 2 in Section 2 below.

A notable feature of the identity (1.1) is the fact that an easy linear combination
of convolutions results in a product of n monomials. When the Bernoulli polyno-
mials on the left are replaced by the corresponding Bernoulli numbers, i.e., setting
z = 0, then the right-hand side is simply (−1)n.

Also useful in connection with multiple Tornheim zeta functions is an identity
that involves a generalization of the left-hand side of (1.1). For all integers n ≥ 1
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and k ≥ 0, we define
(1.3)

Sn,k(z) :=

n∑
m=1

(
n+ 1

m

)
k!n−m(−1)km

∑
j1,...,jm≥0

j1+···+jm=(k+1)(n−m)+k

m∏
i=1

Bk+1+ji(z)

ji!(k + 1 + ji)
.

When k = 0, a simple shift in indexing shows that Sn,0(z) is the left-hand side of
(1.1). The methods used in [4] for k = 0 do not appear to apply when k ≥ 1. It is
the purpose of this paper to deal with this case. To motivate our main result, we
list the first few cases of Sn,1(z) and Sn,2(z) in Table 1.

k n Sn,k(z)

1 1 −1
3 z(z − 1)(2z − 1)

1 2 1
20z(z − 1)(3z − 1)(3z − 2)(2z − 1)

1 3 −1
105z(z − 1)(4z − 1)(2z − 1)(4z − 3)(z2 − z + 1)

1 4 −1
18144z(z − 1)(5z − 1)(5z − 2)(5z − 3)(5z − 4)(2z − 1)(13z2 − 13z − 6)

2 1 1
30z(z − 1)(2z − 1)(3z2 − 3z − 1)

2 2 1
160z

2(z − 1)2(3z − 1)(3z − 2)(7z2 − 7z − 2)

2 3 1
20790z(z − 1)(4z − 1)(2z − 1)(4z − 3)(321z6 − · · · − 3)

2 4 1
16765056z

2(z − 1)2(5z − 1) · · · (5z − 4)(19302z6 − · · · − 348)

Table 1: Sn,1(z) and Sn,2(z) for 1 ≤ n ≤ 4.

We see that for both k = 1 and k = 2, the polynomial Sn,k(z) is divisible by
z((n+ 1)z−1) · · · ((n+ 1)z− (n+ 1)). It is the main purpose of this paper to prove
that this observation is in fact true for all n and k.

Theorem 1. For all integers n ≥ 1 and k ≥ 1, the polynomial Sn,k(z) satisfies

(1.4) Sn,k(1− z) = (−1)(k+1)(n+1)−1Sn,k(z),

and is divisible by

z

n+1∏
j=1

(
(n+ 1)z − j

)
.

As an immediate consequence of Theorem 1 we obtain a corresponding statement
about Bernoulli numbers, which we can phrase as follows.

Corollary 2. For all integers n ≥ 1 and k ≥ 1 we have Sn,k(0) = Sn,k(1) = 0, and
when at least one of k and n is odd, then Sn,k( 1

2 ) = 0.

In particular, since Bm(0) = Bm, this means that the right-hand side of (1.3),
with Bernoulli polynomials replaced by Bernoulli numbers, is 0 for all n ≥ 1 and
k ≥ 1.

In order to prove Theorem 1, we define an auxiliary power series in Section 2
and prove some lemmas involving this series. In Section 3 we complete the proof
of Theorem 1. Section 4 contains a few further results, and we conclude this paper
with some additional remarks in Section 5.
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2. Some lemmas

We introduce a specific power series as an auxiliary function. For any integer
k ≥ 0 and complex variable z we define

(2.1) Fk(x, z) := 1 + (−1)k
xk+1

k!

∞∑
m=0

Bm+k+1(z)

m+ k + 1

xm

m!
.

This series has the same radius of convergence, 2π, as (1.2). Using the reflection
identity for Bernoulli polynomials, namely Bn(1− x) = (−1)nBn(x) (see, e.g., [11,
24.4.3]), it is easy to verify that

(2.2) Fk(−x, 1− z) = Fk(x, z).

The function Fk(x, 0), i.e., the case where on the right of (2.1) we have Bernoulli
numbers instead of polynomials, has previously been studied and applied by several
authors; see [2], [6], and [12].

In what follows we denote the coefficient of xk, k ≥ 0, in a power series f(x) by
[xk]f(x). We can now state and prove the following result.

Lemma 3. For all n ≥ 1 and k ≥ 0 we have

(2.3)
Sn−1,k(z)

k!n−1
= [x(k+1)n−1]Fk(x, z)n.

Proof. We rewrite (1.3) as

(2.4)
Sn,k(z)

k!n
=

n∑
m=1

(
n+ 1

m

)
Sn,k,m(z) =

n+1∑
m=0

(
n+ 1

m

)
Sn,k,m(z),

where

Sn,k,m(z) :=
∑

j1,...,jm≥1
j1+···+jm=k(n+1−m)+n

m∏
i=1

(−1)kBji+k(z)

k!(ji − 1)!(ji + k)
.

We now define

(2.5) Gk(x, z) :=
(−1)k

k!

∞∑
j=1

Bj+k(z)

(j − 1)!(j + k)
xj

and first observe that

(2.6) Sn,k,m(z) = [xk(n+1−m)+n]Gk(x, z)m.

Then Cauchy’s integral formula, applied to the right of (2.6), gives

Sn,k,m(z) =
1

2πi

∫
γ

Gk(x, z)m

xk(n+1−m)+n+1
dx,

where the contour γ traverses, for instance, a circle around the origin with small
enough radius, once in the positive direction. Then, after replacing n by n− 1, we
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get with (2.4),

Sn−1,k(z)

k!n−1
=

1

2πi

n∑
m=0

(
n

m

)∫
γ

Gk(x, z)m

xk(n−m)+n
dx

=
1

2πi

∫
γ

1

x(k+1)n

n∑
m=0

(
n

m

)
xkmGk(x, z)mdx

=
1

2πi

∫
γ

(1 + xkGk(x, z))n

x(k+1)n
dx

= [x(k+1)n−1](1 + xkGk(x, z))n,

where we have used Cauchy’s integral formula again. Finally, since by (2.1) and
(2.5) we have

1 + xkGk(x, z) = Fk(x, z),

this proves our lemma. �

In what follows, we require the Eulerian polynomials which can be defined by
the generating function

(2.7)
1− y

1− ye(1−y)t
=

∞∑
k=0

Ak(y)
tk

k!
;

see, e.g., [3, p. 244]. The first few Eulerian polynomials are listed in Table 2.

k Bk(z) Ak(y)

0 1 1

1 z − 1
2 y

2 z2 − z + 1
6 y2 + y

3 z3 − 3
2z

2 + 1
2z y3 + 4y2 + y

4 z4 − 2z3 + z2 − 1
30 y4 + 11y3 + 11y2 + y

5 z5 − 5
2z

4 + 5
3z

3 − 1
6z y5 + 26y4 + 66y3 + 26y2 + y

6 z6 − 3z5 + 5
2z

4 − 1
2z

2 + 1
42 y6 + 57y5 + 302y4 + 302y3 + 57y2 + y

Table 2: Bk(z) and Ak(y) for 0 ≤ k ≤ 6.

The Eulerian polynomials are self-reciprocal (or palindromic), and we can write

(2.8) Ak(y) =

k∑
j=0

A(k, j)yj (k ≥ 0).

The coefficients A(k, j) are the well-known Eulerian numbers, which have important
combinatorial interpretations. We also require the generating function

(2.9)
Ak(y)

(1− y)k+1
=

∞∑
m=0

mkym;

see, e.g., [3, p. 245]. We can now rewrite the sequence of functions Fk(x, z) that
was defined in (2.1).
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Lemma 4. For all k ≥ 1 we have

(2.10) Fk(x, z) =

(
x

ex − 1

)k+1

exz
k∑
j=0

(1− ex)j
Ak−j(e

x)

(k − j)!
zj

j!
.

Proof. Applying a variant of a method used in [6], we find with (1.2),

∞∑
m=1

e(z−m)x = ezx
e−x

1− e−x
=

ezx

ex − 1
(2.11)

=
1

x
+

1

x

( ∞∑
m=0

Bm(z)
xm

m!
− 1

)

=
1

x
+

∞∑
m=0

Bm+1(z)

m+ 1
· x

m

m!
.

Note that the expressions in (2.11) have simple poles at x = 0. Taking the kth
derivative with respect to x of both sides of (2.11), we get

∞∑
m=1

(z −m)ke(z−m)x = (−1)k
k!

xk+1
+

∞∑
m=0

Bm+k+1(z)

m+ k + 1
· x

m

m!
.

Comparing this with (2.1), we immediately see that

(2.12) Fk(x, z) =
xk+1

k!

∞∑
m=1

(m− z)ke(z−m)x.

Expanding (m − z)k as a binomial sum and changing the order of summation, we
get

(2.13) Fk(x, z) = xk+1ezx
k∑
j=0

(−z)j

j!(k − j)!

∞∑
m=1

mk−j(e−x)m.

Now by (2.9) and the palindromic property of the polynomials Ak(y) we have for
0 ≤ j ≤ k − 1,

∞∑
m=1

mk−j(e−x)m =
Ak−j(e

−x)

(1− e−x)k−j+1
=
e−x(k−j+1)Ak−j(e

x)

(1− e−x)k−j+1

=
(ex − 1)j

(ex − 1)k+1
Ak−j(e

x),

while for j = k we use the first line of (2.11) with z = 0, obtaining

∞∑
m=1

(e−x)m =
1

ex − 1
=

(ex − 1)k

(ex − 1)k+1
A0(ex).

If we combine these last two identities with (2.13), we immediately get (2.10). �

Remarks. (1) An important special function, the polylogarithm, is defined by

Lis(z) =

∞∑
n=1

zn

ns
,
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which for a fixed s ∈ C defines an analytic function of z for |z| < 1; see, e.g., [11,
25.12.10]. Comparing this with (2.9), we get

Ak(y) = (1− y)k+1Li−k(y),

and if we set y = ex and replace k by k − j, we see that (2.10) simplifies to

(2.14) Fk(x, z) = (−x)k+1exz
k∑
j=0

Lij−k(ex)

(k − j)!
zj

j!
.

Note that the terms ex − 1 in (2.10) have disappeared.
(2) For an alternative approach to Lemma 4, see Part 4 of Section 5.

3. Proof of Theorem 1

By Lemma 3 we need to determine the coefficient of x(k+1)n−1 in Fk(x, z)n. To
do so, we first change the order of summation in (2.10) and obtain

(3.1) Fk(x, z) =

(
x

ex − 1

)k+1

exz(z(1− ex))k
k∑
j=0

Aj(e
x)

(k − j)!
· (z(1− ex))−j

j!
.

Taking the nth power of the sum in (3.1) gives∑
ν≥0

(z(1− ex))−ν
∑

j1,...,jn≥0
j1+···+jn=ν

Aj1(ex)

(k − j1)!j1!
· · · Ajn(ex)

(k − jn)!jn!
,

and the nth power of (3.1) then becomes

Fk(x, z)n =

(
x

ex − 1

)n(k+1)
enxz

(k!)n

∑
ν≥0

(z(1− ex))nk−ν(3.2)

×
∑

j1,...,jn≥0
j1+···+jn=ν

(
k

j1

)
Aj1(ex) · · ·

(
k

jn

)
Ajn(ex).

Now let S
(n)
k,ν (ex) be the multiple sum in (3.2). It is not difficult to compute the

first few of these sums:

S
(n)
k,0 (ex) = 1,

S
(n)
k,1 (ex) =

nk

1!
ex,

S
(n)
k,2 (ex) =

nk

2!
ex [(k − 1) + (kn− 1)ex] ,

S
(n)
k,3 (ex) =

nk

3!
ex
[
(k − 1)(k − 2) + (k − 1)(3kn+ k − 8)ex + (kn− 1)(kn− 2)e2x

]
.

These polynomials will be further investigated in Section 4.

Proof of Theorem 1. The identity (1.4) follows from Lemma 3 and (2.2), with n
replaced by n+ 1.

For the remainder of the proof we rewrite (3.2) as

(3.3) Fk(x, z)n =

(
x

ex − 1

)n(k+1)
enxz

(k!)n

nk∑
ν=0

(z(1− ex))nk−νS
(n)
k,ν (ex).
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We first consider the sum over ν. For ν = 0, the corresponding summand is simply

(3.4) znk
(
1− nkex + · · ·+ (−1)nkenkx

)
,

while for 1 ≤ ν ≤ nk, the summand is

(3.5) zn(k+1)(1− ex)nk−νS
(n)
k,ν (ex) = zn(k+1)

nk∑
j=1

d
(ν)
j ejx,

for certain coefficients d
(ν)
j . Altogether, this and (3.4), combined with (3.3), gives

Fk(x, z)n =

(
x

ex − 1

)n(k+1)
enxz

(k!)n

nk∑
ν=0

znk−ν
nk∑
j=1

d
(ν)
j ejx(3.6)

=
1

(k!)n

nk∑
ν=0

zν
nk∑
j=0

d
(nk−ν)
j

[(
x

ex − 1

)n(k+1)

e(nz+j)x

]
,

where d
(0)
0 = 1 and d

(ν)
0 = 0 for 1 ≤ ν ≤ nk.

At this point we use the Bernoulli polynomials of order r, defined by the gener-
ating function

(3.7)

(
x

ex − 1

)r
ezx =

∞∑
m=0

B(r)
m (z)

xm

m!
, |x| < 2π;

see, e.g., [10, p. 127]. Usually r is a positive integer, but it can also be considered as

a variable. In particular, comparing (3.7) with (1.2) shows that B
(1)
m (z) = Bm(z).

The right-most term of (3.6) now leads to
(3.8)

[xn(k+1)−1]Fk(x, z)n =
1

(k!)n(n(k + 1)− 1)!

nk∑
ν=0

zν
nk∑
j=0

d
(nk−ν)
j B

(n(k+1))
n(k+1)−1(nz + j).

Using (2.3) and the fact that

(3.9) B
(m)
m−1(y) = (y − 1)(y − 2) · · · (y −m+ 1)

(see, e.g., [10, p. 130]), we get

(3.10) Sn−1,k(z) =
1

k!(n(k + 1)− 1)!

nk∑
ν=0

zν
nk∑
j=0

d
(nk−ν)
j

n(k+1)−1∏
r=1

(nz + j − r).

The product on the right is always divisible by z when j ≥ 1. When j = 0,

then d
(nk−ν)
j = 0 for all ν < nk, while for ν = nk we have the factor znk in the

corresponding summand on the right of (3.10). Altogether, Sn−1,k(z) is therefore
divisible by z, and by (1.4) is also divisible by z − 1.

Finally, we consider again the product on the right-hand side of (3.10), for
j = 0, 1, . . . , nk, and display it as follows:

j = 0 : (nz − 1)(nz − 2) · · · (nz − n(k + 1) + 1),

j = 1 : nz(nz − 1) · · · (nz − n(k + 1) + 2),

...

j = nk : (nz + nk − 1)(nz + nk − 2) · · · (nz − n+ 1).
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We now see that each of the factors nz − 1, nz − 2, . . . , nz − n + 1 occurs in all
nk + 1 products. This means that, by (3.10), the polynomial Sn−1,k(z) is divisible
by the product of these n− 1 terms. Replacing, finally, n by n+ 1, this completes
the proof of Theorem 1. �

4. Some further results

We return to the polynomials S
(n)
k,ν (y), defined as part of the identity (3.2) by

(4.1) S
(n)
k,ν (y) =

∑
j1,...,jn≥0
j1+···+jn=ν

(
k

j1

)
Aj1(y) · · ·

(
k

jn

)
Ajn(y).

Some of the coefficients of these polynomials are relatively easy to determine.

Lemma 5. For ν ≥ 1 we have

S
(n)
k,ν (y) =

ν∑
j=1

cjy
j ,

where

c1 = n

(
k

ν

)
, c2 =

(
n

2

)[(
2k

ν

)
− 2

(
k

ν

)]
+ n (2ν − ν − 1)

(
k

ν

)
, cν =

(
nk

ν

)
.

Proof. By the known properties of the Eulerian polynomials, the lowest power of
y in Ak(y) for all k ≥ 1 is y1, and the coefficient is always 1. Hence we get

a contribution to the coefficient of y in S
(n)
k,ν (y) if and only if all but one of the

summation indices ji are 0, and one has to be ν. Since there are n such cases, the
coefficient of y is n

(
k
ν

)
, as claimed.

Next, to determine the coefficient c2, we need to consider two possibilities for
the defining sum (4.1). First, we assume that all but two of the ji are 0, say
j3 = · · · = jn = 0, while j1 ≥ 1 and j2 ≥ 1. Then j1 + j2 = ν, and thus
1 ≤ j1, j2 ≤ ν − 1. Also, the coefficients of y in Aji(y) are 1. Hence with this
assumption the sum becomes

ν−1∑
r=1

(
k

r

)(
k

ν − r

)
=

(
2k

ν

)
− 2

(
k

ν

)
,

where we have used the Chu-Vandermonde convolution; see, e.g., [13, p. 8]. Since
there are

(
n
2

)
ways of selecting two nonzero ji, the total contribution is

(4.2)

(
n

2

)[(
2k

ν

)
− 2

(
k

ν

)]
.

Second, we assume that all but one ji are 0. In this case the contribution is
n
(
k
ν

)
times the coefficient of y2 in Aν(y), namely A(ν, 2) = 2ν − ν − 1, where this

evaluation of the Eulerian number can be found, e.g., in [3, p. 243]. This, combined
with (4.2), gives the coefficient c2.

Finally, since all Aj(y) have degree j and leading coefficient 1, and since j1 +

· · ·+ jn = ν, the polynomial S
(n)
k,ν (y) has degree ν and leading coefficient∑

j1,...,jn≥0
j1+···+jn=ν

(
k

j1

)
· · ·
(
k

jn

)
=

(
nk

ν

)
,
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where we have used the generalized Vandermonde identity. This completes the
proof of the lemma. �

We note that Lemma 5 is consistent with the four examples given after (3.2).

Another easy property of the polynomials S
(n)
k,ν (y) will be required in the proof of

the next theorem.

Lemma 6. For positive integers n and k we have

(4.3) S
(n)
k,nk(y) = Ak(y)n and yn | S(n)

k,nk(y),

where Ak(y) is the kth Eulerian polynomial defined by (2.7).

Proof. For ν = nk, the only summand in the defining multiple sum for S
(n)
k,ν (y) that

does not vanish corresponds to j1 = · · · jn = k, which implies the first part of (4.3).
The second part follows from the fact that y | Ak(y) for all k ≥ 1. �

To motivate the following result, we note that Table 1 seems to indicate that the
polynomial Sn,k(z), defined in (1.3), is divisible by z2(z − 1)2 when k = 2 and n is
even. This is in fact true in general.

Theorem 7. If n, k are positive even integers, then Sn,k(z) is divisible by z2(z−1)2.

Proof. By (3.10) we only need to consider the summand for ν = 0, and we are done
if we can show that

(4.4) Tn,k(z) :=

nk∑
j=0

d
(nk)
j

n(k+1)−1∏
r=1

(nz + j − r)

is divisible by z2 when k is even and n is odd (note the shift in n in (3.10)). By (3.5)

with ν = nk and by (4.3) we have d
(nk)
j = 0 for 0 ≤ j ≤ n − 1, while aj := d

(nk)
n+j ,

j = 0, 1, . . . , nk−n are the coefficients of (Ak(y)/y)n, which is a polynomial in y of
degree n(k−1). Since Ak(y)/y is a self-reciprocal polynomial, then so is (Ak(y)/y)n,
and therefore a0, a1, . . . , ank−n is a palindromic sequence, i.e., aj = am−j , where
for convenience we have set m := nk − n. We can then rewrite (4.4) as

(4.5) Tn,k(z) =

nk∑
j=n

aj−n

n(k+1)−1∏
r=1

(nz + j − r) =
m∑
j=0

aj

n(k+1)−1∏
r=1

(nz + n+ j − r),

which holds for any integers n, k ≥ 1. Assuming now that k is even and n is odd,
and using symmetry, we get

Tn,k(z) =

bm/2c∑
j=0

aj

( n(k+1)−1∏
r=1

(nz + n+ j − r) +

n(k+1)−1∏
r=1

(nz + nk − j − r)
)
,

where in the second product j was replaced by nk − n − j. We also note that
m = n(k − 1) is odd since n is odd and k is even; hence the original m + 1
summands divide evenly into the pairs in the last equation above.

Now we switch the order of multiplication in the second product, replacing r by
nk + n− r. Then we get

(4.6) Tn,k(z) =

bm/2c∑
j=0

aj

( n(k+1)−1∏
r=1

(nz + n+ j − r) +

n(k+1)−1∏
r=1

(nz − (n+ j − r))
)
.
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For each j, 0 ≤ j ≤ bm/2c, there is an r with 1 ≤ r ≤ n(k + 1) − 1, such that
r = n+ j. Hence the two products in (4.6) are divisible by nz. Next we note that
the coefficients of nz in the two products are

(4.7)

n(k+1)−1∏
r=1

r 6=n+j

(n+ j − r) and

n(k+1)−1∏
r=1

r 6=n+j

(−(n+ j − r)),

respectively. Since n(k + 1) is odd, then so is the number of factors, n(k + 1)− 2,
in both products (4.7), which are therefore negatives of each other. Hence the
coefficient of nz in (4.6) is 0. Replacing n by n + 1, this proves that Sn,k(z) is
divisible by z2. Finally, divisibility by (z − 1)2 now follows from (1.4). �

By refining the method of proof of Theorem 7 one can, in principle, determine
the coefficient of z in Sn,k(z), as defined in (1.3), in the case where one of n and k
is odd.

Theorem 8. Let n and k be positive integers, not both even. Then the coefficient
of z in Sn,k(z) is

(4.8)
(−1)k(n+1)−1(n+ 1)

k!((k + 1)(n+ 1)− 1)!

(k−1)(n+1)∑
j=0

(−1)ja
(k,n+1)
j (n+ j)!(k(n+ 1)− 1− j)!,

where a
(k,n+1)
j is the coefficient of yj in (Ak(y)/y)n+1, with Ak(y) the kth Eulerian

polynomial, defined in (2.7).

Proof. By (3.10) and (4.5), the coefficient of z in Sn−1,k(z) is the coefficient of z in
the expression

(4.9)
1

k!((k + 1)n− 1)!

(k−1)n∑
j=0

a
(k,n)
j

(k+1)n−1∏
r=1

(nz + n+ j − r).

Now, the coefficient of z in the product in this expression is

n

n+j−1∏
r=1

(n+ j − r) ·
(k+1)n−1∏
r=n+j+1

(n+ j − r)

= n

n+j−1∏
r=1

r ·
kn−j−1∏
r=1

(−r)

= (−1)kn−j−1n(n+ j − 1)!(kn− j − 1)!.

Finally we combine this with (4.9), and replace n by n+ 1. This immediately gives
the expression (4.8). �

For the cases k = 1 and k = 2 in Theorem 8 we can actually obtain explicit
expressions.

Corollary 9. (a) For any n ≥ 1, the coefficient of z in Sn,1(z) is

(−1)n(
2n+1
n

) .
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(b) For any odd n ≥ 1, the coefficient of z in Sn,2(z) is

−
(n+ 1)!2(n+ n+1

2 )!

2(3n+ 2)!(n+1
2 )!

.

Proof. (a) For k = 1, the sum in (4.8) consists of a single summand, and since
(A1(y)/y)n+1 = 1 for all n, the expression (4.8) becomes

(−1)n(n+ 1)

(2n+ 1)!
· n!2 = (−1)n/

(
2n+ 1

n

)
,

as claimed.
(b) Since A2(y)/y = 1 + y, we have

a
(2,n+1)
j =

(
n+ 1

j

)
, j = 0, 1, . . . , n+ 1,

and the expression (4.8) with k = 2 becomes

−(n+ 1)(n+ 1)!

2(3n+ 2)!

n+1∑
j=0

(−1)j
(n+ j)!(2n+ 1− j)!

j!(n+ 1− j)!
(4.10)

=
−(n+ 1)(n+ 1)!n!2

2(3n+ 2)!

n+1∑
j=0

(−1)j
(
n+ j

j

)(
2n+ 1− j
n+ 1− j

)
.

By identity (3.36) in [8], this last binomial sum is 0 when n is even (consistent with

Theorem 7), and is
(
n+(n+1)/2
(n+1)/2

)
when n is odd. Combining this with (4.10) gives

the result of part (b). �

The coefficient of z in Sn,1(z) is obviously the reciprocal of an integer for each
n ≥ 1. Given the form of the corresponding expression in Corollary 9(b), it is
rather surprising that this should also hold for the coefficients of z in Sn,2(z). In
fact, we prove slightly more.

Corollary 10. For any integer n ≥ 0, denote

(4.11) cn :=
(n+ 1)!2(n+ n+1

2 )!

2(3n+ 2)!(n+1
2 )!

,

which is defined for all integers n ≥ 0 if we interpret fractional factorials in terms
of the gamma function. Then cn is the reciprocal of an even integer for all n ≥ 0.

Before proving this result, we give the first few terms, namely

c0 =
1

4
, c1 =

1

30
, c2 =

1

256
, c3 =

1

2310
, c4 =

1

21504
.

The sequence of reciprocals 4, 30, 256, 2310, . . . , is listed as sequence A091527 in
[14], with the explicit expansion (in our notation)

(4.12)
1

cn−1
=

(3n)!Γ(n2 + 1)

n!2Γ( 3n
2 + 1)

.

Proof of Corollary 10. It is easy to verify that (4.12) is consistent with (4.11), and
using Euler’s duplication formula, cn can be simplified as

cn = 2−2n−2
Γ(n2 + 1)Γ(n+ 2)

Γ( 3n
2 + 2)

= 2−2n−2
( 3n

2 + 1

n+ 1

)−1
.
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For even n, the last term contains a binomial coefficient, which gives the statement
of the corollary in this case. For odd n, on the other hand, we are dealing with a
generalized binomial coefficient which in general is not an integer. We wish to show
that for odd n the expression

dn := 22n+2

( 3n
2 + 1

n+ 1

)
is an integer. We use the fact that binomial coefficients, including generalized ones,
satisfy the recurrence relation( 3n

2 + 1

n+ 1

)
=

( 3n
2

n+ 1

)
+

( 3n
2

n

)
,

so the binomial coefficient on the left can be reduced to a linear combination of
terms of the form

(
1/2
k

)
, with k ≤ n+ 1. Hence we are done if we can show that

22n+2

(
1/2

k

)
∈ Z, k = 0, 1, . . . , n+ 1.

By definition,
(
1/2
0

)
= 1, and for k ≥ 1 we have(

1/2

k

)
=

( 1
2 )( 1

2 − 1) · · · ( 1
2 − k + 1)

k!
=

(−1)k−1

2kk!
· 1 · 3 · · · (2k − 3)

=
(−1)k−1

2kk!
· (2k − 2)!

2k−1k!
=

(−1)k−1

22k−1
· 1

k

(
2k − 2

k − 1

)
.

Now Ck−1 = 1
k

(
2k−2
k−1

)
is a Catalan number, which is an integer. With this, we

finally have

22n+2

(
1/2

k

)
= (−1)k−122(n+1−k)+1Ck−1.

This shows that dn is an even integer when n is odd, and thus for all n. �

Remarks. (1) Corollary 10 can actually be improved as follows. We set

an :=
1

2(3n+ 2)cn
=

(3n+ 1)!(n+1
2 )!

(n+ 1)!2(n+ n+1
2 )!

=
22n

n+ 1

(
3n/2

n

)
,

where the right-most equality is obtained as in the proof of Corollary 10. The
generating function

(4.13) A(z) :=

∞∑
n=0

anz
n

can then be computed as

A(z) =
1

2z

(
1− cos( 1

3 arcsin(6
√

3z)) + 1√
3

sin( 1
3 arcsin(6

√
3z))

)
,

and with some effort one can show that A(z) satisfies the equation

2z2A(z)3 − 3zA(z)2 +A(z) = 1.

Substituting A(z) from (4.13) into this equation, expanding, and then equating
coefficients of zn, we see that each an can be written as a sum of products of ak
with 0 ≤ k ≤ n − 1, with integer coefficients. This implies that all the an are
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integers, and thus the denominator of cn is not only even, but is in fact divisible
by 2(3n+ 2). The first few terms of the sequence (an) are

a0 = 1, a1 = 3, a2 = 16, a3 = 105, a4 = 768.

This sequence can be found as A085614 in [14]; according to this entry, an is the
number of elementary arches of size n+ 1.

(2) Since the coefficients of z in Sn,1(z) and Sn,2(z) are reciprocals of integers,
it would be interesting to know whether this is also the case for Sn,3(z). By direct
computation using Theorem 8, we find that the first few coefficients of z in Sn,3(z)
are

c
(3)
1 = − 1

126
, c

(3)
2 = − 1

1155
, c

(3)
3 = − 1

6930
, and c

(3)
4 = − 10

513513
,

which answers the question in the negative. Computing the first 30 terms and using
a recurrence fitting algorithm, we found the recurrence relation

12(4n+ 5)(4n+ 11)c
(3)
n+2 − 8(n+ 3)(2n+ 3)c

(3)
n+1 − (n+ 2)(n+ 3)c(3)n = 0.

To prove this, we use Theorem 8 with k = 3, and write a
(3,n+1)
j as a binomial sum.

Then we get

c(3)n =
n+ 1

6(4n+ 3)!

2n+2∑
j=0

(−1)n+j(n+ j)!(3n+ 2− j)!
n+1∑
i=0

(
n+ 1

i

)(
n+ 1− i
j − 2i

)
4j−2i.

Finally we apply “creative telescoping” (twice) to this combinatorial sum, for in-
stance by using C. Koutschan’s Mathematica package HolonomicFunctions [9].

5. Additional remarks and questions

1. Using the identity (3.9), which involves a special higher-order Bernoulli poly-
nomial, and using the notation of (1.3), we can rewrite the identity (1.1) as

Sn,0(z) =
1

n!
B(n+1)
n ((n+ 1)z).

Similarly, the second part of Theorem 1 can be rephrased to state that for all

positive integers n and k, the polynomial z(z− 1)B
(n+1)
n ((n+ 1)z) divides Sn,k(z).

2. Related to this, if we divide Sn,1(z) by z(z − 1)B
(n+1)
n ((n + 1)z), we get a

sequence of polynomials of degree at most n− 1; see Table 1. The first few of these
polynomials are listed in Table 3, normalized so that their constant coefficients are
1; we denote them by pn(x).

n pn(z)

1 1

2 1− 2z

3 1− z + z2

4 1 + 1
6z −

13
2 z

2 + 13
3 z

3

5 1 + 3
2z −

27
2 z

2 + 24z3 − 12z4

6 1 + 179
60 z −

473
24 z

2 + 29z3 − 571
24 z

4 + 571
60 z

5

Table 3: pn(z) for 1 ≤ n ≤ 6.



14 KARL DILCHER, ARMIN STRAUB, AND CHRISTOPHE VIGNAT

It follows from Theorem 1 that these polynomials satisfy the symmetry property
pn(1 − z) = (−1)n−1pn(z), which in turn implies that pn(z) is divisible by 2z − 1
when n is even. Apart from this, can anything else be said about the polynomials
pn(z)? The fact that a relatively large prime (namely 571) appears in the leading
coefficient of p6(z) seems to indicate that the leading coefficients of these polyno-
mials, and indeed of the polynomials Sn,k(z), are not as straightforward as the
coefficients of z (see, especially, Corollary 9).

3. Again related to the previous point, we note that each product of Bernoulli
polynomials in (1.3) has degree

m∑
i=1

(k + 1 + ji) = m(k + 1) + (k + 1)(n−m) + k = (k + 1)(n+ 1)− 1,

which is independent of m. When k is even, then all terms in (1.3) are positive,
and since the Bernoulli polynomials are monic, we may conclude that the degree
of Sn,k(z) is also (k + 1)(n+ 1)− 1. However, this is not clear when k is odd and
Sn,k(z) is therefore an alternating sum in m.

4. We will now see that there is a close connection between the function Fk(x, z),
defined by (2.1), and the Lerch transcendent (also known as the Lerch zeta function)

(5.1) Φ(z, s, v) :=

∞∑
n=0

zn

(v + n)s
,

with |z| < 1 and v 6= 0,−1,−2, . . .. For various properties and identities see, e.g.,
[7, Sect. 1.1]. One of these identities is

(5.2) Φ(z,−m, v) =
m!

zv
(

log
1

z

)−m−1 − 1

zv

∞∑
r=0

Bm+r+1(v)

m+ r + 1
· (log z)r

r!
,

where m is a positive integer and | log z| < 2π (see [7, p. 30].) Replacing m, r, v and
z by k,m, z and ex, respectively, (5.2) immediately yields

(−x)k+1 e
xz

k!
Φ(ex,−k, z) = 1 + (−1)k

xk+1

k!

∞∑
m=0

Bm+k+1(z)

m+ k + 1

xm

m!
,

and thus, with (2.1) we have

(5.3) Fk(x, z) = (−x)k+1 e
xz

k!
Φ(ex,−k, z).

Without going into further details, we mention that Boyadzhiev [1, Eq. (6.5)] ex-
presses Lerch transcendents such as the ones on the right of (5.3) in terms of
Apostol-Bernoulli polynomials, which in turn can be written as sums involving
Eulerian polynomials; see [1, Eq. (4.7)]. Putting everything together, we get (2.10)
again, as expected. Furthermore, combining (5.3) with (5.1), we get

(5.4) Fk(x, z) =
(−x)k+1

k!

∞∑
n=0

(n+ z)ke(n+z)x,

while (2.12) gives

Fk(−x, 1− z) =
(−x)k+1

k!

∞∑
m=1

(m− 1 + z)ke(1−z−m)x.
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The right-hand side of this last identity is the same as that of (5.4), and by (2.2)
the two identities are consistent.

5. In addition to Corollary 9, one can say a little more about the coeffi-

cients a
(k,n)
j that occur in Theorem 8. Indeed, to find an expression for a

(k,n)
j =

[yj ](Ak(y)/y)n, we apply the multinomial theorem to (2.8), obtaining

Ak(y)n

yn
=

∑
j1+j2+···+jk=n

(
n

j1, . . . , jk

)
A(k, 1)j1

(
A(k, 2)y

)j2 · · · (A(k, k)yk−1
)jk

=
∑

j1+j2+···+jk=n

(
n

j1, . . . , jk

)
A(k, 1)j1 · · ·A(k, k)jkyj2+2j3+···+(k−1)jk ,

and therefore

(5.5)

(
Ak(y)

y

)n
=

n(k−1)∑
j=0

(∑(
n

j1, . . . , jk

)
A(k, 1)j1 · · ·A(k, k)jk

)
yj ,

where the inner sum is taken over all j1, . . . , jk satisfying

(5.6)

{
j1 + j2 + · · ·+ jk = n,

j2 + 2j3 + · · ·+ (k − 1)jk = j,

Now, by definition and (5.6) we have

a
(k,n)
j =

∑(
n

j1, . . . , jk

)
A(k, 1)j1A(k, 2)j2 · · ·A(k, k)jk ,

where the summation is again over all j1, . . . , jk satisfying (5.6). This identity can
be rewritten as

(5.7) a
(k,n)
j =

n∑
j1=0

n!

j1!(n− j1)!

∑(
n− j1

j2, . . . , jk

)
A(k, 2)j2 · · ·A(k, k)jk ,

where we have used the fact that A(k, 1) = 1, and the inner sum is over all j2, . . . , jk
satisfying {

j2 + · · ·+ jk = n− j1,
j2 + 2j3 + · · ·+ (k − 1)jk = j.

Finally, setting r := n− j1, we can slightly simplify (5.7) as

(5.8) a
(k,n)
j =

n∑
r=0

(
n

r

)∑(
r

j2, . . . , jk

)
A(k, 2)j2 · · ·A(k, k)jk ,

where the inner sum is over all j2, . . . , jk satisfying{
j2 + · · ·+ jk = r,

j2 + 2j3 + · · ·+ (k − 1)jk = j.

This last inner sum is reminiscent of an (ordinary) Bell polynomial, but is still
somewhat different.

6. For a different approach to the coefficients a
(k,n)
j we use the infinite series

(2.9) and rewrite it as

(5.9)

1
yAk(y)

(1− y)k+1
=

∞∑
j=0

(j + 1)kyj ,
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for k ≥ 1. Raising both sides of (5.9) to the nth power, we get

(5.10)
(Ak(y)/y)n

(1− y)(k+1)n
=

∞∑
ν=0

( ∑
j1,...,jn≥0
j1+···+jn=ν

(
(j1 + 1) · · · (jn + 1)

)k)
yν .

We denote the inner multiple sum by u
(k,n)
ν and rewrite it as

(5.11) u(k,n)ν =
∑

j1,...,jn≥1
j1+···+jn=ν+n

(
j1 · · · jn

)k
.

Using (5.10), (5.11) and the definition of a
(k,n)
j , we get

a
(k,n)
j =

j∑
ν=0

(−1)j−ν
(

(k + 1)n

j − ν

)
u(k,n)ν .

It is therefore of interest to find out more about the numbers u
(k,n)
ν .
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