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ABSTRACT. Amdeberhan recently proposed certain equalities between sums in the character table
of symmetric groups. These equalities are between signed column sums in the character table,
summing over the rows labeled by partitions in Ev()), where A is a partition of n with r nonzero
parts and Ev()\) is a multiset containing 2" partitions of 2n. While we observe that these equalities
are not true in general, we prove that they do hold in interesting special cases. These lead to new
equalities between sums of degrees of irreducible characters for the symmetric group and a new
combinatorial interpretation for the Riordan numbers in terms of degrees of irreducible characters
labeled by partitions with three parts of the same parity. This is the first, to our knowledge, theorem
about degrees of symmetric group characters with parity conditions imposed on the partitions
indexing the characters.

1. INTRODUCTION

Let X, denote the symmetric group on n letters. Recall that both the complex irreducible
characters and the conjugacy classes of ¥, are indexed by partitions of n. For two partitions A and
w of n, we let Xﬁ be the value of the irreducible character x* on a permutation of cycle type A.
The degree X?l”) = x*(1) is the number of standard Young tableaux of shape p, which we denote
by f*. A good reference for the complex representation theory of ¥, is [Sagl3].

We denote the size of a partition A and its length by |A| and ¢()), respectively. Let A" denote
the conjugate partition obtained by reflecting the Young diagram of A across the main diagonal.

For the partition 7 = (1™), we have that x” is the linear character corresponding to the signature
representation, denoted sgn. Recall that

M ®sgn = " (1.1)

Let A = (A1, Ag,..., ) be a partition of n with r nonzero parts, so £(A\) = r. In [Amd23],
Amdeberhan defined Ev()\) to be the set of all partitions of 2n obtained by replacing each \; with
either 2); or two copies of \;, and then reordering the parts to be nonincreasing. Thus Ev(}) is a
multiset containing 2) partitions of 2n. For example, let X\ = (3,2,2). Then:

Ev()\) = {(6,4%), (6,4,2%), (6,4,2%), (6,2%), (4%, 3?), (4,3%,2?), (4,3%,2?), (3%, 2Y)}. (1.2)

Observe that products of binomial coefficients may arise in the multiplicities of Ev(A). For
example, for A = (34,23), we will get (3) (i’) copies of (62,3%,4,2%) in Ev()\).

Amdeberhan defines two subsets of partitions of size 2n by requiring either the rows or the
columns be of even length and by restricting the number of parts:

Rn(@2n) :=={ut2n|L(n) < N,p; is even for all i},

RS (2n) := {u = 2n | £(u) < N, i is even for all i}. (13)
For example,
R3(10) := {(10), (8,2),(6,4),(6,2,2), (4,4,2)},
RE(10) 1= {(5,5), (4,4,1,1), (3,3,2,2)}. (14)

1
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Remark 1.1. Notice that R§(2n) is the single partition (n,n). Also notice that once N > n, the set
Rn(2n) stabilizes, and once N > 2n, the set RS (2n) stabilizes. Thus, for N > 2n, the partitions
in Ry (2n) are precisely the conjugates of the partitions in R$ (2n).

1.1. Motzkin and Riordan Numbers. The Motzkin numbers M (n) are the sequence A001006
in [OEI25]. M(n) counts the number of Motzkin paths, which are paths from (0,0) to (n,0) using
only steps U = (1,1), F = (1,0), and D = (1,—1), and not going below the z-axis. M (n) is
also well known to count the number of standard Young tableaux of size n with three or fewer
rows; for an example of a bijection, see [MV22]. These are also easily seen to be in bijection with
three-candidate ballot sequences of length n. A three-candidate ballot sequence of length n is a
string (b1,be,...,b,) with b; € {A, B,C} such that each prefix by, by, ..., b, with 1 < k < n, has
the property that the number of A’s is no less than the number of B’s, which in turn is no less
than the number of C’s. Here, the three candidates are represented by A, B, and C, and each b,
represents a vote for one of the candidates.

A Riordan path is a Motzkin path with the additional requirement that there may not be a flat
step F' on the z-axis, i.e., an F' may only appear if there are more Us than D’s prior to it in the
sequence. We let R(n) be the number of Riordan paths of length n; this is the sequence A005043
in [OEI25]. It is well-known that:

M(n) = R(n) + R(n + 1). (1.5)

The number R(n) also has an interpretation in terms of degrees of irreducible symmetric group
characters. This is a comment of Regev given on the OEIS entry without proof, so we present a
proof of a refinement here:

Proposition 1.2. Let 0 < m < n. The number of Riordan paths of length n with m flat steps and
k up steps (and thus k down steps) is fH:F1™)

Proof. Given a standard tableau of shape (k, k, 1™), we describe how to construct a corresponding
Riordan path. The numbers in the first row correspond to the positions of the U’s. With the first
row determined, the first entry in row 2 is forced; we can think of it as corresponding to the D
at the end of the sequence. Now there are £ + m — 1 numbers left in the tableau and k +m — 1
empty positions in the sequence. List the remaining entries of the tableau in order, marking the
m entries from the first column as F' and the remaining £ — 1 entries from the second row as D.
Then simply fill in the empty positions with these entries in the same relative order. For example,
let k =m = 3 and

(1.6)

N
Il

Filling in Us in positions 1,2,7 and D in the last position, we obtain UU??7?U?D. The re-
maining entries are {4,5,6,8,9}, where red denotes the entries in the final m rows. Thus, we
get a corresponding sequence FDF DF', which we use to replace the question marks, arriving at
UUFDFDUFD. It is straightforward to verify the resulting sequence is Riordan and to invert the
map. O

Summing over all m, an immediate corollary is the observation of Regev:

Corollary 1.3. The number of Riordan paths of length n is:
[n/2] o
R(n)= Y fOm1"0), (1.7)
k=1
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2. AMDEBERHAN’S QUESTION

For a partition A with part frequencies (171,2™2 ... n™"), we denote with

n
Zy = Hjmfmj!
Jj=1

the size of the centralizer of a permutation with cycle type A. In a 2023 post on MathOverflow
[Amd23], Amdeberhan raised the following intriguing question about certain weighted sums of
irreducible characters for symmetric groups, with columns corresponding to Ry (2m) or R$ (2m)
and rows corresponding to Ev(\).

Question 2.1 ([Amd23]). Is it true that

Z o> (=X x;—z DD D (2.1)

M © /\GEV()\) BER2N +1(2n) Abn AeEv( ) HERS 5 (2n)
for given integers n, N > 17

In [Amd23], it is noted that the answer to that question is affirmative for sufficiently large N.
More precisely, we observe that (2.1)) is true if N > n. This follows from Remark by which
the sets Ran41(2n) and RS, (2n) contain exactly conjugate partitions if N > n, combined with the

following fact: suppose o € £, has cycle type A. Since 2n is even, (—1)4(;\) = 1 precisely when o
is an even permutation. Thus, by (L.1)), for any u F 2n, we have:

V) B
(—1) Pt = 3. (2.2)

In [Amd23|, it was asked whether is true for all n, N > 1. By explicitly computing both
sides of for all N < n and small fixed n, we find that is true for all n < 11. However,
the identity does not continue to hold for n = 12. In the case n = 12, holds for N = 1 and
N = 2 but then for fails for N = 3, where the left-hand side evaluates to 1040 and the right-hand
side to 1041.

On the other hand, our computations of initial cases show that istruefor N =1and N =2
in all cases n < 15. In those cases, the inner double-sums in identity match for all partitions
A. We therefore also consider the following stronger version of Amdeberhan’s question.

Question 2.2. For which partitions A - n and which integers N > 1 does the following identity

hold? )
> X U= X X X (23)

A€Ev(A) HER2N+1(2n) AEEv(A) HERS \ (2n)

As observed above for , this identity holds for all partitions A - n in the case that N > n.
Computing all instances, we again find that the identity holds for all partitions of size n <7
and all values of N. On the other hand, does not hold for certain partitions of size n = 8 if
N = 3. We provide some more details on this case in Appendix [A] However, we conjecture that
is true for all partitions A if N = 1. When N = 1, the set RS, (2n) is the single partition
(n,n), and the set Ran41(2n) consists of all partitions of 2n with at most three parts, all even.

Conjecture 2.3 (N = 1 version). For any partition A - n, we have
> U= 3 (24)
A€Ev()\) HER3(2n) A€Ev())

In this paper, we will prove this conjecture in the case where A = (¢"). We find fundamentally
different behavior for the ¢ = 1 case and the ¢ > 1 case.
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2.1. Two examples. We will prove Conjecture for the case A = (¢). We illustrate here this
result, which looks different for A = (1™) and A = (¢") for ¢ > 1. Let n = 4 and assume first that
A = (1%). Then the multiset Ev(\) has 2% = 16 elements:

Ev(h) = {(1%), (2,1%),(2%,1%), (2°,1%), (2")}
with multiplicities 1,4, 6,4, 1, respectively. We are assuming N = 1 so
iR2N+1 (8) = :R3(8) = {(8)7 (67 2)7 (47 4)7 (47 27 2)}

and
on(8) = R5(8) = {(4,4)}.

w\ A 1% 2,15 [2,2,1% [2,2,2,1%] [2,2,2,2]
8] 1 1 1 1 1
[6,2] 20 10 4 2 4
4, 4] 14 4 2 0 6
[4,2,2] 56 4 0 4 8
Column Sum | 91 19 7 7 19
Weight 1 —4 6 —4 1
Total 91 —76 42 —28 19

TABLE 2.1. Partial character table of g for the case A = (1%)

Table is a partial character table of ¥5. The columns correspond to partitions A in Ev())
and the row “weight” is just (—1)6()‘) times the multiplicity of A Summing the totals we obtain
91-1-19-4+7-6-7-4+19-1=48=2*.3
as the LHS of Conjecture For the RHS we look only at the row corresponding to (4,4) and
compute a weighted sum without the signs, obtaining
14-14+4-442-6+0-4+6-1=48=2".3.
We will prove that the 3’s on the right-hand sides are the Riordan number R(4) and also equal to
the sums f(LLLY 4 £(22) = f(4) 4 £(22) (see Theorem [4.5)).
For an example illustrating the case ¢ > 1, consider n = 4 again and now choose A = (2,2).
Then:
EV(A) - {(24)7 (4a 22)7 (42)}
with multiplicities 1,2,1, respectively.

w\ A 2,2,2,2] [4,2,2] [4,4]
8] 1 1 1
[6,2] 4 2 0
[4,4] 6 2 2
[4,2,2] 8 0 0
Column Sum 19 5 3
Weight 1 -2 1

TABLE 2.2. Partial character table of ¥g for the case A = (22)

Looking at Table our weighted sum of the column sums is
1-19-2-5+1-3=12=2%2.3,
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which agrees with the unsigned weighted sum across the row (4,4), which is
1-6+2-2+1-2=12=2%.3,

In this case we will prove that the 3’s on the right-hand sides represent the central trinomial
coefficient T'(2).

3. SYMMETRIC FUNCTIONS

In order to understand the alternating sum of character values over this unusual set Ev()), we
will use symmetric functions and a recent identity proved by the third author. A good reference
for symmetric functions is Chapter 7 of [Sta24]. We let my, py, and sy denote the usual monomial,
power sum, and Schur symmetric functions, respectively. There is a standard inner product on
the space of symmetric functions of degree n for which the Schur functions {s) | A F n} form an
orthonormal basis. The character table of ¥,, gives the change of basis matrix expressing the power
sum basis in terms of the Schur basis. That is, we have:

Lemma 3.1. [Sta24] Corollary 7.17.4] Let u, A\ = n. We have:
XA = (px, su) - (3.1)
The following result is key to approaching Conjecture using symmetric functions:
Theorem 3.2. [Wes24| If A = (A1, A2, ..., A\y) F n, then
> (-1 1) Vps =27 Hm,\ i (3.2)
AEEv())

Applying this result to the left-hand side of ([2.4)), we obtain:

S SREILNEY (D IELAD oy
)

A€Ev(\) HER3(2n) AEEv(N) HER3(2n
= <2THm,\i)\i, Z SM> . (33)
i=1 HER3(2n)

On the right-hand side of (2.4]), we obtain:

Z X(Xn’n)=< Z p;\,S(n,n)>

AE€Ev()) AE€Ev())

=< > (—1)£(X)P375(2n)> (by @32)

A€Ev()\)

= <2er>\i)\i7S(2n)> . (34)
i=1

Cancelling the 2" from equations (3.3) and (3.4)), we find that Conjecture is equivalent to

<Hm)\i)\i’ Z 3#> = <Hm)\¢)\¢’3(2")>- (3.5)
i=1 ) i=1

HER3(2n
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4. PROOF OF CONJECTURE [2.3[ FOR A = (1")

In this section, we obtain combinatorial interpretations of both sides of (3.5)) in the case where
A = (1™). Both sides are counted by the Riordan numbers, sequence A005043 in [OEI25]. As a
consequence of the equality, we obtain a striking new interpretation of these numbers.

Proposition 4.1. The number <m7(11’1), S(Qn)> is equal to the n-th Riordan number R(n).
Proof. The monomial symmetric function m; 1 is the same as the Schur function s(; ;). So the
inner product in question is the Littlewood—Richardson coefficient cgjll))’ (11),m(1,1)° This coefficient
can be determined by a simple application of the Littlewood—Richardson rule: we are counting
standard tableaux of shape (2"), with entries {1,2,3,...,2n}, such that at each step, when we add
2k + 1,2k + 2 to the existing tableau consisting of {1,2,...,2k}, the entries {2k + 1,2k + 2} are in
different rows. This is the dual version of Pieri’s rule; see, for instance, [Sta24, Sec. 7.15].
Alternatively, we can think of starting from the empty tableau. At each step, we can add a
domino to column one, a domino to column two if it is at least 2 boxes shorter than column one, or
a single box at the end of each column if the columns are not the same length. Assigning a domino
in column one to U, column two to D, and a box in both columns to F', we see that these tableaux
are in bijection with Riordan paths. g

For example, when n = 5, we get the six tableaux shown in Figure [4.1

115] |13 1(3] [1[3] |15 13|
207 204 [205] |205]| |2]6] |2]7
318 |s5l7] l4al7] |46 307 |48
4l9| 6ol le6lo| [7]9] [4a]o| |59
6 |10 8 110 8 |10 8 110 8 |10 6 |10
t1 t2 i3 4 ts l6

FIGURE 4.1. Tableaux for n = 5 in the proof of Proposition

The six tableaux t1,...,ts in Figure 4.1 correspond to the sequences s1, ..., sg below:
s1=(UUF,D,D) sy=(UD,UF,D) s3=(UF,F,F,D)
sqa = (U, F,D,U,D) s5=(UUD,F,D) s¢=(UF,UD,D)

Now we turn to the left-hand side of (3.5). We have:

Proposition 4.2. The number

<m?1,1)> Z 3u> (4.2)
HER3(2n)

is given by the number of ballot sequences of length n made up of As, Bs, and C's such that the
parity of the number of As, Bs, and C's is either all even (if n is even) or all odd (if n is odd).

Proof. Since m(11) = $(1,1), we again need to compute Littlewood-Richardson coefficients using
the dual version of Pieri’s rule; however, this time the final tableau can have any shape that is a
partition of 2n with at most three even parts. There are three possibilities at each step: we can
either add a box at the end of rows one and two, rows one and three, or rows two and three. We
denote these three possibilities by A, B, and C, respectively, so that, for instance, A represents
adding to rows one and two. Notice that, at all times, row one is at least as long as row two, which
is at least as long as row three. This forces the corresponding sequence of A’s, B’s and C’s to be a
ballot sequence. For example, at each step row one has #A + #B boxes and row two has # A+ #C
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boxes which forces #B > #C at each step. The fact that the final three-row shape is required to
have all even parts forces the parities of the numbers of A’s, B’s, and C’s to agree. O

For example, when n = 6, the ballot sequences (A, B, A,C, B,C) and (A, B, A, A, B, A) corre-
spond to the following tableaux, respectively:

113]5]9 13579|11\
o6 |7[11], 216812 . (4.3)
418 l10[12 410

The final step in the proof of Conjecture for A = (1™) is to show these ballot sequences with
equal parity are also counted by the Riordan numbers. This is indeed the case:

Theorem 4.3. The number of three-candidate ballot sequences of length n with matching parity
equals the n-th Riordan number R(n).

Proof. Let r(n) denote the number of three-candidate ballot sequences of length n with matching
parity. We will show that r(n) = R(n). Let biby...b, with b; € {1,2,3} be a three-candidate
ballot sequence of length n where we use 1, 2, 3 instead of A, B, C to represent the three candidates.
Let m; be the number of 7’s in the sequence. There are two possibilities:

e biby...b, has matching parity, that is, m; = mg = mg (mod 2).

e biby...b, does not have matching parity. Let b € {1,2,3} be the candidate whose number
of votes differs in parity from the other two candidates. We claim b1bs ... b,b is a ballot
sequence of length n + 1 with matching parity. The parity condition is clear, as is the
ballot sequence condition if b = 1. On the other hand, suppose that b € {2,3}. Since
my Z mp—1 (mod 2), we necessarily have mp < my_1, so adding the b at the end of the
sequence preserves the ballot sequence property.

The total number of three-candidate ballot sequences of length n is M (n). We have expressed this
set as a disjoint union of those with equal parity (size r(n)) and those without, and given a bijection
between those without and a set of size r(n + 1). This shows that

M(n)=r(n)+r(n+1). (4.4)
Note that this relationship, together with (1) = 0, determines the numbers r(n) uniquely. It
therefore follows from R(1) = 0 and (1.5 that 7(n) equals the Riordan numbers R(n). O

Remark 4.4. As we observed earlier, there are several bijections in the literature between Motzkin
paths and standard Young tableaux with at most three parts. Restricting these bijections to the
Riordan paths gives a scattering of tableaux of all different shapes. Our result, however, says they
are equinumerous with standard Young tableaux of at most three parts, all of the same parity.

Combining the previous results and Corollary we obtain the following equality between sums
of character degrees. Here, we write (A1, A2, A\3) b n for partitions of n into at most three parts
(thus allowing, for instance, A3 = 0).

Theorem 4.5. Let X = {(A1, 2, \3) Fn | A = Ao = A3 (mod 2)} and let Y = {(k, k,1"72F) |1 <

k < |n/2|}. Then:
dSp=>m (4.5)

AeX peY

Proof. Recall that (three-candidate) ballot sequences of length n encode standard Young tableaux
of size n (that have at most three rows) in the following standard way: vote i is cast for the jth
candidate if ¢ appears in the jth row of the tableau. Under this standard bijection, the lengths
A1, A2, A3 of the three rows correspond to the number of votes cast for the three candidates. In
particular, the ballot sequence has matching parity if and only if Ay = Ay = A3 (mod 2). It
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follows that the left-hand side of (4.5) counts the number of three-candidate ballot sequences of
length n with matching parity which, by Theorem equals the n-th Riordan number R(n).
By Corollary this matches the count for standard Young tableaux on the right-hand side of

([@5). O

5. A PROOF OF CONJECTURE [2.3] FOR A = (c%)

In this section we prove Conjecture for A = (¢?) with ¢ > 1. Interestingly, when ¢ > 1
the values of the character sums do not depend on c. Rather than getting Riordan numbers, we
encounter the central trinomial coefficients T'(n) = T'(n,n), defined as the largest coefficient of
(1 + 2 + )" and represented by sequence A002426 in [OEI25]. We note that the more general
trinomial coefficients T'(n, k), defined as the coefficient of z* in the expansion of (1 4 z + x2)", are
related to the Riordan numbers by the equation

R(n)=T(n,n) —T(n,n—1). (5.1)

As in the ¢ = 1 case, we compute the two sides of the conjecture separately. So suppose that
A = (¢?) is a partition of size n = cd and denote the right-hand side of Conjecture by

2 = X g

AEEv(\) HERS(2n) XeEv())

We begin by showing that A.(d) is given by either the Riordan numbers R(d), if ¢ = 1, or by the
central trinomial coefficients T'(d), if ¢ > 1.

Theorem 5.1. We have

_ R(d)) ifc = 1;
Ad) =2 { T(d), ife> 1.

Proof. As employed in [RRZ16], it follows from the fact that x4 = (py, s,) that the values of the
character x* can be expressed as the constant term

o H1§i<j§m (1 - %) H§:1 >t Ty

X\ = ¢ m i
[[Z, 2

(5.2)

where m = {(u) and r = ¢(\). In our present case we have y = (n,n) so m = 2. We therefore
obtain

- a8 s
X5 (z122)" 1 2
XeEv()) AeEv(a) J=1

Observe that, for A = (¢?), the multiset Ev()\) consists of the partitions

<(26) 2ld— k))
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with multiplicity (Z) and with k£ € {0,1,...,d}. Consequently,

A (d) — ¢t _<1 B %) : d (mQC + x2c)k(xc + xc)Z(dfk)
c = (@172)" g:o A 2 1 2
= ct _<1 B 9% (($20 + 1‘26) + (xc + xc)Q)d
(.%'1.1‘2)" 1 2 1 2

(-2
24 et | Sl

2 2¢\d
(1) x1 + z{x§ + x5°)

Since n = cd, the latter simplifies to
c e\ d
A(d) = 2%ct [(1—”32) <(xl> +1+ (“) ) ]
1 T 1

= 29t [(1—3:) <1C+1+a:6>d

T

If ¢ =1, then the claim follows from the well-known representation

R(d) = ct [(1—93) (i+1+:p>d

of the Riordan numbers. On the other hand, suppose that ¢ > 1. Then the expansion of (z~¢ +
1 + 2°)¢ only features terms with exponents that are multiples of c. Therefore,

1 ¢ 1 ¢ 1 ¢
ct [(1—33) <xc+1+xc> ] =ct (1:0+1+:rc) ] —ct <x+1+x)

is equal to the central trinomial coefficient T'(d). O

Likewise, for a partition A = (c?) of size n = cd, denote the left-hand side of Conjecture by
_ 1A e
B(d)= Y > (D
A€Ev(\) HER3(2n)

In Theoremﬁwe already showed that B;(d) = 2?R(d). The following, combined with the previous
theorem, therefore shows that Conjecture [2.3]is true for all partitions with a single part size.

Theorem 5.2. If ¢ > 1, then we have
B.(d) = 29T (d).

Proof. We again begin by expressing the characters x* in terms of the constant terms (5.2). In the
present case, this leads to

z; 3 X
N H1<‘< i<3 (1 - *]-) Hg(:\1) 23:1 z;’
(X <i<y< T; Jj= % 7
Be(d)= Y, >, (-)Wet T 2

- -1 X,
XEEv(N) (11,12,113) =1

where the inner sum is over (weak) partitions of n into three parts: that is, (ui1,pg2,us3) with
w1 > po > pug > 0 and pg + po + pg = n. This is possible since the formula gives the same
value if p = (p1,..., m) is replaced by u = (u1, ..., ttm,0) because the extra variable x,,41 only
appears with nonnegative exponents and so cannot contribute to the constant term.
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As in the previous proof, we use that, for A = (¢?), the multiset Ev(\) consists of the partitions

((2¢)%, CQ(d*k)) with multiplicity (Z) and with k € {0,1,...,d}. We therefore find, for any integer
m > 1,

Ny m d_ /o m E /m 2(d—k)
> oS3 = 3 (e (S ()

A€Ev()) j=11i=1 k=0 i=1 i=1
- ((-Z#) (%)
i=1 i=1
= 2dm171(x§,a}§, LX)
Applied to our situation, this implies that
(-z)(-2)(-3)
—d d 1 T1 T2
27B(d) = ct | (z§a§ + 252§ + 25a5)? > T : (5.3)
(1,12,13) 12 =3
The sum
(-2)(-2)(-3)
T X1 T2
S = Z x%’” xguz xgu:s

(p1,12,113)

over partitions (1, e, pus) of n into three parts is a Laurent polynomial in x1,x9,x3. Of the
monomials in that Laurent polynomial, only few contribute to the constant term and there is
considerable cancellation among those that contribute. To describe this, we expand

(-2)(-2) (- 2) oo
T T To

where
:L'% o3 T3 :L'% xT9
a:]-_in B: 2 T Y= -
ZCl 1‘1 xT9 12 I

Case a. First, we consider the monomials in the sum S that arise from «. These are

—2 9 —-2,.2
P D Dl il D o
2u1, 2p2, 2us 2p1, 2p0 208 2p1, 2pe  2ps
X X X X X X X X X
(p1,p2,u3) 71 2 73 (p1,p2,13) 72 73 (p1,p2,p3) 1 72 3
H1=p2 O U2=/3 p3=0

where most of the terms on the left-hand side cancelled in pairs. Observe that the monomials
from the final sum do not contribute to the constant term (5.3) because x3 appears with a positive
exponent (namely as #3). On the other hand, the first sum on the right-hand side splits into

Ln/3]

T :
2u1 2u2 2u3 9m .2(n—2m)
(upiz,pz) C1 23 m=0 (¥312)*"2]
H2=H3
as well as
n/2
1 [n/2] 1
z : 2u1 2p2 243 z : am 2(n—2m) "
(prpzps) T1 T2 T3 m=|n/3|+1 (z122)* M
H1=p2> 13

Inside the constant term (5.3)), these are multiplied with the polynomial (x§x§ + x$z§ + z§z)%.
Because the latter is symmetric, we can permute the variables x1, x9, z3 in each monomial above.
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Overall, we therefore conclude that the contribution to the constant term (5.3 by monomials in S
arising from « is

[n/2]

ct | ({25 + 52§ + x5a§)? 5
meo (T172)*™ 7]

[n/2] 1
= ct | (a5 + 2§ + a5a5)? — 5.4
(21 + 25 + x{25) Z (2129)2" (5.4)
i m=0
For the equality, we used that all terms are homogeneous, allowing us to set x3 = 1 without

changing the constant term.
Case (. Next, we similarly consider the monomials in the sum S that arise from 5. These are

-2 -1 —2 -1
Z T T2X3 — Ty T3 . Z T T2T3 o Z Ty T3
2p1, 2p2, 2u3 2p1, 2p2 203 2p1, 2p0  2p3
X X X X X X X X X
(11,p2,13) 1 "2 73 (p1,p2,p3) 71 72 3 (p1,p2,p3) 71 72 3
H2=13 p1<po+1

where we again cancelled most of the terms on the left-hand side. Note that the monomials in

—2p1, —2pa—1_ —2us+1 21 —2u—1 —2us+1
the final sum are of the form xy #xy 2™ a3 If g = po this is 2 ag oy #T and

if 1y = po + 1 this is x1_2“1x2_2“1+1x§2“3+1; in either case, the exponents of x1 and xzo differ by
exactly 1. As such, they cannot both be divisible by ¢ > 1 and so the monomials cannot contribute

to the constant term ([5.3). We rewrite the other sum as

—2 [n/3]
P B 1
2p 0202 0208 om—1..2(n—2m+1)"
(uhuz,#s)w Ly X3 m=0 (x3:C2) mTiay
H2=[13

Note that the term corresponding to m = 0 does not contribute to the constant term (5.3)). Similar
to the case a, we swap x1 and 3 in these monomials, then set x3 = 1, to find that the contribution
to the constant term ([5.3)) by monomials in S arising from £ is

Ln/3]
(& (& c,.C 1
ct | (2§ + 2§ + x525)? E T (5.5)
m=1

Case . Finally, the monomials in the sum S that arise from ~ are

B [ ) -1 —1,.—-1_2 -1

Z Ty Ty T3 — T T2 - Z T Ty I3 _ Z T X2

2p1 2p2 ) 213 - 2u1, 2p2 ) 203 2p1, 2p2 ) 203 "

s r ) as s x

(11,112,113) Lz =3 (p1,p2,03) 1 7273 (p1,pzopz) =1 7273
p1=p2 or p3=0 p2<p3z+1

As in the case 3, the final sum does not contribute to the constant term when ¢ > 1 because the
exponents of zo and x3 differ by exactly 1. Further, as in the case «, the monomials corresponding
to u3 = 0 in the first sum on the right-hand side do not contribute to the constant term
because z3 appears with a positive exponent. We rewrite the remaining terms as

1 — [n/2]
Z Ty 1;102 lac% 1
2u1, 2p2, 2us om+1,2(n—2m-1)"
(i pzpun) 1 %2 T3 g (@122)m g
H1=p2

Note that the term corresponding to m = |n/2| does not contribute to the constant term (5.3) if
In/2] > [(n —1)/2] because the exponent of x3 is positive in that case. Setting x3 = 1, we thus
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record that the contribution to the constant term (5.3)) by monomials in S arising from = is

[(n—1)/2] 1
d

L m=[n/3] ]
We now claim that the combined contribution to the constant term (5.3) by monomials in S arising
from 8 and 7 is i )

L(n—1)/2] 1

m=0

This almost follows by simply summing the individual sums and , except that the com-
bined sum has one additional term if n = 1,2 modulo 3; namely, the term corresponding to

= |n/3]. We need to show that this term does not contribute to the constant term . To see
this, write n = 3r 4+ v for v € {1,2} so that the extra term corresponds to m = r and that the ex-
ponents of x; and xy are —(2r+1). We readily confirm that ged(n,2r+1) = ged(3r+v,2r+1) =1
which implies that 2r 4+ 1 cannot be a multiple of ¢. In particular, the extra term cannot contribute
to the constant term if ¢ > 1.

Finally, we conclude that equals the sum of and , resulting in

(v ) 7]

where we substituted x = 1 and y = 1/(z1x2), so that zo = 1/(xy), to obtain the latter constant
term. Since the sum in that constant term is over all possible powers of y that can contribute to
the constant term, we obtain the overall constant term by setting y = 1. Hence,

.1 d 1 d
2+ — +1 T+ —+1
X X

as claimed. 0

n

1
(5 + 25 + af25) " > )m] =ct

m=0 ($1$2

279B,(d) = ct

279B,(d) = ct = = T(d),

Corollary 5.3. For integers ¢ > 1 and d > 1 we have
d
(o > ) =T
HER3(2¢d)
6. CONCLUSIONS AND FUTURE WORK

We have proved Conjecture for all partitions with a single part size, thus affirmatively an-
swering Question for those partitions and N = 1. It is a natural question to pursue whether
the present techniques can be extended to prove identity of Conjecture for all partitions.
When summing over all partitions, we get Amdeberhan’s identity specialized to N = 1.
That sum appears to admit the following simple closed formula:

Conjecture 6.1. For any integer n > 1,

E(A) %H, if n is even,
)SESDSIED SINELIVED pe > P ) e o)

A /\GEV(A) HER3(2n) Arn © )\EEV
In private communication, Amdeberhan has shared that his Question is inspired by the
following conjectured equality of g-series. Here, given a partition A = (A1, Ag,..., A;), we denote
T bV

gA(CI)_HHq_;

7=1
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Conjecture 6.2 (Amdeberhan). For all integers N > 1,

Z 9(g Z Z (—1 )Z()\) B Z 9(g Z Z Xg- (6.2)

n20 Akn AEEv(A\) #ERaN1+1(2n) n20 An AE€Ev()\) HERS y (2n)

Note that gx(q) = O(¢M), allowing us to verify equation (6.2)) for fixed N up to terms of order
q™ by truncating the outer sums to n < m. Doing so, we find, for instance, that for N = 1 both

sides of (/6.2]) equal
14 3¢% — 4¢° + 9¢* — 12¢° 4+ 22¢° — 36¢" + 60¢° — 88¢° + 135¢'° + O(¢').

Various bijections are known between Motzkin paths and standard Young tableaux with at most
three parts. It would be of interest to identify such a bijection with the additional property that
the subset of Riordan paths is mapped to standard Young tableaux of at most three parts, all of
the same parity. Theorem [4.3]shows that this is possible but does not provide an explicit bijection.

Acknowledgements. We thank Tewodros Amdeberhan for kindly sharing details on his Ques-
tion as well as allowing us to include his motivating Conjecture

APPENDIX A. COUNTEREXAMPLES TO QUESTION [2.2]

We showed that the answer to Question [2.2]is affirmative for N = 1 and partitions with one part
size, and we conjecture that the answer continues to be affirmative for N = 1 in general. Here, we
illustrate that identity does not, however, hold in general.

While identity holds for all partitions of size n < 7, we find that it holds for partitions
of size n = 8 only if N # 3. In the case N = 3, we find that holds for the partitions
{(8),(7,1),(6,2),(6,1,1),(4,2,1,1),(2,2,2,1,1)} but not for other partitions of size 8.

For instance, consider A = (5,2,1) F 8. Then:

Ev(\) = {(10,4,2), (10,4,1,1),(10,2,2,2), (10,2,2,1,1),
(5,5,4,2),(5,5,4,1,1),(5,5,2,2,2), (5,5,2,2,1,1)}.

One can check that the identity in Question holds for N = 1 and N = 2 in this case.
For N = 3 the new partitions g in the left-hand sum are those with exactly six or seven parts, all
even, namely (6,2%), (42,2%), (4,2%). The new partitions on the right-hand side are those with even
multiplicities and exactly six parts, namely (3%, 22), (42, 2%), (42, 32,1?), (52,22,12), (62, 1%).

Calculating the character sums we find that the contributions of the new partitions to the sum
on the left-hand side of is zero while they are —8 on the right-hand side. As a result the two
sides of differ by 8 for N = 3. For N = 4, the additional new partitions contribute —8 on the
left-hand side and 0 on the right-hand side so that (2.3)) again holds for N = 4. Indeed, we find
that holds for N > 4, as predicted in Remark r N > 8.

For larger n, the discrepancies between the two sides of can get more pronounced, although
for N =1 and N = 2 we have not observed any partitions A for which does not hold. For
example, when A = (32,23, 1) we find that the right-hand side of exceeds the left-hand side
by 5184 for N = 3, by 7488 for N = 4, and by 2368 for N = 5. For other values of IV, the identity
does hold for that partition A.

(A1)
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