Example 149. Python Let us apply the midpoint method to y' = y, y(0) = 1.

```
>>> def midpoint(f, x0, y0, xmax, n):
    h = (xmax - x0) / n
    ypoints = [y0]
    for i in range(n):
        y0 = y0 + f(x0+h/2,y0+f(x0,y0)*h/2)*h
        x0 = x0 + h
        ypoints.append(y0)
    return ypoints
>>> def f(x, y):
    return y
```

The exact solution is $y(x) = e^x$ with $y(1) = e \approx 2.718$.

```
>>> midpoint(f, 0, 1, 1, 4)
```

```
[1, 1.28125, 1.6416015625, 2.103302001953125, 2.6948556900024414]
```

The following numerically confirms that the error in the midpoint method is $O(h^2)$.

```
>>> from math import e
>>> [midpoint(f, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.2182818284590451, -0.004200981850821073, -4.49658990882007e-05,
-4.5270728232793545e-07, -4.530157138304958e-09, -4.530020802917534e-11]
```

Runge-Kutta methods

The midpoint method can be written as:

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + K_1 h$$

$$K_0 = f(x_n, y_n)$$

$$K_1 = f\left(x_n + \frac{h}{2}, y_n + K_0 \frac{h}{2}\right)$$

Note that replacing the rule by $y_{n+1} = y_n + K_0 h$ results in Euler's method. Indeed, both K_0 and K_1 are approximations of the slope y' that we need for stepping from x_n to $x_{n+1} = x_n + h$.

Adding further such approximations K_i to the mix, one can eliminate further terms in the error expansion and obtain higher order methods known as **Runge–Kutta methods**.

The midpoint method is an example of a Runge-Kutta method of order 2 (but there are others as well). https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Of particular practical importance is the following instance:

```
(Runge–Kutta method of order 4)  x_{n+1} = x_n + h   y_{n+1} = y_n + \frac{1}{6}(K_0 + 2K_1 + 2K_2 + K_3)h   K_0 = f(x_n, y_n)   K_1 = f\left(x_n + \frac{h}{2}, y_n + K_0 \frac{h}{2}\right)   K_2 = f\left(x_n + \frac{h}{2}, y_n + K_1 \frac{h}{2}\right)   K_3 = f(x_n + h, y_n + K_2 h)
```

Comment. Note how each of K_0, K_1, K_2, K_3 is an approximation of y' on the interval $[x_n, x_{n+1}]$ (with K_0 approximating $y'(x_n)$ and K_3 approximating $y'(x_{n+1})$). By taking the appropriate weighted average, we are able to get an approximation with a higher order.

Advanced comment. Note that the weights (with K_1 and K_2 combined because they both correspond to the midpoint $x_n + h/2$) are the same as in Simpson's rule for numerical integration. That is more than a coincidence. Indeed, if f(x,y) = f(x) does not depend on y, then solving the DE is equivalent to integrating f(x) and the Runge-Kutta method of order 4 turns into Simpson's rule.

Example 150. Python Let us implement the Runge-Kutta method of order 4.

```
>>> def runge_kutta4(f, x0, y0, xmax, n):
    h = (xmax - x0) / n
    ypoints = [y0]
    for i in range(n):
        K0 = f(x0,y0)
        K1 = f(x0+h/2, y0+K0*h/2)
        K2 = f(x0+h/2, y0+K1*h/2)
        K3 = f(x0+h, y0+K2*h)
        y0 = y0 + (K0 + 2*K1 + 2*K2 + K3)*h/6
        x0 = x0 + h
        ypoints.append(y0)
    return ypoints
```

First, for comparison with earlier methods, let us apply the method to the IVP y'=y, y(0)=1, which has the exact solution $y(x)=e^x$ with $y(1)=e\approx 2.718$.

```
>>> def f(x, y):
    return y
>>> runge_kutta4(f, 0, 1, 1, 4)
```

[1, 1.2840169270833333, 1.648699469036526, 2.1169580259162033, 2.718209939201323]

The following convincingly illustrates that the error is indeed $O(h^4)$.

```
>>> from math import e
>>> [runge_kutta4(f, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.009948495125712054, -2.0843238792700447e-06, -2.2464119453502462e-10,
-2.042810365310288e-14, 1.1546319456101628e-14, 6.217248937900877e-15]
```

Pause for a moment to really appreciate how much better these errors are in comparison with Euler's method! Whereas computing 10^5 values with Euler's method resulted in an error of $1.36 \cdot 10^{-5}$, we are now able to obtain an error of $2.04 \cdot 10^{-14}$ with only 10^3 values.

As a second example, let us consider as in Example 147 the IVP $y' = \cos(x)y$ with y(0) = 1, which has the exact solution $y(x) = e^{\sin(x)}$ with $y(2) = e^{\sin(2)} \approx 2.48258$.

```
>>> from math import e, cos, sin
      >>> def f_cosx_y(x, y):
                                                     return cos(x)*y
       >>> runge_kutta4(f_cosx_y, 0, 1, 2, 4)
                         [1, 1.614859377441316, 2.3191895982789603, 2.7107641474177457, 2.481902218021582]
The following again convincingly illustrates that the error is indeed O(h^4).
       >>> [runge_kutta4(f_cosx_y, 0, 1, 2, 10**n)[-1] - e**sin(2) for n in range(5)]
                         [-0.12999578105593113, -1.726387102785054 \\ e-05, -1.6494263732624859 \\ e-09, -1.649426373262485 \\ e-09, -1.649426285 \\ e-09, -1.6494285 \\ e-09, -1.649428 \\ e-09, -1.64940 \\ e-09, -1.649428 \\ e-0
```

Important comment. Note that, in contrast to Example 147, we did not have to compute partial derivatives of $f(x,y) = \cos(x)y$ by hand. Instead, we were able to simply use $\cos(x)y$ in our runge_kutta4 function.

-1.6431300764452317e-13, 3.419486915845482e-13]

Armin Straub 102

Applying Richardson extrapolation to Euler's method

In this section we illustrate that Richardson extrapolation can be applied repeatedly to increase the order as desired.

Example 151. Suppose that A(h) is an approximation of some quantity A^* of order 1. Combine the approximations A(1)=2, $A\left(\frac{1}{2}\right)=\frac{9}{4}$ and $A\left(\frac{1}{3}\right)=\frac{64}{27}$ to an approximation of order 3.

Solution. Since A(h) is an approximation of order 1, we assume that $A(h) = A^* + C_1h + C_2h^2 + O(h^3)$ for some (unknown) constants C_1 , C_2 .

Correspondingly,
$$A(1) \approx A^* + C_1 + C_2$$
, $A\left(\frac{1}{2}\right) \approx A^* + \frac{1}{2}C_2 + \frac{1}{4}C_2$ and $A\left(\frac{1}{3}\right) \approx A^* + \frac{1}{3}C_1 + \frac{1}{9}C_2$.

We want to combine these three in such a way that we get an approximation of A^* with C_1 and C_2 eliminated. We can do this in different (but ultimately equivalent) ways:

(1) If we take the combination $\alpha A(1) + \beta A\left(\frac{1}{2}\right) + \gamma A\left(\frac{1}{3}\right)$, then we get:

$$\alpha A(1) + \beta A\left(\frac{1}{2}\right) + \gamma A\left(\frac{1}{3}\right) \approx (\alpha + \beta + \gamma)A^* + \left(\alpha + \frac{\beta}{2} + \frac{\gamma}{3}\right)C_1 + \left(\alpha + \frac{\beta}{4} + \frac{\gamma}{9}\right)C_2$$

Since we want $1 \cdot A^* + 0 \cdot C_1 + 0 \cdot C_2$, we therefore get three equations for the three unknowns α, β, γ :

$$\alpha + \beta + \gamma = 1$$

$$\alpha + \frac{\beta}{2} + \frac{\gamma}{3} = 0$$

$$\alpha + \frac{\beta}{4} + \frac{\gamma}{9} = 0$$

We can solve (this is some work—do it!) these equations to find $\alpha = \frac{1}{2}$, $\beta = -4$, $c = \frac{9}{2}$. Therefore, our combined approximation is $\frac{1}{2}A(1) - 4A\left(\frac{1}{2}\right) + \frac{9}{2}A\left(\frac{1}{3}\right) = \frac{1}{2} \cdot 2 - 4 \cdot \frac{9}{4} + \frac{9}{2} \cdot \frac{64}{27} = \frac{8}{3}$.

(2) As in a single step of Richardson extrapolation, we can combine any two approximations to get one of higher order (meaning that C_1 is eliminated). For instance:

$$\begin{aligned} & \text{Approx}_1 := \frac{2A\left(\frac{1}{2}\right) - A(1)}{2 - 1} &\approx \frac{2\left(A^* + \frac{1}{2}C_2 + \frac{1}{4}C_2\right) - (A^* + C_1 + C_2)}{2 - 1} = A^* - \frac{1}{2}C_2 \\ & \text{Approx}_2 := \frac{3A\left(\frac{1}{3}\right) - A(1)}{3 - 1} &\approx \frac{3\left(A^* + \frac{1}{3}C_1 + \frac{1}{9}C_2\right) - (A^* + C_1 + C_2)}{3 - 1} = A^* - \frac{1}{3}C_2 \end{aligned}$$

We combine these two approximations into $\frac{3\mathrm{Approx}_2-2\mathrm{Approx}_1}{3-2}\approx A^*$ where C_2 is eliminated:

$$\frac{3 \text{Approx}_2 - 2 \text{Approx}_1}{3 - 2} = 3 \left(\frac{3}{2} A \left(\frac{1}{3}\right) - \frac{1}{2} A(1)\right) - 2 \left(2 A \left(\frac{1}{2}\right) - A(1)\right) = \frac{9}{2} A \left(\frac{1}{3}\right) - 4 A \left(\frac{1}{2}\right) + \frac{1}{2} A(1)$$

This is the same combined approximation as above so that we again get $\frac{8}{3}$.

[Instead of spelling out the combination, we could also use $\operatorname{Approx}_1 = \frac{5}{2}$ and $\operatorname{Approx}_2 = \frac{23}{9}$ so that the final combination is, once more, $\operatorname{3Approx}_2 - \operatorname{2Approx}_1 = 3 \cdot \frac{23}{9} - 2 \cdot \frac{5}{2} = \frac{8}{3}$.]

Comment. The numbers above are not random. Instead A(h) is an approximation of $e \approx 2.718$ that is obtained by applying the Euler method to y' = y, y(0) = 1. As explained in Example 144, we find that, using n steps (which means that $h = \frac{1-0}{n} = \frac{1}{n}$), our approximation for y(1) is $\left(1 + \frac{1}{n}\right)^n$. Using n = 1, 2, 3, we find

$$A(1) = 2$$
, $A\left(\frac{1}{2}\right) = \frac{9}{4} = 2.25$, $A\left(\frac{1}{3}\right) = \frac{64}{27} \approx 2.370$.