
Notes for Lecture 15 Wed, 9/24/2025

Example 76. Python The following code implements the Newton method specifically for com-
puting a root of f(x)= (x¡ r)(x¡ 1)(x+2) as in the previous example.

>>> def newton_f(r, x, nr_steps):
for i in range(nr_steps):

x = x - ((x-r)*(x-1)*(x+2))/(3*x**2-2*(r-1)*x-r-2)
return x

We then write a function to tell us the how close the result of Newton's method is to x�=1 (the
root that we are trying to compute). Namely, newton_f_cb_1 will return the number of correct
digits in base 2.
>>> from math import log2

>>> def newton_f_cb_1(r, x, nr_steps):
return -log2(abs(1 - newton_f(r, x, nr_steps)))

Here is the typical behaviour which we get if r=/ 1 and r=/ 4. We chose r=2 and for the initial
approximation we chose x0= 0.4. First, we list the result of Newton's method and observe that
the approximations are indeed approaching 1 (recall that we are only guaranteed convergence if
x0 is close enough to 1). We then list the number of correct bits for those approximations:

>>> [newton_f(2, 0.4, n) for n in range(1,5)]

[0.9333333333333332, 0.9974499089253187, 0.9999956903710115, 0.9999999999876182]

>>> [newton_f_cb_1(2, 0.4, n) for n in range(1,5)]

[3.9068905956085165, 8.615235511834927, 17.824004894803025, 36.2329923774517]

Observe how the number of correct digits indeed roughly doubles.

Next, we likewise consider the problematic case r=1:
>>> [newton_f(1, 0.4, n) for n in range(1,5)]

[0.7428571428571429, 0.877751756440281, 0.9402023433223725, 0.9704083354780979]

>>> [newton_f_cb_1(1, 0.4, n) for n in range(1,5)]

[1.9593580155026542, 3.032114357937968, 4.063767239896592, 5.078665339814252]

Observe how the number of correct digits no longer doubles. Instead it roughly increases by 1 per
iteration, exactly as we had predicted.

Finally, we consider the exceptionally good case r=4:
>>> [newton_f(4, 0.4, n) for n in range(1,5)]

[1.0545454545454547, 0.9999639010889838, 1.0000000000000104, 1.0]

>>> [newton_f_cb_1(4, 0.4, n) for n in range(1,4)]

[4.1963972128035, 14.757685157968053, 46.445411148322364]

Observe how the number of correct digits now roughly triples, in accordance with our prediction.

Armin Straub
straub@southalabama.edu

42

Comparison of root finding algorithms

Now that we have seen several root finding algorithms, which one is the best?

Well, it really depends on the situation. Below are some of the differences between the methods.

In practice, one often uses hybrid algorithms that combine several methods.

All methods require a continuous function.

� Bisection
each iteration is guaranteed to provide a correct binary digit; no other method can guarantee this for
all functions
requires an initial interval containing a root such that the function values at the endpoints have opposite
signs (in particular, does not work for double roots (or any even order roots)); on the other hand, it
provides a guaranteed interval containing the root
no requirement on f(x) besides continuity; for the other methods, the performance depends on f(x)

essentially linear convergence with rate 1

2

� Regula falsi
also requires an initial interval containing a root like bisection
one endpoint of the interval typically gets stuck
rarely used directly, but rather in its improved forms, such as the Illinois method
always converges, typically linearly with variable rate

� Illinois method (see next pages for bonus material!)

improved version of regula falsi
the interval now shrinks to root
always converges, typically with order 33p � 1.442

� Secant method
only requires an initial approximation
only converges if initial approximation is good enough
potential numerical issues due to loss of precision in near zero denominator
typical order of convergence �=(1+ 5

p
)/2� 1.618

� Newton's method
similar to secant method
requires derivative
extends well to other contexts such as approximating functions or power series rather than numbers
typical order of convergence 2
however, adjusted for two function evaluations (f(x) and f 0(x)), order of convergence 2

p
� 1.414

Armin Straub
straub@southalabama.edu

43

Bonus material: The Illinois method

Example 77. Python In Example 41 we implemented the regula falsi method. As we have
observed, a weakness of this method is that we typically end up only updating one endpoint of the
interval. The Illinois algorithm is an extension of the regula falsi method that works to remedy
this issue.

Recall that the regula falsi method uses c= afb¡ bfa
fb¡ fa

with fa= f(a) and fb= f(b) to cut each

interval [a; b] into the two parts [a; c] and [c; b].
The Illinois algorithm proceeds likewise but, after an endpoint has been retained for a second
time, the corresponding value fa or fb is replaced with half its value. In other words, if a was not
updated in this or the previous step, then fa (to be used in the next iteration) is replaced with
fa/2; likewise, if b was not updated in this or the previous step, then fb is replaced with fb/2.

start with an interval [a,b]
fa = f(a)
fb = f(b)
repeat
compute the regula falsi point
c = (a*fb - b*fa) / (fb - fa)
fc = f(c)
set new interval [a,b] according to signs of f
...
if left endpoint was also updated the previous time
fb = fb/2

if right endpoint was also updated the previous time
fa = fa/2

Can you complete this pseudo-implementation? Here is one approach that we can take:

� Start with the code that we wrote in class for the regula falsi method.

� Adjust that code (like we did for the bisection method) to only use one function evaluation
per iteration. Do that by introducing variables fa, fb, fc for the values of f(x) at x=a;
b; c.

� Add a new variable to your code that keeps track of whether we most recently changed
the left or the right endpoint of the interval. You can, for instance, define a variable
updated_endpoint that is initially set to 0, and which is set to 1 after the right endpoint
is updated and to ¡1 after the left endpoint is updated.
That way, if we are about to update, say, the left endpoint, then we can test whether
updated_endpoint is ¡1 as that would tell us that we are now updating the left endpoint
for a second time in a row. In that case, we set fb = fb/2.

Advanced comment. There are other, more clever, approaches to implementing the Illinois method. For instance,
one could stop making a and b the left and right endpoints of the interval and, instead, always make b the newly
added endpoint; then one can test whether we repeatedly change the same endpoint by looking at the signs of
the corresponding values of f . This is done by M. Dowell and P. Jarratt in [A Modified Regula Falsi Method
for Computing the Root of an Equation, 1971], where they describe and analyze the Illinois method. As a very
minor point, their implementation might proceed slightly different from ours because we start with an interval
[a; b] whereas their implementation thinks of a and b as two approximations, with b being the more �recent� one
(accordingly, their implementation might divide fa by 2 already at the end of the first iteration).

Armin Straub
straub@southalabama.edu

44

Let us revisit the computations we did in Example 40 but with the regula falsi method updated
to the Illinois algorithm. The first two iterations should result in the same intervals:

>>> def my_f(x):
return x**3 - 2

>>> from fractions import Fraction

>>> illinois(my_f, Fraction(1), Fraction(2), 1)

[Fraction(8, 7), Fraction(2, 1)]

>>> illinois(my_f, Fraction(1), Fraction(2), 2)

[Fraction(75, 62), Fraction(2, 1)]

However, at the end of the second iteration (since the right endpoint has not changed in this or
the previous iteration), fb= 6 (since f(2) = 6) is replaced with fb= 3. As a result, in the third
iteration, we end up replacing the right endpoint:

>>> illinois(my_f, Fraction(1), Fraction(2), 3)

[Fraction(75, 62), Fraction(974462, 769765)]

For further testing, in the next two iterations we replace the left endpoints (since the fractions
are becoming large, we are using floats below; note that the first command just repeats the above
computation with floats):

>>> illinois(my_f, 1, 2, 3)

[1.2096774193548387, 1.2659214175754938]

>>> illinois(my_f, 1, 2, 4)

[1.2596760796087871, 1.2659214175754938]

>>> illinois(my_f, 1, 2, 5)

[1.2599198867703156, 1.2659214175754938]

Consequently, at the end of the fifth iteration, the value of fb (which is f(1.2659:::)) is again
replaced by half its value. Once more, this results in b being updated in the next iteration:

>>> illinois(my_f, 1, 2, 6)

[1.2599198867703156, 1.2599222015292841]

Armin Straub
straub@southalabama.edu

45

