
Notes for Lecture 14 Mon, 9/22/2025

Applying fixed-point iteration directly

Note that any equation f(x)=0 can be rewritten in many ways as a fixed-point equation g(x)=x.
For instance. We can always rewrite f(x)= 0 as f(x)+ x=x (i.e. choose g(x)= f(x)+x).

We can then attempt to find a root x� of f(x) by fixed-point iteration on g(x).
In other words, we start with a value x0 (an initial approximation) and then compute x1;x2; ::: via xn+1= g(xn).

Theorem 68 tells us whether that such a fixed-point iteration on g(x) will locally converge to x�.
Moreover, it tells us the order of convergence.

Example 71. Suppose we are interested in computing the roots of x2¡x¡ 1=0.
The roots are the golden ratio �= 1

2
(1+ 5

p
)� 1.618 and  = 1

2
(1¡ 5

p
)�¡0.618.

There are many ways to rewrite this equation as a fixed-point equation g(x) = x. The following
are three possibilities:

(a) Rewrite as x=x2¡ 1, so that g(x)=x2¡ 1.

(b) Rewrite first as x2=x+1 and then as x=1+ 1

x
, so that g(x)= 1+ 1

x
.

(c) Rewrite first as x2¡x
=x(x¡1)

=1 and then as x= 1

x¡ 1 , so that g(x)= 1

x¡ 1 .

In each of these three cases and for each root, decide whether fixed-point iteration converges. If
it does, determine the order and rate of convergence.
Solution.

(a) In this case, we have g(x)=x2¡ 1 and g0(x)= 2x.
Since jg 0(�)j � 3.236> 1 as well as jg0( )j � 1.236> 1, fixed-point iteration does not converge locally
to either root.

(b) In this case, we have g(x)= 1+
1

x
and g 0(x)=¡ 1

x2
.

Since jg0(�)j= 1

�+1
�0.382<1 and jg 0( )j= �+1�2.618>1, fixed-point iteration converges locally

to � but does not converge locally to  . Moreover, the convergence to � is linear with rate 0.382.

(c) In this case, we have g(x)= 1

x¡ 1 and g0(x)=¡ 1

(x¡ 1)2 .

Since jg0(�)j= �+1�2.618>1 and jg 0( )j= 1

�+1
�0.382<1, fixed-point iteration converges locally

to  but does not converge locally to �. Moreover, the convergence to  is linear with rate 0.382.
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Order of convergence of Newton's method

Recall that computing a root x� of f(x) using Newton's method is equivalent to fixed-point

iteration of g(x)=x¡ f(x)

f 0(x)
.

Comment. In each case, we start with x0 and iteratively compute xn+1=xn¡
f(xn)

f 0(xn)
.

Theorem 72. Suppose that f is twice continuously differentiable and f(x�)= 0.

� (typical case) Newton's method (locally) converges to x� quadratically with rate
1

2
jf 00(x�)/f 0(x�)j provided that f 0(x�)=/ 0.

� (troubled case) If f 0(x�) = 0, then Newton's method either does not converge at all
or it converges linearly.

Note that, if f(x�)=0 and f 0(x�)=0, then x� is a repeated root of f(x). We thus conclude that Newton's
method is troubled if we are trying to compute a repeated root.

� (exceptionally good case) If f 0(x�)=/ 0 and f 00(x�)=0, then Newton's method even
converges with order at least 3.

Important comment. In short, Newton's method typically converges quadratically (though in very special cases
it can converge even faster) except in the case of repeated roots.

Proof. We apply Theorem 68 to analyze the fixed-point iteration of g(x)= x¡ f(x)
f 0(x)

.

Using the quotient rule we compute that

g 0(x)= 1¡ f 0(x)f 0(x)¡ f(x)f 00(x)
f 0(x)2

=
f(x)f 00(x)
f 0(x)2

:

If f(x�) = 0 and f 0(x�) =/ 0, then we have g 0(x�) = 0. By Theorem 68 this implies that fixed-point iteration
converges at least quadratically.
To determine the rate of convergence, we further compute (again using the quotient and product rule) that

g 00(x)=
(f 0(x)f 00(x)+ f(x)f 000(x))f 0(x)2¡ 2f(x)f 00(x)f 0(x)f 00(x)

f 0(x)4
:

From this (unsimplified) expression and f(x�)= 0 we conclude that g00(x�)= f 00(x�)
f 0(x�)

.

By Theorem 68 this implies that the convergence is quadratic with rate 1
2

��������f 00(x�)f 0(x�)

��������.
Moreover, if f 00(x�)= 0 then g00(x�)= 0 so that the convergence is cubic (or higher). �

Example 73. (cont'd) Does Newton's method applied to finding a root of f(x)=x3¡2 converge
locally to 23

p
? If so, determine the order and the rate.

This is a continuation of Examples 61 and 70.

Solution. Recall that Newton's method typically converges to x� with order 2 and rate 1

2

������f 00(x�)
f 0(x�)

������.
With x�= 23p , we compute f 0(x�)=3(x�)2=3 �22/3. Since f 0(x�)=/ 0, we already know that Newton's method
converges at least with order 2.
We further compute f 00(x�)=6x�=6 � 21/3=3 �24/3. Since f 00(x�)=/ 0, we know that Newton's method does
not converge with order larger than 2.

Therefore, Newton's method converges to x�= 23p with order 2 and rate 1
2

������f 00(x�)
f 0(x�)

������= 1

2

3 � 24/3

3 � 22/3
=2¡1/3�0.7937.

Of course, this matches what we computed in Example 70.
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Example 74. f(x) = e¡x ¡ x has the unique root x� � 0.567. Determine whether Newton's
method converges locally to x�. If it does, what is the order and rate of convergence?
Solution. We compute that f 0(x)=¡e¡x¡ 1 and f 00(x)= e¡x.

Since x�= e¡x
�
, we have f 0(x�)=¡x�¡ 1=/ 0.

Hence, by Theorem 72, Newton's method converges to x� quadratically.

Moreover, the rate is 1
2

������f 00(x�)
f 0(x�)

������= 1

2

������ e¡x
�

¡e¡x�¡ 1

������= 1

2

������ x�

¡x�¡ 1

������� 0.181.

Review. If f(x�)=0 and f 0(x�)=/ 0, then Newton's method (locally) converges to x� quadrat-

ically with rate 1

2
jf 00(x�)/f 0(x�)j.

Note that we can see from here that f 0(x�) = 0 is problematic; indeed, in that case, we don't get quadratic
convergence (but rather divergence or linear convergence).
We can also see that, if f 00(x�) = 0, then we should get even better convergence; indeed, in that case, we get
cubic convergence or better.

Example 75. Consider f(x)=(x¡ r)(x¡1)(x+2) where r is some constant. Suppose we want
to use Newton's method to calculate the root x�=1.

(a) For which values of r is Newton's method guaranteed to converge (at least) quadratically
to x�=1?

(b) Analyze the cases in which Newton's method does not converge quadratically to x�= 1.
Does it still converge? If so, what can we say about the order and rate of convergence?

(c) For which values of r does Newton's method converge to x�=1 faster than quadratically?

Solution.

(a) We have f(x)=x3¡ (r¡ 1)x2¡ (r+2)x+2r and, hence, f 0(x)= 3x2¡ 2(r¡ 1)x¡ (r+2).
Note that f 0(1)=3¡ 3r=0 if and only if r=1.
Theorem 72 implies that Newton's method converges (at least) quadratically to x�=1 if r=/ 1.
Comment. Note that r=1 is precisely the case where 1 becomes a double root of f(x).

(b) We need to analyze the case r=1.
In that case f(x)= (x¡ 1)2(x+2) and f 0(x)= 3x2¡ 3=3(x¡ 1)(x+1).
Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)= x¡ f(x)
f 0(x)

= x¡ (x¡ 1)2(x+2)
3(x¡ 1)(x+1)

= x¡ x2+ x¡ 2
3(x+1)

=
2
3
x+

2
3

1
x+1

:

We compute that g 0(x)= 2

3
¡ 2

3

1

(x+1)2
so that, in particular, g 0(1)= 2

3
¡ 2

3

1

4
=
1

2
.

Since 0=/ jg 0(1)j< 1 we conclude, by Theorem 68, that Newton's method (locally) converges to x�=1.
Moreover, the convergence is linear with rate 1

2
.

Comment. Since 1

2
=2¡1, this means that we gain roughly one correct binary digit per iteration.

(c) We continue the calculation from the first part. According to Theorem 72, Newton's method converges
to 1 faster than quadratic if f 0(1)=/ 0 and f 00(1)= 0.
We calculate f 00(x)= 6x¡ 2(r¡ 1). Thus f 00(1)=8¡ 2r=0 if and only if r=4.
Hence, Newton's method converges to 1 faster than quadratic if r=4.

Important comment. Note that what we are observing is exactly as what we should expect: Newton's method
typically converges quadratically (though in very special cases it can converge even faster; here, r=4) except in
the case of repeated roots (here, r=1).
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