
Notes for Lecture 13 Fri, 9/19/2025

Review. Suppose that x� is a fixed point of a continuously differentiable function f . The fixed-
point iteration

xn+1= f(xn); x0= initial approximation;

converges to x� locally if jf 0(x�)j< 1.

Example 63. From a plot of cos(x), we can see that it has a unique fixed point x� in the interval
[0; 1]. Does fixed-point iteration converge locally to x�?

Solution. If f(x) = cos(x), then f 0(x) = ¡sin(x). Since jsin(x)j < 1 for all x 2 [0; 1], we conclude that
jf 0(x�)j< 1. By Theorem 60, fixed-point iteration will therefore converge to x� locally.
Comment. We will continue this analysis in Example 69.

Example 64. Python Let us implement the fixed-point iteration of cos(x) from the previous
example in Python.

>>> from math import cos

>>> def cos_iterate(x, n):
for i in range(n):

x = cos(x)
return x

>>> [cos_iterate(1, n) for n in range(20)]

[1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656,
0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605,
0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092,
0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561,
0.7387603198742113, 0.7393038923969059, 0.7389377567153445]

For comparison. The actual fixed point is x�� 0.7391.

Comment. Instead of using a loop, we could also implement the above fixed-point iteration recursively in the
following way (the recursive part is that the function is calling itself).

>>> def cos_iterate_recursively(x, n):
if n > 0:

return cos_iterate_recursively(cos(x), n-1)
return x

>>> [cos_iterate_recursively(1, n) for n in range(20)]

[1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656,
0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605,
0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092,
0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561,
0.7387603198742113, 0.7393038923969059, 0.7389377567153445]

Sometimes recursion results in cleaner code. However the use of loops is usually more efficient.
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Order of convergence

Example 65. Suppose that xn converges to x� in such a way that the number of correct digits
doubles from one term to the next. What does that mean in terms of the error en= jxn¡x�j?
Comment. This is roughly what we observed numerically for the Newton method in Example 47.

Comment. It doesn't matter which base we are using because the number of digits in one base is a fixed constant
multiple of the number of digits in another base. Make sure that this clear! (If unsure, how does the number of
digits of an integer x in base 2 relate to the number of digits of x in base 10?)

Solution. Recall that the number of correct digits in base b is about ¡logb(en).
Doubling these from one term to the next means that ¡logb(en+1)�¡2logb(en).
Equivalently, logb(en+1)¡ 2logb(en)= logb

�
en+1

en
2

�
� 0.

This in turn is equivalent to en+1

en
2 � 1.

What if the number of correct digits triples? By the above arguments, we would have en+1

en
3 � 1.

Of course, there is nothing special about 2 or 3.

Example 66. Suppose that xn converges to x�. Let en = jxn ¡ x�j be the error and dn =
¡logb(en) be the number of correct digits (in base b). If dn+1=Adn+B, what does that mean
in terms of the error en?

Solution. ¡logb(en+1)=¡A logb(en)+B is equivalent to logb(en+1)¡A logb(en)= logb
�
en+1

en
A

�
=¡B.

This in turn is equivalent to en+1

en
A = b¡B.

This motivates the following definition.

Definition 67. Suppose that xn converges to x�. Let en= jxn¡x�j. We say that xn converges
to x of order q and rate r if

lim
n!1

en+1
en
q = r:

Order 1. Convergence of order 1 is called linear convergence. As in the previous example, the rate r provides
information on the number of additional correct digits per term.
Order 2. Convergence of order 2 is also called quadratic convergence. As we saw above, it means that number
of correct binary digits dn roughly doubles from one term to the next. More precisely, dn+1� 2dn+B where
the rate r=2¡B tells us that B=¡log2(r). [Note that r has the advantage of being independent of the base
in which we measure the number of correct digits.]

Order of convergence of fixed-point iteration

Theorem 68. Suppose that x� is a fixed point of a sufficiently differentiable function f . Suppose
that jf 0(x�)j< 1 so that, by Theorem 60, fixed-point iteration of f(x) converges to x� locally.

Then the convergence is of orderM with rate 1

M !
jf (M)(x�)j whereM >1 is the smallest integer

so that f (M)(x�)=/ 0.
In particular.

� If f 0(x�)=/ 0, then the convergence is linear with rate jf 0(x�)j.

� If f 0(x�)= 0 and f 00(x�)=/ 0, then the convergence is quadratic with rate 1

2
jf 00(x�)j.
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Comment. Here, sufficiently differentiable means that f needs to beM times continuously differentiable so that
we can apply Taylor's theorem.

Proof. By Taylor's theorem (Theorem 54), if f 0(x�)= f 00(x�)= ���= f (M¡1)(x�)= 0 for some M >1, then

f(x)= f(x�)+
1
M !

f (M)(�)(x¡ x�)M

for some � between x and x�. We use this with x replaced by xn to conclude that

xn+1¡ x�= f(xn)¡ f(x�)=
1
M !

f (M)(�n)(xn¡ x�)M

for some �n between xn and x�.
Thus

xn+1¡x�
(xn¡ x�)M

=
1
M !

f (M)(�n) ¡!
n!1

1
M !

f (M)(x�);

where the limit follows from the continuity of f (M)(x) (and convergence of xn!x�). �

Example 69. (cont'd) From a plot of cos(x), we can see that it has a unique fixed point in the
interval [0;1]. Does fixed-point iteration converge locally? If so, determine the order and the rate.

This is a continuation of Example 63.

Solution. If f(x) = cos(x), then f 0(x) = ¡sin(x). Since jsin(x)j < 1 for all x 2 [0; 1], we conclude that
jf 0(x�)j< 1. By Theorem 60, fixed-point iteration will therefore converge to x� locally.
Since x�� 0.7391, we have jf 0(x�)j � jsin(0.7391)j � 0.6736.
Because f 0(x�)=/ 0, we conclude that the order of convergence is 1 and the rate is 0.6736.
Comment. A rate of 0.5 would mean that the number of correct digits increases by 1 for each iteration (and
this is what the bisection method provides). Here, convergence is slightly slower.

Example 70. (cont'd)

(a) Newton's method applied to finding a root of f(x) = x3¡ 2 is equivalent to fixed-point
iteration of which function g(x)?

(b) Does Newton's method converge locally to 23
p

? If so, determine the order and the rate.

This is a continuation of Example 61. (Also see Example 73 for a an alternative computation for the second part.)

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)= x¡ f(x)
f 0(x)

= x¡ x3¡ 2
3x2

=
2
3

�
x+

1

x2

�
:

(b) By Theorem 60, Newton's method converges locally to x�= 23p if jg 0(x�)j< 1.

We compute that g 0(x)= 2

3
¡ 4

3x3
so that g0(x�)= 2

3
¡ 4

3 � 2 =0.

At this point, we know that Newton's method converges locally to 23p .

Moreover, g 00(x)= 4

x4
so that g00(x�)= 4

24/3
=22/3� 1.5874.

Hence, the order of convergence is 2 and the rate is 1
2
jg00(x�)j= 1

2
� 22/3=2¡1/3� 0.7937.

Comment. Since the rate is less than 1, the convergence is actually slightly better than a doubling of
correct digits for each iteration.
Important. We will see shortly that it is typical for Newton's method to have convergence of order 2.
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