Notes for Lecture 12 Wed, 9/17/2025

Review. If f(x) is analytic around = = ¢, then it equals its Taylor series of f(z) at z=c:
> rn)
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Example 57. Consider f(z)=ze 2%,

(a) Determine the 2nd Taylor polynomial po(x) of f(x) at x=0.

(b) Provide an upper bound for the error | f(z) — pa(x)| if z € [0,1—10]

Solution.

(a) We could determine the 3rd Taylor polynomial by computing derivatives of re 27,

On the other hand, we already know that e* =1+ x + %:r2 + %:rB + ... which implies that ze 2% =
2 3

x(l —2x+27x2—%a:3+...> =z —23:24—23:3—%304—1—...

We only need the 2nd Taylor polynomial which is pa(z) =z — 222

(b) If f(x)=xe 2% then Taylor's theorem implies that

@)~ pate) = L5 8o
for some £ between 0 and x.
We compute that f(%) () =4(3 — 2z)e 2.
The function 4(3 — 22)e 27 is decreasing for our values of = (because the derivative is 16(z — 2)e ™ 2*
which is negative for « € [0, 2)) and so the maximum absolute value on {O, %} is taken at =0 or x :%.
At =0, we have 4(3 —2z)e 2% =12. At z = %, we have 4(3 — 2x)e 2%~ 9.17.
Therefore, | f(3)(z)] =]4(3 — 2z)e~2*| < 12.

3
On the other hand, |23 < (%) for all x € {0, %}

We therefore conclude that the error on {O, %] is bounded by

(3)
|f<x>p2<x>|=’f oo

12/ 1\ 2
<=2 =) =—2_—0.002.
\3!(1()) 1,000 0.002

Fixed-point iteration

Definition 58. z* is a fixed point of a function f(z) if f(z*)=2a"

Example 59. Determine all fixed points of the function f(x) =23

Solution. 23 =z has the three solutions z* =0, +1 (and a cubic equation cannot have more than 3 solutions).
These are the fixed points.

Idea. Suppose z* is a fixed point of a continuous function f. If x,, ~z*, then f(x,)~ f(z*)=
x* ~ x,. If we can guarantee that f(x,,) is closer to x* than z,, then we can set

LTn+1=— f(xn)a
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with the expectation that iterating this process will bring us closer and closer to z*.
When does this converge? This process converges if | f(xy) — z*| < |z, — z*| for all x,, close to z*.

<1

f(an) —a”
Ty — X"

This condition is equivalent to

Jen) —w" _ fen) = F@) g

— pa— (z*) provided that z,, is sufficiently close to z*.

Since z* = f(x*), we have

This essentially proves the following result. (See below for a full proof using the mean value theorem.)

Theorem 60. Suppose that =™ is a fixed point of a continuously differentiable function f. If
| f'(x*)| <1, then fixed-point iteration

Tnt1= f(xn), o=Iinitial approximation,

converges to x* locally.

In that case, we say that ™ is an attracting fixed point.

Divergence. If | f/(z*)] > 1, then z* is a repelling fixed point. Our argument shows that fixed-point iteration
will not converge to x* except in the “freak” case where x,, % x* but f(xz,)=a*.

Comment. Local convergence means that we have convergence for all initial values g close enough to z*.

Proof. Note that

flan) = f(z™)
= ['(&n)(@n —27)

Tpt41— 2™

where we applied the mean value theorem for the second equation and where &,, is between x,, and x*. Thus
[Ty — 2= (&) - [on — 7|

Since f is continuous and |f/(z*)| < 1, we have | f/(z)| < ¢ for some § <1 for all z sufficiently close to z*. If

xg is sufficiently to z* in that sense, then it follows that |z; —2*| <0 - |xg — z*|. In particular, 1 is even closer

to 2™ and we can repeat this argument to conclude that |z, 1 —2*| < ¢ - |z, — 2*| for all n. This implies that

|xy — x| < 0™ |xg— x*|. Since d < 1, this further implies that z,, converges to z*. O

\ Newton’s method as a fixed-point iteration

Recall that Newton's method for finding a root of f(x) proceeds from an initial approximation
xo and iteratively computes

f(n)
Tpt1="Tn —
" " f'(xn)
Note that this is equivalent to fixed-point iteration of the function g(x) =1z — %
Comment. Note that * is a fixed point of g(z) =z — ){,((‘Z)) if and only if ]{,((Z?) =0.

We have already proven a criterion for convergence of fixed-point iterations (Theorem 60). Our
next goal is to develop the tools to analyze the speed of that convergence.
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Example 61. (We will continue this analysis in Example 70.)

(a) Newton's method applied to finding a root of f(z) =23 — 2 is equivalent to fixed-point
iteration of which function g(z)?

(b) Determine whether Newton's method converges locally to 3/2.
Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

o flx) z3—-2 2 1
g(:r)—a:—f,(x)—:r— 32 _3( +x2)'

(b) By Theorem 60, Newton’s method converges locally to z* =3/2 if |g/(z*)| < 1.
Since ¢'(z) = % - %, we get g'(z*) = % - % = 0. Hence Newton’s method converges locally to 3/2.
Important comment. Notice that g’(z*) =0 is, in a way, the strongest sense in which |g’(z*)| <1. We

will see shortly that ¢’(z*) =0 implies especially fast convergence of the type we observed in Example 47.

Example 62. (homework)
(a) What are the fixed points of g(x) :%—l—%?
(b) Does fixed-point iteration of g(x) converge?

(c) Find a function f(z) such that the fixed-point iteration of g(z) is equivalent to Newton's
method applied to f(x).

(d) Inspired by the previous parts, suggest a fixed-point iteration to compute square roots.
Solution.

(a) Solving %—i—%:x, we find 22 =2 and thus z = 4/2.

1

Comment. Note that g(x) :5<x + %) Suppose that < /2. Then 2/x > /2.

When iterating g(z), we are averaging the underestimate and the overestimate, and it is reasonable to
expect that the result is a better approximation.

(b) Since g'(z) = % — %, we have g'(£y/2) = % — % =0. Hence, both fixed points are attracting fixed points.
By Theorem 60, fixed-point iteration of g(z) converges locally to both fixed points.
. . _ f=) . f(z) 1 2z
(c) We are looking for a function f(x) such that z ) g(x). Equivalently, HORREETI ORIt

This is a first-order differential equation which we can solve for f(x) using separation of variables or by
realizing that it is a linear DE. (Our approach below is equivalent to separation of variables.)

Note that ];/((f)) :%ln(f(m)). Thus, integrating both sides of the DE,

In(f(x)) = /w—;g(aj)dx:/:cfx 2dx:1n|ac2—2|—|—C.

We conclude that fixed-point iteration of g() is equivalent to Newton's method applied to f(z) =z2 — 2.

Comment. The general solution of the DE has one degree of freedom (the C' above, which we chose as
0). On the other hand, we know from the beginning that Newton's method applied to f(x) and D f(x)
results in the same fixed-point iteration.

(d) Newton’s method applied to f(x) =22 — a is equivalent to fixed-point iteration of g(z)= %(ZE —0—%)
Comment. The resulting method for computing square roots y/a is known as the Babylonian method.

It consists of starting with an approximation xo~ \/a and then iteratively computing x,, 1= %(mn + %)

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
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