
Notes for Lecture 12 Wed, 9/17/2025

Review. If f(x) is analytic around x= c, then it equals its Taylor series of f(x) at x= c:

f(x) =
X
n=0

1
f (n)(c)
n!

(x¡ c)n= f(c)+ f 0(c)(x¡ c)+ 1
2
f 00(c)(x¡ c)2+ :::

Example 57. Consider f(x)=xe¡2x.

(a) Determine the 2nd Taylor polynomial p2(x) of f(x) at x=0.

(b) Provide an upper bound for the error jf(x)¡ p2(x)j if x2
h
0; 110

i
.

Solution.

(a) We could determine the 3rd Taylor polynomial by computing derivatives of xe¡2x.

On the other hand, we already know that ex = 1 + x +
1

2
x2 +

1

6
x3 + ::: which implies that xe¡2x =

x
�
1¡ 2x+ 22

2
x2¡ 23

6
x3+ :::

�
=x¡ 2x2+2x3¡ 4

3
x4+ :::

We only need the 2nd Taylor polynomial which is p2(x)= x¡ 2x2.

(b) If f(x)= xe¡2x then Taylor's theorem implies that

f(x)¡ p2(x)=
f (3)(�)
3!

x3

for some � between 0 and x.
We compute that f (3)(x)= 4(3¡ 2x)e¡2x.
The function 4(3¡ 2x)e¡2x is decreasing for our values of x (because the derivative is 16(x¡ 2)e¡2x

which is negative for x2 [0;2)) and so the maximum absolute value on
h
0;

1

10

i
is taken at x=0 or x= 1

10
.

At x=0, we have 4(3¡ 2x)e¡2x= 12. At x= 1

10 , we have 4(3¡ 2x)e
¡2x� 9.17.

Therefore, jf (3)(x)j= j4(3¡ 2x)e¡2xj612.

On the other hand, jx3j6
�
1

10

�
3
for all x2

h
0;

1

10

i
.

We therefore conclude that the error on
h
0;

1

10

i
is bounded by

jf(x)¡ p2(x)j=

����������f (3)(�)3!
x3

����������6 12
3!

�
1
10

�
3

=
2

1,000
= 0.002:

Fixed-point iteration

Definition 58. x� is a fixed point of a function f(x) if f(x�)=x�.

Example 59. Determine all fixed points of the function f(x)=x3.

Solution. x3=x has the three solutions x�=0;�1 (and a cubic equation cannot have more than 3 solutions).
These are the fixed points.

Idea. Suppose x� is a fixed point of a continuous function f . If xn�x�, then f(xn)� f(x�)=
x��xn. If we can guarantee that f(xn) is closer to x� than xn, then we can set

xn+1= f(xn);
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with the expectation that iterating this process will bring us closer and closer to x�.
When does this converge? This process converges if jf(xn)¡x�j< jxn¡ x�j for all xn close to x�.

This condition is equivalent to
������f(xn)¡x�
xn¡ x�

������< 1.
Since x�= f(x�), we have f(xn)¡ x�

xn¡x�
=
f(xn)¡ f(x�)

xn¡ x�
� f 0(x�) provided that xn is sufficiently close to x�.

This essentially proves the following result. (See below for a full proof using the mean value theorem.)

Theorem 60. Suppose that x� is a fixed point of a continuously differentiable function f . If
jf 0(x�)j< 1, then fixed-point iteration

xn+1= f(xn); x0= initial approximation;

converges to x� locally.
In that case, we say that x� is an attracting fixed point.
Divergence. If jf 0(x�)j>1, then x� is a repelling fixed point. Our argument shows that fixed-point iteration
will not converge to x� except in the �freak� case where xn�/ x� but f(xn)=x�.

Comment. Local convergence means that we have convergence for all initial values x0 close enough to x�.

Proof. Note that

xn+1¡x� = f(xn)¡ f(x�)
= f 0(�n)(xn¡ x�)

where we applied the mean value theorem for the second equation and where �n is between xn and x�. Thus

jxn+1¡x�j= jf 0(�n)j � jxn¡ x�j

Since f 0 is continuous and jf 0(x�)j< 1, we have jf 0(x)j<� for some � < 1 for all x sufficiently close to x�. If
x0 is sufficiently to x� in that sense, then it follows that jx1¡x�j<� � jx0¡x�j. In particular, x1 is even closer
to x� and we can repeat this argument to conclude that jxn+1¡x�j<� � jxn¡x�j for all n. This implies that
jxn¡ x�j<�n � jx0¡ x�j. Since � < 1, this further implies that xn converges to x�. �

Newton's method as a fixed-point iteration

Recall that Newton's method for finding a root of f(x) proceeds from an initial approximation
x0 and iteratively computes

xn+1=xn¡
f(xn)
f 0(xn)

:

Note that this is equivalent to fixed-point iteration of the function g(x)=x¡ f(x)

f 0(x)
.

Comment. Note that x� is a fixed point of g(x)=x¡ f(x)

f 0(x)
if and only if f(x�)

f 0(x�)
=0.

We have already proven a criterion for convergence of fixed-point iterations (Theorem 60). Our
next goal is to develop the tools to analyze the speed of that convergence.
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Example 61. (We will continue this analysis in Example 70.)

(a) Newton's method applied to finding a root of f(x) = x3¡ 2 is equivalent to fixed-point
iteration of which function g(x)?

(b) Determine whether Newton's method converges locally to 23
p

.

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)= x¡ f(x)
f 0(x)

= x¡ x3¡ 2
3x2

=
2
3

�
x+

1

x2

�
:

(b) By Theorem 60, Newton's method converges locally to x�= 23p if jg 0(x�)j< 1.
Since g 0(x)= 2

3
¡ 4

3x3
, we get g 0(x�)= 2

3
¡ 4

3 � 2 =0. Hence Newton's method converges locally to 23p .

Important comment. Notice that g 0(x�)=0 is, in a way, the strongest sense in which jg0(x�)j< 1. We
will see shortly that g0(x�)=0 implies especially fast convergence of the type we observed in Example 47.

Example 62. (homework)

(a) What are the fixed points of g(x)= x

2
+ 1

x
?

(b) Does fixed-point iteration of g(x) converge?

(c) Find a function f(x) such that the fixed-point iteration of g(x) is equivalent to Newton's
method applied to f(x).

(d) Inspired by the previous parts, suggest a fixed-point iteration to compute square roots.

Solution.

(a) Solving x

2
+

1

x
=x, we find x2=2 and thus x=� 2

p
.

Comment. Note that g(x)= 1

2

�
x+

2

x

�
. Suppose that x< 2

p
. Then 2/x> 2

p
.

When iterating g(x), we are averaging the underestimate and the overestimate, and it is reasonable to
expect that the result is a better approximation.

(b) Since g 0(x)= 1

2
¡ 1

x2
, we have g0(� 2

p
)=

1

2
¡ 1

2
=0. Hence, both fixed points are attracting fixed points.

By Theorem 60, fixed-point iteration of g(x) converges locally to both fixed points.

(c) We are looking for a function f(x) such that x¡ f(x)

f 0(x)
= g(x). Equivalently, f

0(x)

f(x)
=

1

x¡ g(x)
=

2x

x2¡ 2 .

This is a first-order differential equation which we can solve for f(x) using separation of variables or by
realizing that it is a linear DE. (Our approach below is equivalent to separation of variables.)

Note that f
0(x)

f(x)
=

d

dx
ln(f(x)). Thus, integrating both sides of the DE,

ln(f(x)) =

Z
1

x¡ g(x)dx=
Z

2x

x2¡ 2dx= lnjx2¡ 2j+C:

We conclude that fixed-point iteration of g(x) is equivalent to Newton's method applied to f(x)=x2¡2.
Comment. The general solution of the DE has one degree of freedom (the C above, which we chose as
0). On the other hand, we know from the beginning that Newton's method applied to f(x) and Df(x)
results in the same fixed-point iteration.

(d) Newton's method applied to f(x)=x2¡ a is equivalent to fixed-point iteration of g(x)= 1

2

¡
x+

a

x

�
.

Comment. The resulting method for computing square roots a
p

is known as the Babylonian method.

It consists of starting with an approximation x0� a
p

and then iteratively computing xn+1=
1

2

�
xn+

a

xn

�
.

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
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