
Notes for Lecture 10 Fri, 9/12/2025

Newton's method

The Newton method proceeds as the secant method, except that it uses tangents instead of
secants. In particular, instead of two previous points xn¡1; xn (so that we construct a secant line)
we only require a single point xn to compute the next point.

Example 46. Derive a formula for the root of the tangent line through (a; f(a)).
Solution. The line has slope m= f 0(a). (We could also pick the other point.)
Since it passes through (a; f(a)), the line has the equation y¡ f(a)=m(x¡ a).
To find its root (or x-intercept), we set y=0 and solve for x.

We find that the root is x= a¡ f(a)

m
= a¡ f(a)

f 0(a)
.

Comment. Compare the above derivation with what we did for the regula falsi method.

Thus, given an initial approximation x0, the Newton method constructs x1; x2; ::: by the rule

xn+1=xn¡
f(xn)
f 0(xn)

:

Comment. In contrast to the secant method, the Newton method requires us to be able to compute f 0(x).
Also, per iteration we need two function evaluations (one for f and one for f 0) whereas the secant method only
requires a single function evaluation.

Comment. If we use the approximation f 0(xn)� f(xn)¡ f(xn¡1)

xn¡xn¡1
(which is a good approximation if xn¡1 and

xn are sufficiently close) in the Newton method, then we actually obtain the secant method.

Example 47. Determine an approximation for 23
p

by applying Newton's method to the function
f(x)=x3¡ 2 with initial approximation x0=1. Perform 3 steps.

Solution. We compute that f 0(x)= 3x2.

� x1=x0¡
f(x0)
f 0(x0)

=
4
3
� 1.3333

� x2=x1¡
f(x1)
f 0(x1)

=
91
72
� 1.2639

� x3=x2¡
f(x2)
f 0(x2)

=
1,126,819
894,348

� 1.2599

After 3 steps of Newton's method, our approximation for 23p is 1,126,819894,348 � 1.259933.

Comment. For comparison, 23p � 1.259921. The error is only 0.000012!
After one more iteration, the error drops to an astonishing 1.2 � 10¡10.
After one more iteration, the error drops to an astonishing 1.2 � 10¡20.
It looks like the number of correct digits is doubling at each step!!
We will soon prove that this is indeed the case.

Armin Straub
straub@southalabama.edu

27

Example 48. Python The following code implements the Newton method. Note that we need
as input both a function f and its derivative fd:

>>> def newton_method(f, fd, x0, nr_steps):
for i in range(nr_steps):

x0 = x0 - f(x0)/fd(x0)
return x0

Let us use this code to automatically perform the computations from Example 47.

>>> def f(x):
return x**3 - 2

>>> def fd(x):
return 3*x**2

>>> [newton_method(f, fd, 1, n) for n in range(1,5)]

[1.3333333333333333, 1.2638888888888888, 1.259933493449977, 1.2599210500177698]

Next, let us compare these values to 23
p

, the actual root of f(x).
>>> [newton_method(f, fd, 1, n) - 2**(1/3) for n in range(1,6)]

[0.07341228343846007, 0.003967838994015649, 1.24435551038804e-05,
1.2289658180009155e-10, 0.0]

It really looks like the number of correct digits is doubling at each step! Can you explain what
happened for the last output for which we got 0.0?
Well, we expect about 20 correct decimal digits (translating to about 20 � log210� 66.4 binary digits). That is
more than the number of significant digits that can be stored in a double-precision float. Accordingly, the error
is going to be rounded down to 0.

Finally, for comparison with Example 47, here are the first few exact values:

>>> from fractions import Fraction

>>> [newton_method(f, fd, Fraction(1), n) for n in range(1,4)]

[Fraction(4, 3), Fraction(91, 72), Fraction(1126819, 894348)]

Example 49. Apply Newton's method to g(x)=x3¡ 2x+2 and initial value x0=0.

Solution. Using g 0(x)= 3x2¡ 2, we compute that x1= x0¡ g(x0)

g 0(x0)
=1, x2=x1¡ g(x1)

g 0(x1)
=1¡ 1

1
=0.

Since x2=x0, the Newton method will now repeat and we are stuck in a 2-cycle.
In particular, the Newton method does not converge in this case.
Comment. g(x) has one real root at x�¡1.7693 (as well as two complex roots). Make a plot of g(x)!
Comment. It is possible to run into n-cycles for larger n as well when doing Newton iterations (for instance,
try f(x) = x5¡ x ¡ 1 and initial value x0= 0). When computing numerically, it is not particularly likely that
we will run into a perfect cycle. However, such cycles can be attractive. Meaning that we get closer and closer
to the cycle if we start with a nearby point. This is illustrated by the Python code experiment below.

Armin Straub
straub@southalabama.edu

28

Example 50. Python We apply the Newton method from our previous example to computing

a root of g(x)=x3¡ 2x+2. For that, we define g and its derivative as functions in Python:

>>> def g(x):
return x**3 - 2*x + 2

>>> def gd(x):
return 3*x**2 - 2

The following then confirms that we indeed have a 2-cycle starting with 0:
>>> [newton_method(g, gd, 0, n) for n in range(8)]

[0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]

On the other hand, this is what happens if we start with a point close to 0:
>>> [newton_method(g, gd, 0.1, n) for n in range(8)]

[0.1, 1.0142131979695432, 0.07965576631987636, 1.0090987403727651, 0.05222652653371296,
1.0039651847274838, 0.02332943565497303, 1.0008043531824031]

Notice how we are being attracted by the 2-cycle.

Armin Straub
straub@southalabama.edu

29

