
Notes for Lecture 8 Mon, 9/8/2025

Example 36. Python Let us implement the bisection method in Python (using the observation
from the previous example). As input, we use a function f , the end points a and b of an interval
guaranteed to contain a root of f , and the number of iterations that we wish to perform. The
output is the final interval.

>>> def bisection(f, a, b, nr_steps):
for i in range(nr_steps):

c = (a + b) / 2
if f(a)*f(c) < 0:

b = c
else:

a = c
return [a, b]

In order to use this function, we need to define a function f(x). For comparison with our com-
putation in Example 33, let us define f(x)=x3¡ 2. We can call it anything.

>>> def my_f(x):
return x**3 - 2

Let us verify (always check simple examples when writing code!) the definition of f(x) by com-
puting the values for x=1 and x=2.
>>> my_f(1)

-1

>>> my_f(2)

6

We are now ready to perform bisection with this function on the interval [a;b] with a=1 and b=2.
>>> bisection(my_f, 1, 2, 1)

[1, 1.5]

>>> bisection(my_f, 1, 2, 2)

[1.25, 1.5]

This matches our computation in Example 33. We previously computed that after 20 iterations
the interval will have size less than 10¡6. Indeed, the following illustrates that we

>>> bisection(my_f, 1, 2, 20)

[1.2599201202392578, 1.2599210739135742]

Accordingly, we obtain the approximation 23
p

= 1.259920:::.
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Example 37. Python Our computation in the previous example automatically ended up using
floats (we started with integer values for a and b but we end up with floats after dividing by 2
for the midpoint). To work with fractions (no rounding!) in Python, we can use the fractions
module as follows.
>>> from fractions import Fraction

>>> Fraction(1, 2) + Fraction(1, 3)

5/6

[You will probably see Fraction(5, 6) as the output rather than the above prettified version.]

Remarkably, our code can be used with fractions without changing it in any way:

>>> bisection(my_f, Fraction(1), Fraction(2), 1)

[Fraction(1, 1), Fraction(3, 2)]

>>> bisection(my_f, Fraction(1), Fraction(2), 2)

[Fraction(5, 4), Fraction(3, 2)]

Now, this perfectly matches our computation in Example 33.
Advanced comment. Unlike some other programming languages, Python does not make us specify the type
of variables. For instance, we never had to tell Python whether the variables a and b should be an integer or a
float or something else. Instead, Python is flexible (and we just used that to our advantage). This is called duck
typing (true to the idiom that if it walks like a duck and it quacks like a duck, then it must be a duck). As such,
Python allows the variables a and b to be any type for which our code (for instance, (a + b) / 2) makes sense.
[As always, these features have advantages and disadvantages. For instance, disadvantages of duck typing are
speed and safety (as in making problematic kinds of bugs more likely).]

Finally, let us compute all 4 iterations of Example 33 at once:

>>> [bisection(my_f, Fraction(1), Fraction(2), n) for n in range(1,5)]

[[Fraction(1, 1), Fraction(3, 2)], [Fraction(5, 4), Fraction(3, 2)], [Fraction(5, 4),
Fraction(11, 8)], [Fraction(5, 4), Fraction(21, 16)]]

Example 38. Python Note that our bisection method code in Example 36 evaluates the function
f twice per iteration (because we compute f(a) and f(c)). Rewrite our code to only require one
evaluation of f per iteration.
Solution.
>>> def bisection(f, a, b, nr_steps):

fa = f(a)
for i in range(nr_steps):

c = (a + b) / 2
fc = f(c)
if fa*fc < 0:

b = c
else:

a = c
fa = fc

return [a, b]

Try it! In terms of output, it should behave exactly as our previous code.
So why is this an improvement? (At first glance, it just looks more complicated...) Well, we need to keep in mind
that the function f could potentially be very costly to evaluate (f doesn't have to be a simple function as it was
in Example 33; instead, the definition of f might be a long computer program in itself and might require things
like querying databases in a complicated way). In such a case, this small detail might make a huge difference.
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The regula falsi method

As before, we wish to find a root of the continuous function f(x) in the interval [a; b].
The regula falsi method proceeds like the bisection method.

However, as an attempt to improve our approximations, instead of using the midpoint a+ b

2
of the

interval [a; b], it uses the root of the secant line of f(x) through (a; f(a)) and (b; f(b)).
Comment. Note that the root of the secant line will be a good approximation of the root of f(x) if f(x) is
nearly linear on the interval.

Example 39. Derive a formula for the root of the line through (a; f(a)) and (b; f(b)).
Solution. The line has slope m=

f(b)¡ f(a)

b¡ a .

Since it passes through (a; f(a)), the line has the equation y ¡ f(a) =m(x ¡ a). (We could, of course, also
pick the other point and the final result will be the same.)
To find its root (or x-intercept), we set y=0 and solve for x.

We find that the root is x= a¡ f(a)

m
= a¡ (b¡ a)f(a)

f(b)¡ f(a)
=
a(f(b)¡ f(a))

f(b)¡ f(a)
¡ (b¡ a)f(a)

f(b)¡ f(a)
=
af(b)¡ bf(a)
f(b)¡ f(a)

.

Comment. Note that the final formula af(b)¡ bf(a)
f(b)¡ f(a)

for the root is symmetric in a and b. (As it must be!)

Historical comment. Regula falsi (also called false position method) derives its somewhat strange name from its
long history where the above formula (in a time where formulas in the modern sense were not yet a thing) was used
to solve linear equations f(x)=Ax+B=0 (where A and B typically wouldn't be known explicitly) by choosing
two convenient values x= a and x= b (these would be the false positions since they are not the root itself).
https://en.wikipedia.org/wiki/Regula_falsi

To cut each interval [a; b] into the two parts [a; c] and [c; b]:

� Bisection uses the midpoint c= a+ b

2
.

� Regula falsi uses c= af(b)¡ bf(a)
f(b)¡ f(a)

.

Example 40. Determine an approximation for 23
p

by applying the regula falsi method to the
function f(x)=x3¡ 2 on the interval [1; 2]. Perform 3 steps.
Solution. Note that f(1)=¡1<0 while f(2)=6>0. Hence, f(x) must indeed have a root in the interval [1;2].

� [a; b] = [1; 2] contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The regula falsi point is c= af(b)¡ bf(a)

f(b)¡ f(a)
=
8

7
. We compute f(c)=¡174

343
< 0.

Hence, [c; b] =
h
8

7
; 2

i
must contain a root of f(x).

� [a; b] =
h
8

7
; 2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The regula falsi point is c= af(b)¡ bf(a)

f(b)¡ f(a)
=

75
62
. We compute f(c)=¡ 54781

238,328
< 0.

Hence, [c; b] =
h
75
62
; 2

i
must contain a root of f(x).

� [a; b] =
h
75
62
; 2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The regula falsi point is c= af(b)¡ bf(a)

f(b)¡ f(a)
=

37,538
30,301

. We compute f(c)< 0.

Hence, [c; b] =
h
37,538
30,301 ; 2

i
must contain a root of f(x).

After 3 steps of the regula falsi method, we know that 23p must lie in
h
37,538
30,301

; 2
i
� [1.2388; 2].

Comment. For comparison, 23p � 1.2599.

Armin Straub
straub@southalabama.edu

22

https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi


Example 41. Python We can easily adjust our code from Example 36 for the bisection method
to handle the regula falsi method. We only need to change the line that previously computed the

midpoint c= a+ b

2
and replace it with c= af(b)¡ bf(a)

f(b)¡ f(a)
instead:

>>> def regulafalsi(f, a, b, nr_steps):
for i in range(nr_steps):

c = (a*f(b) - b*f(a)) / (f(b) - f(a))
if f(a)*f(c) < 0:

b = c
else:

a = c
return [a, b]

Comment. This code is using 6 function evaluations per iteration. As we did in the case of the bisection method,
rewrite the code to only use a single function evaluation per iteration.

Let us use this code to automatically perform the computations we did in Example 40. Again, we
use fractions to get exact values for easier comparison.

>>> def my_f(x):
return x**3 - 2

>>> from fractions import Fraction

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 1)

[Fraction(8, 7), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 2)

[Fraction(75, 62), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 3)

[Fraction(37538, 30301), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 4)

[Fraction(1534043307, 1226096954), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 5)

[Fraction(15236748520786296242, 12128315482217382469), Fraction(2, 1)]

No wonder that we stopped after 3 iterations by hand. . .
Important comment. The final two outputs give us an indication why performance-critical scientific computa-
tions are usually done using floats even if all involved quantities could be exactly represented as rational numbers.
Compute the next iteration! The numerator and denominator integers can no longer be stored as 64 bit integers.
And this after a measly 6 iterations of a simple algorithm!
This is a typical problem with any exact expressions. In practice, their complexity (the number of bits required
to store them) often grows too fast.
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