Example 27. Python As our next upgrade, let us collect the digits in a list instead of printing them to the screen. Here is how we can create a list in Python and add an element to it:

```
>>> L = [1, 2, 3]
>>> L.append(4)
>>> print(L)
[1, 2, 3, 4]
```

Here is our code adjusted for using a list (and now it is more pleasant to ask for more digits):

```
>>> x = 0.1 # or any value < 1
    nr_digits = 10 # we want this many digits of x
    digits = [] # this list will store the digits of x
    from math import trunc
    for i in range(nr_digits):
        x = 2*x
        digit = trunc(x)
        digits.append(digit)
        x = x-digit
    print(digits)

[0, 0, 0, 1, 1, 0, 0, 1, 1, 0]</pre>
```

Example 28. Python For our final upgrade, we collect the code into a function that we call fracpart_digits. This is crucial for making it possible to use the code on different numbers.

```
>>> def fracpart_digits(x, nr_digits):
    digits = []
    from math import trunc
    for i in range(nr_digits):
        x = 2*x
        digit = trunc(x)
        digits.append(digit)
        x = x-digit
    return digits
```

We are now able to compute the digits of numbers by simply calling our function:

```
>>> fracpart_digits(0.1, 10)
   [0, 0, 0, 1, 1, 0, 0, 1, 1, 0]
>>> fracpart_digits(0.2, 10)
   [0, 0, 1, 1, 0, 0, 1, 1, 0, 0]
>>> from math import pi
>>> fracpart_digits(pi/4, 10)
   [1, 1, 0, 0, 1, 0, 0, 1, 0, 0]
```

Comment. Recall that, if you are not in a Python console, you need to add print(...) to see any output.

As an advanced use of lists, here is how we could compute 5 digits of 1/n for $n \in \{2, 3, 4, 5\}$:

```
>>> [fracpart_digits(1./n, 5) for n in range(2,6)]
[[1, 0, 0, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0]]
```

Comment. Note how the digits of $1/2 = (0.1)_2$ and $1/4 = (0.01)_2$ are particularly easy to verify.

Errors: absolute and relative

Suppose that the true value is x and that we approximate it with y.

- The absolute error is |y-x|.
- The **relative error** is $\left| \frac{y-x}{x} \right|$.

For many applications, the relative error is much more important. Note, for instance, that it does not change if we scale both x and y (in other words, it doesn't change if we change units from, say, meters to millimeters). Speaking of units, note that the relative error is dimensionless (it has no units even if x and y do).

Example 29. There are lots of interesting approximations of π . In each of the following cases, determine both the absolute and the relative error.

(a)
$$\pi \approx \frac{22}{7}$$

(b)
$$\pi \approx \sqrt[4]{9^2 + 19^2/22}$$
 (This approximation is featured in https://xkcd.com/217/.)

Solution.

(a) The absolute error is $\left|\frac{22}{7}-\pi\right|\approx 0.0013=1.3\cdot 10^{-3}.$ The relative error is $\left|\frac{\frac{22}{7}-\pi}{\pi}\right|\approx 0.00040=4.0\cdot 10^{-4}.$

Comment. Sometimes the relative error is quoted as a "percentage error". Here, this is 0.04%.

(b) The absolute error is $\left| \sqrt[4]{9^2 + 19^2/22} - \pi \right| \approx 1.0 \cdot 10^{-9}.$ The relative error is $\left| \frac{\sqrt[4]{9^2 + 19^2/22}}{\pi} \right| \approx 3.2 \cdot 10^{-10}.$

Example 30. (homework) π^{10} is rounded to the closest integer. Determine both the absolute and the relative error (to three significant digits).

$$\begin{split} & \textbf{Solution.} \ \ \pi^{10} \approx 93,\!648.0475 \\ & \text{The absolute error is } \left| 93,\!648 - \pi^{10} \right| \approx 0.0475. \\ & \text{The relative error is } \left| \frac{93,\!648 - \pi^{10}}{\pi^{10}} \right| \approx 5.07 \cdot 10^{-7}. \end{split}$$

Example 31. Strangely, $e^{\pi} - \pi = 19.999099979...$ Determine both the absolute and the relative error when approximating this number by 20.

https://xkcd.com/217/

Solution. The absolute error is $|20-(e^\pi-\pi)|\approx 9.0\cdot 10^{-4}$. The relative error is $\left|\frac{20-(e^\pi-\pi)}{e^\pi-\pi}\right|\approx 4.5\cdot 10^{-5}$.

Example 32. One of the most famous/notorious mathematical results is **Fermat's last theorem**.

It states that, for n > 2, the equation $x^n + y^n = z^n$ has no positive integer solutions!

Pierre de Fermat (1637) claimed in a margin of Diophantus' book *Arithmetica* that he had a proof ("I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.").

It was finally proved by Andrew Wiles in 1995 (using a connection to modular forms and elliptic curves).

This problem is often reported as the one with the largest number of unsuccessful proofs.

On the other hand, in a Simpson's episode, Homer (in 3D!) encounters the formula

$$1782^{12} + 1841^{12}$$
 "=" 1922^{12} .

If you check this on an old calculator it might confirm the equation. However, the equation is not correct, though it is "nearly": $1782^{12} + 1841^{12} - 1922^{12} \approx -7.002 \cdot 10^{29}$.

Why would that count as "nearly"? Well, the smallest of the three numbers, $1782^{12} \approx 1.025 \cdot 10^{39}$, is bigger by a factor of more than 10^9 . So the difference is extremely small in comparison.

More precisely, if $1782^{12} + 1841^{12}$ is the true value, then approximating it with 1922^{12} produces

- an absolute error of $|1782^{12} + 1841^{12} 1922^{12}| \approx 7.00 \cdot 10^{29}$ (rather large), and
- a relative error of $\left|\frac{1782^{12}+1841^{12}-1922^{12}}{1782^{12}+1841^{12}}\right| \approx 2.76 \cdot 10^{-10}$ (very small).

Comment. We can immediately see that Homer's formula is not quite correct by looking at whether each term is even or odd. Do you see it?

http://www.bbc.com/news/magazine-24724635