
Midterm #1: practice MATH 311 � Intro to Number Theory
Midterm: Thursday, Oct 3

Please print your name:

Problem 1. Find d= gcd (119; 272). Using the Euclidean algorithm, �nd integers x; y such that 119x+ 272y= d.

(Use Homework Problems 1.3, 1.4, 1.5 to generate more practice problems of this kind.)

Solution. We use the extended Euclidean algorithm:

gcd (119; 272) 272 = 2 � 119 + 34
= gcd (34; 119) 119 = 3 � 34 + 17
= gcd (17; 34)= 17

Backtracking through this, we �nd that Bézout's identity takes the form

17= 119 ¡ 3 � 34 = 119 ¡ 3 �
¡
272 ¡ 2 119

�
=7 � 119 ¡ 3 � 272 :

So, here, d= 17 as well as x=7 and y=¡3.

Note. Other values also work for x and y. In fact, we know that the general solution is
�
x
y

�
=

�
7
¡3

�
+

�
272/17
¡119/17

�
t. �

Problem 2.

(a) For which values of k has the diophantine equation 123x+ 360y= k at least one integer solution?

(b) Determine the general solution to the diophantine equation 123x+ 360y= 99.

(c) Determine all solutions to 123x+ 360y= 99 with x and y positive integers.

(Use Homework Problems 2.1, 2.2, 2.3 to generate more practice problems of this kind.)

Solution.

(a) We �rst compute gcd (123; 360) and �nd

gcd (123; 360)
360=2�123+114

= gcd (114; 123)
123=1�114+9

= gcd (9; 114)
114=12�9+6

= gcd (6; 9)
9=1�6+3

= gcd (3; 6)= 3:

We therefore see that the diophantine equation 123x+ 360y= k has at least one integer solution if and only if
k is a multiple of 3.

(b) Since 3j99, the diophantine equation 123x+ 360y= 99 has solutions. We �rst divide out the common factor of
3 to get the simpli�ed equation 41x+ 120y= 33.

(c) We already know that gcd (41; 120) = 1. To �nd integers x; y such that 41x+ 120y= 1, we use the extended
Euclidean algorithm:

gcd (41; 120) 120 = 3 � 41 ¡ 3
= gcd (3; 41) 41 = 14 � 3 ¡ 1
= 1
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Backtracking through this, we �nd that Bézout's identity takes the form

1=¡ 41 + 14 � 3 =¡ 41 + 14 �
¡
3 � 41 ¡ 120

�
= 41 � 41 ¡ 14 � 120 :

Hence, 41x+ 120y=1 has the particular solution
�
x
y

�
=

�
41
¡14

�
.

Consequently, 41x+ 120y= 33 has the general solution
�
x
y

�
= 33

�
41
¡14

�
+

�
120
¡41

�
t with t2Z.

(d) From the previous part, we know that the general solution is
�
x
y

�
= 33

�
41
¡14

�
+

�
120
¡41

�
t.

However, we are only interested in solutions with x > 0 and y > 0. x> 0 means t >¡33 � 41
120 =¡12+ 29

40 (that
is, t 2 f¡11;¡10;¡9; :::g), while y > 0 means t <¡33 � 14

41 =¡12+ 30
41 (that is, t2 f¡12;¡13;¡14; :::g). These

conditions contradict each other, which means that there are no solutions with both x and y positive integers. �

Problem 3.

(a) Determine 314441 (mod23), carefully showing all steps.

(b) Is 314159+ 265358+ 10 divisible by 19?

(Use Homework Problems 3.3, 3.4 to generate more practice problems of this kind.)

Solution.

(a) First, we simplify base and exponent 314441�84441=819 (mod23). For the second congruence, we used Fermat's
little theorem and 4441� 41� 19 (mod22).

We now use binary exponentiation: 82= 64�¡5 (mod23), 84� (¡5)2� 2, 88� 22=4, 816� 42= 16.

Hence, 314441� 819=816 � 82 � 81� 16 � (¡5) � 8
�6

� 4 (mod23).

(b) 314159+ 265358+ 10� 10159+(¡1)358+ 10� 10159+ 11 (mod19)

On the other hand, by Fermat's little theorem 10159� 1015 (mod19) because 159� 15 (mod18).

We now use binary exponentiation: 102= 100� 5 (mod 19), 104� 52� 6 (mod19), 108� 62�¡2 (mod19).

Hence, 1015= 108 � 104 � 102 � 101� (¡2) � 6
�7

� 5 � 10
�¡7

�¡49� 8 (mod19).

Combined, we �nd that 314159+ 265358+ 10� 1015+ 11� 8+ 11� 0 (mod19).

Consequently, 314159+ 265358+ 10 is divisible by 19. �

Problem 4.

(a) Find the modular inverse of 17 modulo 23.

(b) Solve 15x� 7 (mod31).

(c) List all invertible residues modulo 10.

(d) How many solutions does 16x� 1 (mod70) have modulo 70? Find all solutions.

(e) How many solutions does 16x� 4 (mod70) have modulo 70? Find all solutions.

(Use Homework Problems 2.8, 2.9, 2.10, 2.11, 2.12 to generate more practice problems of this kind.)
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Solution.

(a) We use the extended Euclidean algorithm:

gcd (17; 23) 23 = 1 � 17 +6

= gcd (6; 17) 17 = 3 � 6 ¡ 1
= 1

Backtracking through this, we �nd that Bézout's identity takes the form

1= 3 � 6 ¡ 17 =3 �
¡
23 ¡ 17

�
¡ 17 =3 � 23 ¡ 4 � 17 :

Hence, ¡4 � 17� 1 (mod23). In other words, 17¡1�¡4 (mod23).

(b) Since 2 � 15�¡1 (mod31), we see that 15¡1�¡2 (mod31).

(Don't worry if you didn't see that. You can just proceed as in the �rst part of this problem.)

Hence, 15x� 7 (mod 31) has the unique solution x� 15¡1 � 7�¡2 � 7� 17 (mod 31)

(c) Recall that a residue x is invertible modulo 10 if and only if gcd (x; 10) =1.

Hence, the invertible residues modulo 10 are 1; 3; 7; 9.

(d) This congruence has no solutions, because gcd (16; 70)= 2 but 2 - 1.

(e) Again gcd (16; 70)= 2, but this time 2j4. Hence, we have gcd (16; 70)= 2 solutions modulo 70.

The congruence is equivalent to 8x� 2 (mod35). We therefore determine 8¡1 (mod35).

We use the extended Euclidean algorithm:

gcd (8; 35) 35 = 4 � 8 + 3

= gcd (3; 8) 8 = 3 � 3 ¡ 1
= 1

Backtracking through this, we �nd that Bézout's identity takes the form

1= 3 � 3 ¡ 8 =3 �
¡
35 ¡ 4 � 8

�
¡ 8 =3 � 35 ¡ 13 � 8 :

Hence, 8¡1�¡13 (mod 35).

It follows that 8x� 2 (mod35) has the unique solution x� 8¡1 � 2�¡13 � 2� 9 (mod35).

Modulo 70, we have the two solutions x� 9 (mod70), x� 9+ 35= 44 (mod70). �

Problem 5. Solve the following system of congruences:

3x+5y � 6 (mod25)
2x+7y � 2 (mod25)

(Use Homework Problems 2.14, 2.15 to generate more practice problems of this kind.)

Solution. Working with rational numbers, the system

3x+5y = 6

2x+7y = 2
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has the unique solution (use any method you like)

�
x
y

�
=

�
3 5
2 7

�¡1�
6
2

�
=

1
11

�
7 ¡5
¡2 3

��
6
2

�
=

1
11

�
32
¡6

�
:

Working modulo 25, we have to determine the modular inverse 11¡1 (mod 25).

Using the Euclidean algorithm, we �nd that 11x+ 25y=1 is solved by x=¡9, y=4. (The steps are omitted here,
since we are experts by now. Make sure you can do it, and don't omit the steps on the exam, unless there is an obvious
choice for x and y!) This shows that 11¡1�¡9 (mod 25).

Hence, the system has the solution�
x
y

�
� 11¡1

�
32
¡6

�
�¡9

�
7
¡6

�
�
�
12
4

�
(mod25):

(Check by substituting the values into the two original congruences!) �

Problem 6. Spell out a precise version of the following famous results:

(a) Bézout's identity

(b) Prime number theorem

(c) Fermat's little theorem

Solution.

(a) Let a; b2Z (not both zero). There exist x; y 2Z such that

gcd (a; b)= ax+ by:

(b) Let �(x) be the number of primes 6 x. Then

lim
x!1

�(x)
x/ ln(x)

=1:

(c) Let p be a prime and a an integer. If p - a, then

ap¡1� 1 (mod p): �

Problem 7.

(a) Let a; n be positive integers. Show that a has a modular inverse modulo n if and only if gcd (a; n)= 1.

(b) Let p be a prime, and a an integer such that p - a. Show that the modular inverse a¡1 exists, and that

a¡1� ap¡2 (mod p):

(c) Compute 17¡1 (mod101) in two di�erent ways:

� Using the Euclidean algorithm.

� Using the previous part of this problem and binary exponentiation.
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Solution.

(a) Recall that x is a modular inverse of a if and only if ax� 1 (modn). This congruence has a solution x if and
only if the diophantine equation

ax+ny=1

has a solution x; y 2Z. This is the case if and only if gcd (a; n) divides the right-hand side, which is 1. That
is the case if and only if gcd (a; n)= 1.

(b) Since p is a prime, and a an integer such that p - a, Fermat's little theorem states that

ap¡1� 1 (mod p):

Equivalently, ap¡2 � a� 1 (mod p), which means that a¡1� ap¡2 (mod p).

(c) We compute the modular inverse of 17 modulo 101 in two di�erent ways:

� Using the Euclidean algorithm, we compute gcd (17; 101)
101=6�17¡1

=gcd (1;17)=1, so that Bézout's identity takes

the simple form 1= 6 � 17¡ 101.

Hence, 6 � 17� 1 (mod101). In other words, 17¡1� 6 (mod101).

� By the previous part of this problem,

17¡1� 1799 (mod101):

Note that 99= 64+ 32+2+1. Using binary exponentiation, we compute, modulo 101,

172�¡14; 174� (¡14)2�¡6; 178� (¡6)2� 36; 1716� 362�¡17; 1732� (¡17)2�¡14;

so that 1764� (¡14)2�¡6, repeating the initial values. Hence,

17¡1� 1799= 1764 � 1732 � 172 � 171� (¡6) � (¡14) � (¡14) � 17� 6 (mod101): �

Problem 8.

(a) Determine lcm (81; 135).

(Use Homework Problem 1.6 to generate more practice problems of this kind.)

(b) The residues ¡2;¡9; 6; 17;¡10 do not form a complete set of residues modulo 6. Which residue is missing?

(Use Homework Problem 2.13 to generate more practice problems of this kind.)

(c) Express 3141 in base 6.

(Use Homework Problems 3.1, 3.2 to generate more practice problems of this kind.)

(d) Determine, without the help of a calculator, the remainder of 112358132134 modulo 9.

(Use Homework Problem 3.5 to generate more practice problems of this kind.)

(e) What is the remainder of 62831853 modulo 11?

(Use Homework Problem 3.6 to generate more practice problems of this kind.)
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Solution.

(a) Since gcd (81; 135)= 27, we have lcm (81; 135)= 81 � 135
gcd (81; 135) =

81 � 135
27 = 405.

(b) Modulo 6, we have ¡2� 4;¡9� 3; 6� 0; 17� 5;¡10� 2. The missing residue is 1.

(c) 3141= 523 � 6+ 3. Hence, 3141=(:::3)6 where ::: are the digits for 523.

523= 87 � 6+ 1. Hence, 3141=(:::13)6 where ::: are the digits for 87.

87= 14 � 6+ 3. Hence, 3141=(:::313)6 where ::: are the digits for 14.

14=2 � 6+2. Hence, 3141=(:::2313)6 where ::: are the digits for 2.

In conclusion, 3141=(22313)6.

(d) 112358132134� 1+1+2+3+5+8+1+3+2+1+3+4= 34� 7 (mod 9)

The remainder of 112358132134 modulo 9 is 7.

(e) 62831853�¡6+ 2¡ 8+ 3¡ 1+ 8¡ 5+ 3=¡4� 7 (mod11)

The remainder of 62831853 modulo 11 is 7. �

Problem 9.

(a) Solve x� 2 (mod11), x� 3 (mod 13).

(b) Using the Chinese remainder theorem, determine all solutions to x2� 4 (mod 55).

(Use Homework Problems 3.7, 3.8 to generate more practice problems of this kind.)

Solution.

(a) x� 2 � 13 � 13mod11
¡1

¡5

+3 � 11 � 11mod13
¡1

6

�¡130+ 198� 13+ 55� 68 (mod 143)

Comment. Here, for instance, 11¡1�¡2¡1� 6 (mod13) is easy to see with some practice (otherwise, we can
always run the Euclidean algorithm).

(b) By the Chinese remainder theorem:

x2� 4 (mod55)
() x2� 4 (mod 5) and x2� 4 (mod 11)
() x��2 (mod 5) and x��2 (mod11)

The two obvious solutions modulo 55 are �2. To get one of the two additional solutions, we solve x�2 (mod5),
x�¡2 (mod11). [Then the other additional solution is the negative of that.]

x� 2 � 11 � 11mod5
¡1

1

¡ 2 � 5 � 5mod11
¡1

¡2

� 22+ 20� 42�¡13 (mod55)

Hence, the solutions are x��2 (mod55) and x��13 (mod55). �

Armin Straub
straub@southalabama.edu

6


