15 Quadratic residues

Definition 146. An integer *a* is a **quadratic residue** modulo *n* if $a \equiv x^2 \pmod{n}$ for some *x*.

Example 147. List all quadratic residues modulo 11.

Solution. We compute all squares: $0^2 = 0$, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$, $(\pm 3)^2 = 9$, $(\pm 4)^2 \equiv 5$, $(\pm 5)^2 \equiv 3$. Hence, the quadratic residues modulo 11 are 0, 1, 3, 4, 5, 9.

Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why? [*Hint.* $x^2 \equiv y^2 \pmod{p} \iff (x-y) (x+y) \equiv 0 \pmod{p} \iff x \equiv y \text{ or } x \equiv -y \pmod{p}$]

Example 148. List all quadratic residues modulo 15.

Solution. We compute all squares modulo $15: 0^2 = 0$, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$, $(\pm 3)^2 = 9$, $(\pm 4)^2 \equiv 1$, $(\pm 5)^2 \equiv 10$, $(\pm 6)^2 \equiv 6$, $(\pm 7)^2 \equiv 4$. Hence, the quadratic residues modulo 15 are 0, 1, 4, 6, 9, 10.

Important comment. Among the $\phi(15) = 8$ invertible residues, the quadratic ones are 1, 4 (exactly a quarter). Note that 15 is of the form n = pq with p, q distinct primes. Lemma 149 explains why this always happens for such n.

Lemma 149. Let m, n be coprime. Then a is a quadratic residue modulo mn if and only if a is a quadratic residue modulo both m and n.

Proof. a is a quadratic residue modulo mn

 $\iff a \equiv x^2 \pmod{mn}$ (for some integer x)

 $\iff a \equiv x^2 \pmod{m}$ and $a \equiv x^2 \pmod{n}$ (for some integer x)

 $\iff a$ is a quadratic residue modulo both m and n

It is obvious that " \Longrightarrow " holds in the final step. To see that " \Leftarrow " also holds is a bit more tricky: if $a \equiv x^2 \pmod{m}$ and $a \equiv y^2 \pmod{n}$, then we can find s, t such that x - y = sm + tn (possible by Bezout because m, n are coprime) or, equivalently, x - sm = y + tn. Then, with X = x - sm, we have $a \equiv X^2 \pmod{m}$ and $a \equiv X^2 \pmod{n}$.

Theorem 150. Let p, q, r be distinct odd primes.

- The number of invertible residues modulo n is $\phi(n)$.
- The number of invertible quadratic residues modulo p is $\frac{\phi(p)}{2} = \frac{p-1}{2}$.
- The number of invertible quadratic residues modulo pq is $\frac{\phi(pq)}{4} = \frac{p-1}{2} \frac{q-1}{2}$.
- The number of invertible quadratic residues modulo pqr is $\frac{\phi(pqr)}{8} = \frac{p-1}{2} \frac{q-1}{2} \frac{r-1}{2}$.
- ...

Proof.

- We already knew that the number of invertible residues modulo n is $\phi(n)$.
- Think about squaring all residues modulo p to make a complete list of all quadratic residues. Let a^2 be one of the nonzero quadratic residues. As we observed earlier, $x^2 \equiv a^2 \pmod{p}$ has exactly 2 solutions, meaning that exactly two residues (namely $\pm a$) square to a^2 . Hence, the number of invertible quadratic residues modulo p is half the number of invertible residues modulo p.

Alternatively. There are $\phi(p)/2$ invertible quadratic residues modulo p and $\phi(q)/2$ invertible quadratic residues modulo q. By the CRT and Lemma 149, it follows that there are $\frac{\phi(p) \phi(q)}{2} = \frac{\phi(pq)}{4}$ many invertible quadratic residues modulo pq.

- Again, think about squaring all residues modulo pq to make a complete list of all quadratic residues. Let a² be one of the invertible quadratic residues. By the CRT, x² ≡ a² (mod p) has exactly 4 solutions (why is it important that a is invertible here?!), meaning that exactly four residues square to a². Hence, the number of invertible quadratic residues modulo pq is a quarter of the number of invertible residues modulo pq.
- Spell out the situation modulo *pqr*!

Comment. Make similar statements when one of the primes is equal to 2.

Example 151. Why do mathematicians confuse Halloween and Christmas?

Because 31 Oct = 25 Dec.

Get it? $(31)_8 = 1 + 3 \cdot 8 = 25$ equals $(25)_{10} = 25$.

Fun borrowed from: https://en.wikipedia.org/wiki/Mathematical_joke

Example 152. (more terrible jokes, parental guidance advised)

There is 10 types of people... those who understand binary, and those who don't.

Of course, you knew that. How about:

There are II types of people... those who understand Roman numerals, and those who don't.

It's not getting any better:

There are I0 types of people... those who understand hexadecimal, F the rest...

16 Wilson's theorem

Example 153. What can you say about factors of n! + 1? Is n! + 1 composite infinitely often? Is it prime infinitely often?

Solution.

n	1	2	3	4	5	6	7	8	9	10	11	12
n! + 1	2	3	7	5^2	11^{2}	$7 \cdot 103$	71^{2}	$61 \cdot 661$	$19\cdot71\cdot269$	$11\cdot 329,891$	39,916,801	$13^2 \cdot 2, 834, 329$

- Every factor m≥2 of n!+1 has to be bigger than n. That's because, if m≤n, then n!+1≡1 (mod m).
 Comment. In other words, the number n!+1 has the property that all its prime factors are bigger than n. This observation provides us with another proof that there is infinitely many primes (see below).
- By Wilson's theorem (which we discuss below), if p is a prime, then p divides (p-1)!+1. Hence, n!+1 is composite whenever n+1 is prime (so that n=p-1 for some prime p).
- It is not known whether n! + 1 is prime infinitely often. n! + 1 is prime for n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, Only 21 such "factorial primes" are currently known, the largest being n = 150209. https://en.wikipedia.org/wiki/Factorial_prime

For comparison, the largest known prime is $2^{82,589,933} - 1$ (a Mersenne prime; possibly the 51st). It has a bit over 24.8 million (decimal) digits.

Another proof of Euclid's theorem. In order to show that there are infinitely many primes, it is sufficient to observe that there doesn't exist a largest prime number. Indeed, as noted above, the number n! + 1 has the property that all its prime factors are bigger than n, so that arbitrarily large primes exist.

The data in the above table suggests that, if p is a prime, then p divides (p-1)!+1.

Apparently, this was guessed by John Wilson, a student of Waring who mentions this in his 1770 algebra book. Neither of these two could prove it at the time (and were pessimistic about it); Lagrange proved it in 1771.

The first few cases. As in the table above:

If p=2, then (p-1)!+1=2 is divisible by 2. If p=3, then (p-1)!+1=3 is divisible by 3. If p=5, then (p-1)!+1=25 is divisible by 5. [If p=6, then (p-1)!+1=121 is not divisible by 6.] If p=7, then (p-1)!+1=721 is divisible by 7.

Theorem 154. (Wilson) If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. We can check the case p = 2 directly (as we did in the previous example).

Note that $(p-1)! = 1 \cdot 2 \cdot \ldots \cdot (p-1)$ modulo p is the product of all invertible values modulo p. Our main idea is to pair each x in this product with its inverse x^{-1} modulo p (different elements have different inverses), and to use $x \cdot x^{-1} \equiv 1 \pmod{p}$ so that those terms cancel unless $x \equiv x^{-1}$.

Because p is a prime, the congruence $x \equiv x^{-1} \pmod{p}$ or, equivalently, $x^2 \equiv 1 \pmod{p}$ has only the solutions $x \equiv \pm 1 \pmod{p}$. Hence, $(p-1)! \equiv 1 \cdot (-1) = -1 \pmod{p}$ because the contribution of any other value x is cancelled by $x^{-1} \pmod{p}$.

For instance. Go through the proof for p = 7. In that case, $2^{-1} \equiv 4$, $3^{-1} \equiv 5$.