
Sketch of Lecture 19 Tue, 10/31/2019

15 Quadratic residues

De�nition 146. An integer a is a quadratic residue modulo n if a� x2 (modn) for some x.

Example 147. List all quadratic residues modulo 11.

Solution. We compute all squares: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2�5, (�5)2� 3. Hence, the
quadratic residues modulo 11 are 0; 1; 3; 4; 5; 9.
Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why?
[Hint. x2� y2 (mod p) () (x¡ y) (x+ y)� 0 (mod p) () x� y or x�¡y (mod p)]

Example 148. List all quadratic residues modulo 15.

Solution. We compute all squares modulo 15: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2�1, (�5)2�10,
(�6)2� 6, (�7)2� 4. Hence, the quadratic residues modulo 15 are 0; 1; 4; 6; 9;10.
Important comment. Among the �(15)= 8 invertible residues, the quadratic ones are 1; 4 (exactly a quarter).
Note that 15 is of the form n= pq with p; q distinct primes. Lemma 149 explains why this always happens for
such n.

Lemma 149. Let m;n be coprime. Then a is a quadratic residue modulo mn if and only if a is
a quadratic residue modulo both m and n.

Proof. a is a quadratic residue modulo mn

() a� x2 (modmn) (for some integer x)

() a� x2 (modm) and a�x2 (modn) (for some integer x)
() a is a quadratic residue modulo both m and n
It is obvious that �=)� holds in the �nal step. To see that �(=� also holds is a bit more tricky: if a�x2 (modm)
and a � y2 (mod n), then we can �nd s; t such that x ¡ y = sm + tn (possible by Bezout because m; n
are coprime) or, equivalently, x ¡ sm = y + tn. Then, with X = x ¡ sm, we have a � X2 (modm) and
a�X2 (modn). �

Theorem 150. Let p; q; r be distinct odd primes.

� The number of invertible residues modulo n is �(n).

� The number of invertible quadratic residues modulo p is �(p)

2
=

p¡ 1
2

.

� The number of invertible quadratic residues modulo pq is �(pq)

4
=

p¡ 1
2

q¡ 1
2

.

� The number of invertible quadratic residues modulo pqr is �(pqr)

8
=

p¡ 1
2

q¡ 1
2

r¡ 1
2

.

� :::

Armin Straub
straub@southalabama.edu

42



Proof.

� We already knew that the number of invertible residues modulo n is �(n).

� Think about squaring all residues modulo p to make a complete list of all quadratic residues. Let a2 be
one of the nonzero quadratic residues. As we observed earlier, x2� a2 (mod p) has exactly 2 solutions,
meaning that exactly two residues (namely �a) square to a2. Hence, the number of invertible quadratic
residues modulo p is half the number of invertible residues modulo p.
Alternatively. There are �(p)/2 invertible quadratic residues modulo p and �(q)/2 invertible quadratic

residues modulo q. By the CRT and Lemma 149, it follows that there are �(p)
2

�(q)

2
=
�(pq)

4
many invertible

quadratic residues modulo pq.

� Again, think about squaring all residues modulo pq to make a complete list of all quadratic residues. Let a2

be one of the invertible quadratic residues. By the CRT, x2�a2 (modp) has exactly 4 solutions (why is it
important that a is invertible here?!), meaning that exactly four residues square to a2. Hence, the number
of invertible quadratic residues modulo pq is a quarter of the number of invertible residues modulo pq.

� Spell out the situation modulo pqr! �

Comment. Make similar statements when one of the primes is equal to 2.

Example 151. Why do mathematicians confuse Halloween and Christmas?
Because 31 Oct = 25 Dec.
Get it? (31)8=1+3 � 8= 25 equals (25)10= 25.

Fun borrowed from: https://en.wikipedia.org/wiki/Mathematical_joke

Example 152. (more terrible jokes, parental guidance advised)
There is I0 types of people ::: those who understand binary, and those who don't.

Of course, you knew that. How about:
There are II types of people::: those who understand Roman numerals, and those who don't.

It's not getting any better:
There are I0 types of people::: those who understand hexadecimal, F the rest :::

16 Wilson's theorem

Example 153. What can you say about factors of n! + 1? Is n! + 1 composite in�nitely often?
Is it prime in�nitely often?
Solution.

n 1 2 3 4 5 6 7 8 9 10 11 12
n! + 1 2 3 7 52 112 7 � 103 712 61 � 661 19 � 71 � 269 11 � 329; 891 39; 916; 801 132 � 2; 834;329

� Every factorm>2 of n!+1 has to be bigger than n. That's because, if m6n, then n!+1�1 (modm).
Comment. In other words, the number n!+ 1 has the property that all its prime factors are bigger than
n. This observation provides us with another proof that there is in�nitely many primes (see below).

� By Wilson's theorem (which we discuss below), if p is a prime, then p divides (p¡ 1)!+1. Hence, n!+1
is composite whenever n+1 is prime (so that n= p¡ 1 for some prime p).

� It is not known whether n! + 1 is prime in�nitely often. n! + 1 is prime for n=1; 2; 3; 11; 27;37; 41; 73;
77; 116; :::. Only 21 such �factorial primes� are currently known, the largest being n= 150209.
https://en.wikipedia.org/wiki/Factorial_prime

For comparison, the largest known prime is 282;589;933¡ 1 (a Mersenne prime; possibly the 51st). It has
a bit over 24.8 million (decimal) digits.
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Another proof of Euclid's theorem. In order to show that there are in�nitely many primes, it is su�cient to
observe that there doesn't exist a largest prime number. Indeed, as noted above, the number n! + 1 has the
property that all its prime factors are bigger than n, so that arbitrarily large primes exist.

The data in the above table suggests that, if p is a prime, then p divides (p¡ 1)! + 1.

Apparently, this was guessed by John Wilson, a student of Waring who mentions this in his 1770 algebra book.
Neither of these two could prove it at the time (and were pessimistic about it); Lagrange proved it in 1771.
The �rst few cases. As in the table above:
If p=2, then (p¡ 1)!+ 1=2 is divisible by 2.
If p=3, then (p¡ 1)!+ 1=3 is divisible by 3.
If p=5, then (p¡ 1)!+ 1= 25 is divisible by 5.
[If p=6, then (p¡ 1)!+ 1= 121 is not divisible by 6.]
If p=7, then (p¡ 1)!+ 1= 721 is divisible by 7.

Theorem 154. (Wilson) If p is a prime, then (p¡ 1)!�¡1 (mod p).
Proof. We can check the case p=2 directly (as we did in the previous example).
Note that (p¡ 1)!=1 � 2 � ::: � (p¡ 1) modulo p is the product of all invertible values modulo p. Our main idea
is to pair each x in this product with its inverse x¡1 modulo p (di�erent elements have di�erent inverses), and
to use x � x¡1� 1 (mod p) so that those terms cancel unless x�x¡1.
Because p is a prime, the congruence x�x¡1 (mod p) or, equivalently, x2� 1 (mod p) has only the solutions
x� �1 (mod p). Hence, (p ¡ 1)!� 1 � (¡1) =¡1 (mod p) because the contribution of any other value x is
cancelled by x¡1 (mod p). �

For instance. Go through the proof for p=7. In that case, 2¡1� 4, 3¡1� 5.
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