Sketch of Lecture 22 Thu, 11/29/2018

Review. continued fractions, convergents

Example 145. Determine the first few digits of the simple continued fraction of e.

Solution. e= .71828182846. .

1
e= 2+W: [2; a1, a2, ...] where [a1;a2,..]=1/0.7182... :.3922....

1/0.3922...=[2]5496..., 1/0.5496... =[ 1 | 8194..., 1/0.8194...=[ 1]2205..., 1/0.2205... =[ 4] 5356...
Hence, e=12;1,2,1,1,4,...].

Computing more digits, we find e=1[2;1,2,1,1,4,1,1,6,1,1,8,...] and the pattern continues.
Note. Assuming that the pattern does continue, this proves that e is irrational!

Example 146.

(a) Evaluate the first 4 convergents of [2; 3, 2, 3, 2, ...] (and then, using the next result,
compute 3 more convergents).

(b) Which number is represented by [2;3,2,3,2,...]7

Solution.
(a) 00:2
C1=[2;3]=2+ 3 =1~2333
1 2 16
Ca=[23,2]=2+ —5=2+3=7~2.286

. _ 1 _ 55

T
2+3

Using the next result, we compute the convergents C,, = £ as follows:

n

n [—2[—-1]0[1]2 |3 [4 |5 |6
an 21312 |3 [2 [3 |2
pn |0 |1 [2]7]16 55 [126 [433 [992
gn |1 [0 [1]3|7 [24]55 [189 [433
c 2| T[15]55] 126 433|992
" 11317 [24]| 55 | 189|433
(b) Write o= (2;3,2,3,2,...]. Then, 2 =2+ L :2+31¢-

1 @
3+ ..

simplifies to x — 2= 31”1 T

24

1
3+

Further (note that, clearly =z # —% so that 3z + 1 # 0) simplifies to (z — 2)(3z + 1) = « or
322 — 6z — 2=0, which has the solutions = = G+ v36+24 “ZGJFM =1+ \/g

Since 1+ \/g ~2.291 and 1 — \/g ~ —0.291, we conclude that [2;3,2,3,2,..]=1+ \/g

The equation x =2 +

Advanced comment. The fractions % are always reduced! Can you see how to conclude that ged(pp, gn) =1

from the relation p,gn_—1 — Pn—1¢n = (—1)" (which can be proved by induction)?
We can see this relation quite nicely in the above table because p,gn —1 — Pn—1qn is a 2 X 2 determinant
taken from the rows containing p,, and gy:
01 12 27 71 16 55
N P N N I

- 7 7 24‘:_1’
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Theorem 147. The kth convergent of the continued fraction [ag; a1, as, ...] is

Ck = @7
dk
where p; and ¢ are characterized by
Dk = QkPk—1+ Dk—2 and qk = Qkqk—1+ Qr—2
with p_o=0, p_1=1 with ¢_o=1, ¢_1=0"

Proof. We will prove the claim by induction on k. (More on that technique next time!)
First, we check the two base cases k=0, k=1 directly: Co=ag and C; =ag+ ai = %—Fl In other words,
1 1

po=ag, gqo=1 and p;y =apa1 + 1, ¢t = a1. This matches with the values from the recursion.
Next, we assume that the theorem is true for k=0, 1, ...,n. In particular,

Pn _ @nPn—11Pn—2

Chn=lao;a1,a2, ...,an] =
’ ' ’ ’ dn anqnfl"'_qan’

for any values ap, a1, ...,an. Note that C,, 1 =[ag;a1,a2,...,an,an+1] = [ao;al, as,...,an+ ! } Replacing
) 1 ) An 41
an, with a,, + ——, we therefore obtain
n41
1
1 (an+a7l+l)pn71+pn72
Cny1= ao;a17a27~~~,an+a =
n+l (an+ )Qn—1+Qn—2
An+1
_ (anan+1 + 1)pn—1 +an4+1Pn—2
(anan+1 + I)anl + an419n —2
_ an+1(anpn,1 +pn72) +Pn—1
an+1(anqn,1 + qn72) +aqn—1
_ An+1Pn + Pn—1 :pn—i-l
An+19n + qn—1 dn+1
The claim now follows by induction. t

Example 148. Determine [1;1,1,1,...] as well as its first 6 convergents.

Solution. The first few convergents are Co=1, C1=[1;1]=2, Ca=[1;1,1]=1+ li = %
T

Since this starts getting tedious, we instead compute the convergents C,, = z" recursively:

n —2|1—=110|1(2 (31415 6
Qnp, 1({1|1(1(1]1 1
Pn |0 1 12|35 (813 |21
qn |1 0 111121358 12

35181321
Cn 2313l5]l5 12

Note that the C,, are quotients of Fibonacci numbers (Fy=0, F1 =1, F5=1,...)! To be precise, C :%.
n1
Next, let's determine z=[1;1,1,1,...] by observing that z =1+ % =1+ %

F—
The equation z =1 —&—% simplifies to 2 — 2 — 1 =0, which has the soltjtions z=1 12\/5_

Since 72\/3 is negative (while z is between Cp=1 and C7 =2), we conclude [1;1,1,1,...]= ! +2\/3 ~1.618.
This is the golden ratio ¢.

Comment. Note that we have shown, in particular, lim,, o FF“ = p~1.618.

Comment. As noticed in the previous example time, the fractions 22 = Inie gre always reduced. In other

qn Fria
words, gcd(F,, Fr, 1) =1. Moreover, p,qn —1— Pn—1qn=(—1)" implies that F2 — F,, _1F,+1=(—1)"*1

Armin Straub 44

straub@southalabama.edu



Example 149. Determine the first few digits of the simple continued fraction of 7, as well as
the first few convergents.

Solution. 7 =[3]14159265359....
Computing more digits, we find 7 =[3;7,15,1,292,1,1,1,2,1,3,1,14,2, 1, ...].
Since 7 is irrational, this is an infinite continued fraction. No pattern in this fraction is known.

We compute the convergents C), = Z"’ as follows:

n

n [(—2|—-1]0[1 |2 3 4 5 |6

an 3 15 |1 292 1|1

pn |0 |1 [3]22]333 |355|103,993

qn |1 |0 [1|7 |106 |113 |33,102

C 3 22| 333 | 355 | 103,993

" 7 | 106 | 113 | 33,102

Comment. For n > 1, each approximation = ~ £ is best possible in the sense that it is better than any other
approximation % with b < gp,. In other words, if |x — %’ < ’a: — Z,, , then b> q,,.
Comment. Because of this, it is natural to expect that the approximations % and % are particularly good,

because they are followed by much “bigger” fractions.
Indeed, ? :28... and % =|3.141592 92... are very good approximations to 7.

Comment. It is known that 7 is irrational, so that the above “wild" continued fraction will go on forever.
Embarrassingly, we do not know whether, for instance, e + m = 5.85987448205... is irrational.
e+n=1[5;1,6,7,3,21,2,1,2,2,1,1,2,3,3,2,5,2,1, 1, ...]

All evidence points to it being irrational, but nobody has a proof. (In particular, we cannot be sure that this
continued fraction goes on forever.)
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