
Sketch of Lecture 19 Tue, 11/6/2018

16 Wilson's theorem

Example 129. What can you say about factors of n!+1? Is n!+1 composite in�nitely often?
Is it prime in�nitely often?
Solution.

n 1 2 3 4 5 6 7 8 9 10 11 12
n! + 1 2 3 7 52 112 7 � 103 712 61 �661 19 �71 �269 11 �329; 891 39;916; 801 132 � 2; 834; 329

� Every factor m > 2 of n! + 1 has to be bigger than n. That's because, if m 6 n, then n! + 1 �
1 (modm).
Comment. In other words, the number n! + 1 has the property that all its prime factors are bigger
than n. This observation provides us with another proof that there is in�nitely many primes (see below).

� By Wilson's theorem (which we discuss below), if p is a prime, then p divides (p ¡ 1)! + 1. Hence,
n! + 1 is composite whenever n+1 is prime (so that n= p¡ 1 for some prime p).

� It is not known whether n! + 1 is prime in�nitely often. n! + 1 is prime for n= 1; 2; 3; 11; 27; 37; 41;
73; 77; 116; :::. Only 21 such �factorial primes� are currently known, the largest being n= 150209.
https://en.wikipedia.org/wiki/Factorial_prime

Comment. As of 11/2018, 150209! + 1 is the 924th largest known prime number (it has 712; 355
decimal digits). For comparison, the largest known prime is 277;232;917¡1 (a Mersenne prime; possibly
the 50th). It has a bit over 23.2 million (decimal) digits.
https://primes.utm.edu/largest.html

Another proof of Euclid's theorem. In order to show that there are in�nitely many primes, it is su�cient
to observe that there doesn't exist a largest prime number. But, as noted above, the number n!+ 1 has the
property that all its prime factors are bigger than n, so that arbitrarily large primes exist.

The data in the above table suggests the following:

If p is a prime, then p divides (p¡ 1)! + 1.

Apparently, this was guessed by JohnWilson, a student of Waring who mentions this in his 1770 algebra book.
Neither of these two could prove it at the time (and were pessimistic about it); Lagrange proved it in 1771.
The �rst few cases. As in the table above:
If p=2, then (p¡ 1)!+ 1=2 is divisible by 2.
If p=3, then (p¡ 1)!+ 1=3 is divisible by 3.
If p=5, then (p¡ 1)!+ 1= 25 is divisible by 5.
[If p=6, then (p¡ 1)!+ 1= 121 is not divisible by 6.]
If p=7, then (p¡ 1)!+ 1= 721 is divisible by 7.

Theorem 130. (Wilson) If p is a prime, then (p¡ 1)!�¡1 (mod p).
Proof. We can check the case p=2 directly (as we did in the previous example).
Note that (p¡ 1)!= 1 � 2 � ::: � (p¡ 1) modulo p is the product of all invertible values modulo p.
Each x among these, we can pair with its unique inverse x¡1 modulo p. Unless, x � x¡1 (mod p) or,
equivalently, x2� 1 (mod p). Because p is a prime, this equation has only the solutions x��1 (mod p).
[Indeed: x2� 1 (mod p) () pj(x2¡ 1)= (x¡ 1)(x+1) () pj(x¡ 1) or pj(x+1) () x��1 (mod p)]
Hence, (p¡ 1)!� 1 � (¡1)=¡1 (mod p) because the contribution of any other value x is cancelled, modulo
p, by its inverse x¡1. �

For instance. Go through the proof for p=7. In that case, 2¡1� 4, 3¡1� 5.
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Corollary 131. n is a prime if and only if (n¡ 1)!�¡1 (modn).
Proof. It only remains to show that, if n is not a prime, then (n¡ 1)!�/ ¡1 (modn).
But this is obvious, if we realize that ¡1 is invertible modulo n but (n¡ 1)! is not. (Why?!) �

Review. A residue a is invertible modulo n if and only if gcd(a; n)= 1.
Comment. Unfortunately, this criterion is not a a good practical primality test. That's becauase computing
the factorial is as much work as trial division by all numbers 2; :::; n¡ 1.
Comment. In fact, can you see why (n¡ 1)!� 0 (modn) if n> 4 is not a prime?
If we can write n= ab where a; b> 1 and a=/ b, then (n¡ 1)!= ::: �a � ::: � b � :::� 0 (modn). This works (for
instance, we can let a be the smallest divisor of n) unless n= p2.
If n= p2, then (p2¡1)!= ::: � p � ::: � (2p) � :::�0 (mod p2). Unless 2p> p2¡ 1, which excludes p=2 (n=4).

(Halloween scare: �=4) � is the perimeter of a circle enclosed in
a square with edge length 1. The perimeter of the square is 4, which
approximates �. To get a better approximation, we �fold� the vertices
of the square towards the circle (and get the blue polygon). This
construction can be repeated for even better approximations and, in
the limit, our shape will converge to the true circle. At each step, the
perimeter is 4, so we conclude that �=4, contrary to popular belief.

What is going wrong?
We are constructing curves cn with the property that cn! c where c is the circle. This convergence can be
understood, for instance, in the sense kcn¡ck!0 where the norm measures the maximum distance between
cn and c.
Since cn! c we then want to conclude that perimeter(cn)!perimeter(c), leading to 4!�.
However, in order to conclude from xn!x that f(xn)! f(x) we need that f is continuous (at x)!!
The �function� perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very di�erent arc length.
We can dig a little deeper: as you learned in Calculus II, the arc length of a function y= fn(x) for x2 [a; b] isZ
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Observe that this involves fn0 (x). Try to see why the operator D that sends f to f 0 is not continuous. In
words, two functions f and g can be arbitrarily close, yet have very di�erent derivatives f 0 and g 0.
That's a huge issue in functional analysis, which is the generalization of linear algebra to in�nite dimensional
spaces (like the space of all di�erentiable functions). The linear operators (�matrices�) on these spaces
frequently fail to be continuous.
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