Review. $x \pmod{n}$ is a primitive root.

 $\iff \text{ The (multiplicative) order of } x \pmod{n} \text{ is } \phi(n). \quad (\text{That is, the order is as large as possible.})$ $\iff x, x^2, \dots, x^{\phi(n)} \text{ is a list of all invertible residues modulo } n.$

Example 118. Is there a primitive root modulo 8?

Solution. Since $\phi(8) = 8 - 4 = 4$, the question is whether there is a residue of order 4.

The invertible residues are $\pm 1, \pm 3$. Obviously, 1 has order 1 and -1 has order 2. Since $(\pm 3)^2 \equiv 1 \pmod{8}$, the residues ± 3 have order 2 as well. There is no primitive root.

Lemma 119. If $a^r \equiv 1 \pmod{n}$ and $a^s \equiv 1 \pmod{n}$, then $a^{\gcd(r,s)} \equiv 1 \pmod{n}$.

Proof. By Bezout's identity, there are integers x, y such that $xr + ys = \gcd(r, s)$. Hence, $a^{\gcd(r,s)} = a^{xr+ys} = a^{xr}a^{ys} = (a^r)^x(a^s)^y \equiv 1 \pmod{n}$.

Corollary 120. The multiplicative order of *a* modulo *n* divides $\phi(n)$.

Proof. Let k be the multiplicative order, so that $a^k \equiv 1 \pmod{n}$. By Euler's theorem $a^{\phi(n)} \equiv 1 \pmod{n}$. The previous lemma shows that $a^{\gcd(k,\phi(n))} \equiv 1 \pmod{n}$. But since the multiplicative order is the smallest exponent, it must be the case that $\gcd(k,\phi(n)) = k$. Equivalently, k divides $\phi(n)$.

Example 121. Determine the orders of each (invertible) residue modulo 7. In particular, determine all primitive roots modulo 7.

Solution. First, observe that, since $\phi(7) = 6$, the orders can only be 1, 2, 3, 6. Indeed:

residue	1	2	3	4	5	6
order	1	3	6	3	6	2

The primitive roots are 3 and 5.

Lemma 122. Suppose $x \pmod{n}$ has (multiplicative) order k.

- (a) $x^a \equiv 1 \pmod{n}$ if and only if $k \mid a$.
- (b) $x^a \equiv x^b \pmod{n}$ if and only if $a \equiv b \pmod{k}$.
- (c) x^a has order $\frac{k}{\gcd(k,a)}$.

Proof.

- (a) "⇒": By Lemma 119, x^k ≡ 1 and x^a ≡ 1 imply x^{gcd(k,a)} ≡ 1 (mod n). Since k is the smallest exponent, we have k = gcd(k, a) or, equivalently, k|a.
 "⇐": Obviously, if k|a so that a = kb, then x^a = (x^k)^b ≡ 1 (mod n).
- (b) Since x is invertible, $x^a \equiv x^b \pmod{n}$ if and only if $x^{a-b} \equiv 1 \pmod{n}$ if and only if k | (a-b).
- (c) By the first part, $(x^a)^m \equiv 1 \pmod{n}$ if and only if $k \mid am$. The smallest such m is $m = \frac{k}{\gcd(k, a)}$.

Example 123. Redo Example 121, starting with the knowledge that 3 is a primitive root. Solution.

residues	1	2	3	4	5	6
3^a	3^{0}	3^{2}	3^{1}	3^{4}	3^{5}	3^{3}
order= $\frac{6}{\gcd(a,6)}$	$\frac{6}{6}$	$\frac{6}{2}$	$\frac{6}{1}$	$\frac{6}{2}$	$\frac{6}{1}$	$\frac{6}{3}$