
Sketch of Lecture 15 Tue, 10/23/2018

Review. Fermat's little theorem, and its proof

Example 106. Recall that Fermat's last theorem states that xn + yn = zn does not have
any solutions in positive integers if n> 3.
However, in a Simpson's episode, Homer discovered that

178212+ 184112 �=� 192212:

If you check this on an old calculator it might con�rm the equation. However, the equation is not correct,
though it is �nearly�: 178212+ 184112¡ 192212�¡7.002 �1029.
Why would that count as �nearly�? Well, the smallest of the three numbers is 178212�1.025 �1039 is bigger
by a factor of more than 109. So the di�erence is extremely small in comparison.
Relative errors. If you estimate x with y, the absolute error is jx¡ y j. However, for many applications, the

relative error
���x¡ y

x

��� is much more important.

Check! Show that Homer is wrong by hand by looking at this modulo 13. (Though modulo 2 is a lot easier!)

Solution. By Fermat's little theorem, we have x12�1 (mod13) for all x not divisible by 13. Our numbers are
not divisible by 13. Hence, 178212+184112�2 (mod13) but 192212� 1 (mod13), so they cannot be equal.

http://www.bbc.com/news/magazine-24724635

Theorem 107. (Euler's theorem) If n> 1 and gcd(a; n)= 1, then a�(n)� 1 (modn).

Before, we prove Euler's theorem, let us review Fermat's little theorem, which is the special case of prime n.
Fermat's little theorem. If p is prime and p - a, then ap¡1� 1 (mod p).

Proof. (Fermat's little theorem) The �rst p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all di�erent modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �

Proof. (Euler's theorem) Let m1;m2; :::;md be the values among f1; 2; :::; n¡ 1g which are coprime to n.
Then,

am1; am2; am3; :::; amd

are all di�erent modulo n. Clearly, none of them share a common factor with n.
Consequently, these values must be congruent (in some order) to the values m1;m2; :::;md modulo n. Thus,

am1 � am2 � am3 � ::: � amd�m1 �m2 �m3 � ::: �md (modn):

Cancelling the common factors (allowed because the mi are invertible modn), we get ad� 1 (modn). �
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14 Primality testing

Recall that it is extremely di�cult to factor large integers (this is the starting point for many
cryptosystems). Surprisingly, it is much simpler to tell if a number is prime.

Example 108. The following is the number from the �rst lecture, for which RSA Laboratories,
until 2007, o�ered $100,000 to the �rst one to factorize it. To this day, nobody has been able
to do so.
Has the thought crossed your mind that the challengers might be tricking everybody by chosing M to be
a huge prime that cannot be factored further? Well, we'll talk more about primality testing soon. But we
can actually quickly convince ourselves that M cannot be a prime. If M was prime then, by Fermat's little
theorem, 2M¡1�1 (modM). Below, we compute 2M¡1 (modM) and �nd that 2M¡1�/ 1 (modM). This
proves that M is not a prime. It doesn't bring us any closer to factoring it though.
Comment. Ponder this for a while. We can tell that a number is composite without �nding its factors. Both
sides to this story (�rst, being able to e�ciently tell whether a number is prime, and second, not being able
to factor large numbers) are of vital importance to modern cryptography.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] power_mod(2, rsa-1, rsa)

12093909443203361586765059535295699686754009846358895123890280836755673393220205933853\
34853414711666284196812410728851237390407107713940535284883571049840919300313784787895\
22602961512328487951379812740630047269392550033149751910347995109663412317772521248297\
950196643140069546889855131459759160570963857373851

Comment. Just for giggles, let us emphasize once more the need to compute 2N¡1 (modN) without actually
computing 2N¡1. Take, for instance, the 1024 bit RSA challenge number N = 135:::563 in this example.
The number 2N¡1 itself has N ¡ 1� 21024 � 10308.3 binary digits. It is often quoted that the number of
particles in the visible universe is estimated to be between 1080 and 10100. Whatever these estimates are
worth, our number has WAY more digits (!) than that. Good luck writing it out! [Of course, the binary digits
are a single 1 followed by all zeros. However, we need to further compute with that!]
Comment. There is nothing special about 2. You could just as well use, say, 3.

Example 109. Fermat's little theorem can be stated in the slightly stronger form:

n is a prime () an¡1� 1 (modn) for all a2f1; 2; :::; n¡ 1g

Why? Fermat's little theorem covers the �=)� part. The �(=� part is a direct consequence of the fact that,
if n is composite with divisor d, then dn¡1�/ 1 (modn). (Why?!)
Review. In the second part, we used that the contrapositive of A=)B is the logically equivalent statement
:B=):A.

Fermat primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �likely prime�
Algorithm:

Repeat k times:
Pick a random number a from f2; 3; :::; n¡ 2g.
If an¡1�/ 1 (modn), then stop and output �not prime�.

Output �likely prime�.
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If an¡1� 1 (modn) although n is composite, then a is often called a Fermat liar.
On the other hand, if an¡1�/ 1 (modn), then n is composite and a is called a Fermat witness.
Flaw. There exist certain composite numbers n (see Example 111) for which every a is a Fermat liar (or reveals
a factor of n). For this reason, the Fermat primality test should not be used as a general test for primality. That
being said, for very large random numbers, it is exceedingly unlikely to meet one of these troublesome numbers,
and so the Fermat test is indeed used for the purpose of randomly generating huge primes (for instance in
PGP). In fact, in that case, we can even always choose a=2 and k=1 with virtual certainty of not messing up.
There do exist extensions of the Fermat primality test which solve these issues.
[For instance, Miller-Rabin, which checks whether an¡1 � 1 (mod n) but also checks whether values like
a(n¡1)/2 are congruent to �1.]
Advanced comment. If n is composite but not an absolute pseudoprime (see Example 111), then at least
half of the values for a satisfy an¡1 �/ 1 (mod n) and so reveal that n is not a prime. This is more of a
theoretical result: for most large composite n, almost every a (not just half) will be a Fermat witness.

Example 110. Suppose we want to determine whether n=221 is a prime. Simulate the Fermat
primality test for the choices a= 38 and a= 24.
Solution.

� First, maybe we pick a= 38 randomly from f2; 3; :::;219g.
We then calculate that 38220� 1 (mod221). So far, 221 is behaving like a prime.

� Next, we might pick a= 24 randomly from f2; 3; :::; 219g.
We then calculate that 24220� 81�/ 1 (mod221). We stop and conclude that 221 is not a prime.

Important comment. We have done so without �nding a factor of n. (To wit, 221= 13 �17.)
Comment. Since 38 was giving us a false impression regarding the primality of n, it is called a Fermat liar
modulo 221. Similarly, we say that 221 is a pseudoprime to the base 38.
On the other hand, we say that 24 was a Fermat witness modulo 221.
Comment. In this example, we were actually unlucky that our �rst �random� pick was a Fermat liar: only
14 of the 218 numbers (about 6.4%) are liars. As indicated above, for most large composite numbers, the
proportion of liars will be exceedingly small.

Example 111. Somewhat suprisingly, there exist composite numbers n with the following
disturbing property: every residue a is a Fermat liar or gcd(a; n)> 1.

This means that the Fermat primality test is unable to distinguish n from a prime, unless the randomly picked
number a happens to reveal a factor (namely, gcd(a;n)) of n (which is exceedingly unlikely for large numbers).
[Recall that, for large numbers, we do not know how to �nd factors even if that was our primary goal.]

Such numbers are called absolute pseudoprimes or Carmichael numbers.
The �rst few are 561;1105;1729;2465; ::: (it was only shown in 1994 that there are in�nitely many of them).
These are very rare, however: there are 43 absolute pseudoprimes less than 106. (Versus 78; 498 primes.)
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