Midterm #2

Please print your name:

No notes or tools of any kind are permitted.	There are 25 points in total.	You need to show work to receive full credit.
	Good luck!	
Problem 1. (warmup, 4 points)		
(a) The remainder of 10202017 module	o 11 is .	1
(b) Complete the following to a compl	ete set of residues modulo 7:	-4, -2, -1, 2, 4, 8,
(c) The number 51 in base 7 is		
(d) List all primitive roots modulo 5:		
(scratch space)		

Problem 2. (warmup, 2 points) Carefully state Fermat's little theorem.

Problem 3. (3 points) Determine whether $31^{41} + 59^{26} + 53^5$ is divisible by 5.

Carefully show your steps!

Problem 4. (3+1 points)

- (a) Find the modular inverse of 10 modulo 43.
- (b) Solve $10x \equiv 4 \pmod{43}$.

Problem 5. (4 points) Solve the following system of congruences:

 $\begin{array}{rcl} 3x-y &\equiv& 1 \pmod{15} \\ x+2y &\equiv& 4 \pmod{15} \end{array}$

Problem 7. (4+1 points)

(a) Find the smallest positive integer x simultaneously solving the three congruences			$\equiv 1$ $\equiv 4$	$(\operatorname{mod} 3),\\(\operatorname{mod} 7),$
	I	x	$\equiv 1$	(mod 10).
(b) The next largest solution x to the above congruences is				

(extra scratch paper)